forked from zlib-ng/zlib-ng
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrees.c
818 lines (720 loc) · 30.8 KB
/
trees.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
/* trees.c -- output deflated data using Huffman coding
* Copyright (C) 1995-2021 Jean-loup Gailly
* detect_data_type() function provided freely by Cosmin Truta, 2006
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/*
* ALGORITHM
*
* The "deflation" process uses several Huffman trees. The more
* common source values are represented by shorter bit sequences.
*
* Each code tree is stored in a compressed form which is itself
* a Huffman encoding of the lengths of all the code strings (in
* ascending order by source values). The actual code strings are
* reconstructed from the lengths in the inflate process, as described
* in the deflate specification.
*
* REFERENCES
*
* Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
* Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
*
* Storer, James A.
* Data Compression: Methods and Theory, pp. 49-50.
* Computer Science Press, 1988. ISBN 0-7167-8156-5.
*
* Sedgewick, R.
* Algorithms, p290.
* Addison-Wesley, 1983. ISBN 0-201-06672-6.
*/
#include "zbuild.h"
#include "deflate.h"
#include "trees.h"
#include "trees_emit.h"
#include "trees_tbl.h"
/* The lengths of the bit length codes are sent in order of decreasing
* probability, to avoid transmitting the lengths for unused bit length codes.
*/
/* ===========================================================================
* Local data. These are initialized only once.
*/
struct static_tree_desc_s {
const ct_data *static_tree; /* static tree or NULL */
const int *extra_bits; /* extra bits for each code or NULL */
int extra_base; /* base index for extra_bits */
int elems; /* max number of elements in the tree */
unsigned int max_length; /* max bit length for the codes */
};
static const static_tree_desc static_l_desc =
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
static const static_tree_desc static_d_desc =
{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
static const static_tree_desc static_bl_desc =
{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
/* ===========================================================================
* Local (static) routines in this file.
*/
static void init_block (deflate_state *s);
static void pqdownheap (deflate_state *s, ct_data *tree, int k);
static void gen_bitlen (deflate_state *s, tree_desc *desc);
static void build_tree (deflate_state *s, tree_desc *desc);
static void scan_tree (deflate_state *s, ct_data *tree, int max_code);
static void send_tree (deflate_state *s, ct_data *tree, int max_code);
static int build_bl_tree (deflate_state *s);
static void send_all_trees (deflate_state *s, int lcodes, int dcodes, int blcodes);
static void compress_block (deflate_state *s, const ct_data *ltree, const ct_data *dtree);
static int detect_data_type (deflate_state *s);
static void bi_flush (deflate_state *s);
/* ===========================================================================
* Initialize the tree data structures for a new zlib stream.
*/
void Z_INTERNAL zng_tr_init(deflate_state *s) {
s->l_desc.dyn_tree = s->dyn_ltree;
s->l_desc.stat_desc = &static_l_desc;
s->d_desc.dyn_tree = s->dyn_dtree;
s->d_desc.stat_desc = &static_d_desc;
s->bl_desc.dyn_tree = s->bl_tree;
s->bl_desc.stat_desc = &static_bl_desc;
s->bi_buf = 0;
s->bi_valid = 0;
#ifdef ZLIB_DEBUG
s->compressed_len = 0L;
s->bits_sent = 0L;
#endif
/* Initialize the first block of the first file: */
init_block(s);
}
/* ===========================================================================
* Initialize a new block.
*/
static void init_block(deflate_state *s) {
int n; /* iterates over tree elements */
/* Initialize the trees. */
for (n = 0; n < L_CODES; n++)
s->dyn_ltree[n].Freq = 0;
for (n = 0; n < D_CODES; n++)
s->dyn_dtree[n].Freq = 0;
for (n = 0; n < BL_CODES; n++)
s->bl_tree[n].Freq = 0;
s->dyn_ltree[END_BLOCK].Freq = 1;
s->opt_len = s->static_len = 0L;
s->sym_next = s->matches = 0;
}
#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */
/* ===========================================================================
* Remove the smallest element from the heap and recreate the heap with
* one less element. Updates heap and heap_len.
*/
#define pqremove(s, tree, top) \
{\
top = s->heap[SMALLEST]; \
s->heap[SMALLEST] = s->heap[s->heap_len--]; \
pqdownheap(s, tree, SMALLEST); \
}
/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
#define smaller(tree, n, m, depth) \
(tree[n].Freq < tree[m].Freq || \
(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
static void pqdownheap(deflate_state *s, ct_data *tree, int k) {
/* tree: the tree to restore */
/* k: node to move down */
int v = s->heap[k];
int j = k << 1; /* left son of k */
while (j <= s->heap_len) {
/* Set j to the smallest of the two sons: */
if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
j++;
}
/* Exit if v is smaller than both sons */
if (smaller(tree, v, s->heap[j], s->depth))
break;
/* Exchange v with the smallest son */
s->heap[k] = s->heap[j];
k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
s->heap[k] = v;
}
/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
static void gen_bitlen(deflate_state *s, tree_desc *desc) {
/* desc: the tree descriptor */
ct_data *tree = desc->dyn_tree;
int max_code = desc->max_code;
const ct_data *stree = desc->stat_desc->static_tree;
const int *extra = desc->stat_desc->extra_bits;
int base = desc->stat_desc->extra_base;
unsigned int max_length = desc->stat_desc->max_length;
int h; /* heap index */
int n, m; /* iterate over the tree elements */
unsigned int bits; /* bit length */
int xbits; /* extra bits */
uint16_t f; /* frequency */
int overflow = 0; /* number of elements with bit length too large */
for (bits = 0; bits <= MAX_BITS; bits++)
s->bl_count[bits] = 0;
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
n = s->heap[h];
bits = tree[tree[n].Dad].Len + 1u;
if (bits > max_length){
bits = max_length;
overflow++;
}
tree[n].Len = (uint16_t)bits;
/* We overwrite tree[n].Dad which is no longer needed */
if (n > max_code) /* not a leaf node */
continue;
s->bl_count[bits]++;
xbits = 0;
if (n >= base)
xbits = extra[n-base];
f = tree[n].Freq;
s->opt_len += (unsigned long)f * (unsigned int)(bits + xbits);
if (stree)
s->static_len += (unsigned long)f * (unsigned int)(stree[n].Len + xbits);
}
if (overflow == 0)
return;
Tracev((stderr, "\nbit length overflow\n"));
/* This happens for example on obj2 and pic of the Calgary corpus */
/* Find the first bit length which could increase: */
do {
bits = max_length - 1;
while (s->bl_count[bits] == 0)
bits--;
s->bl_count[bits]--; /* move one leaf down the tree */
s->bl_count[bits+1] += 2u; /* move one overflow item as its brother */
s->bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
} while (overflow > 0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits = max_length; bits != 0; bits--) {
n = s->bl_count[bits];
while (n != 0) {
m = s->heap[--h];
if (m > max_code)
continue;
if (tree[m].Len != bits) {
Tracev((stderr, "code %d bits %d->%u\n", m, tree[m].Len, bits));
s->opt_len += (unsigned long)(bits * tree[m].Freq);
s->opt_len -= (unsigned long)(tree[m].Len * tree[m].Freq);
tree[m].Len = (uint16_t)bits;
}
n--;
}
}
}
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
Z_INTERNAL void gen_codes(ct_data *tree, int max_code, uint16_t *bl_count) {
/* tree: the tree to decorate */
/* max_code: largest code with non zero frequency */
/* bl_count: number of codes at each bit length */
uint16_t next_code[MAX_BITS+1]; /* next code value for each bit length */
unsigned int code = 0; /* running code value */
int bits; /* bit index */
int n; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++) {
code = (code + bl_count[bits-1]) << 1;
next_code[bits] = (uint16_t)code;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
Assert(code + bl_count[MAX_BITS]-1 == (1 << MAX_BITS)-1, "inconsistent bit counts");
Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
for (n = 0; n <= max_code; n++) {
int len = tree[n].Len;
if (len == 0)
continue;
/* Now reverse the bits */
tree[n].Code = PREFIX(bi_reverse)(next_code[len]++, len);
Tracecv(tree != static_ltree, (stderr, "\nn %3d %c l %2d c %4x (%x) ",
n, (isgraph(n & 0xff) ? n : ' '), len, tree[n].Code, next_code[len]-1));
}
}
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
static void build_tree(deflate_state *s, tree_desc *desc) {
/* desc: the tree descriptor */
ct_data *tree = desc->dyn_tree;
const ct_data *stree = desc->stat_desc->static_tree;
int elems = desc->stat_desc->elems;
int n, m; /* iterate over heap elements */
int max_code = -1; /* largest code with non zero frequency */
int node; /* new node being created */
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
s->heap_len = 0;
s->heap_max = HEAP_SIZE;
for (n = 0; n < elems; n++) {
if (tree[n].Freq != 0) {
s->heap[++(s->heap_len)] = max_code = n;
s->depth[n] = 0;
} else {
tree[n].Len = 0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (s->heap_len < 2) {
node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
tree[node].Freq = 1;
s->depth[node] = 0;
s->opt_len--;
if (stree)
s->static_len -= stree[node].Len;
/* node is 0 or 1 so it does not have extra bits */
}
desc->max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = s->heap_len/2; n >= 1; n--)
pqdownheap(s, tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
node = elems; /* next internal node of the tree */
do {
pqremove(s, tree, n); /* n = node of least frequency */
m = s->heap[SMALLEST]; /* m = node of next least frequency */
s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
s->heap[--(s->heap_max)] = m;
/* Create a new node father of n and m */
tree[node].Freq = tree[n].Freq + tree[m].Freq;
s->depth[node] = (unsigned char)((s->depth[n] >= s->depth[m] ?
s->depth[n] : s->depth[m]) + 1);
tree[n].Dad = tree[m].Dad = (uint16_t)node;
#ifdef DUMP_BL_TREE
if (tree == s->bl_tree) {
fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)",
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
}
#endif
/* and insert the new node in the heap */
s->heap[SMALLEST] = node++;
pqdownheap(s, tree, SMALLEST);
} while (s->heap_len >= 2);
s->heap[--(s->heap_max)] = s->heap[SMALLEST];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen(s, (tree_desc *)desc);
/* The field len is now set, we can generate the bit codes */
gen_codes((ct_data *)tree, max_code, s->bl_count);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree.
*/
static void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
/* tree: the tree to be scanned */
/* max_code: and its largest code of non zero frequency */
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].Len; /* length of next code */
uint16_t count = 0; /* repeat count of the current code */
uint16_t max_count = 7; /* max repeat count */
uint16_t min_count = 4; /* min repeat count */
if (nextlen == 0)
max_count = 138, min_count = 3;
tree[max_code+1].Len = (uint16_t)0xffff; /* guard */
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[n+1].Len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
s->bl_tree[curlen].Freq += count;
} else if (curlen != 0) {
if (curlen != prevlen)
s->bl_tree[curlen].Freq++;
s->bl_tree[REP_3_6].Freq++;
} else if (count <= 10) {
s->bl_tree[REPZ_3_10].Freq++;
} else {
s->bl_tree[REPZ_11_138].Freq++;
}
count = 0;
prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}
/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
static void send_tree(deflate_state *s, ct_data *tree, int max_code) {
/* tree: the tree to be scanned */
/* max_code and its largest code of non zero frequency */
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].Len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
/* tree[max_code+1].Len = -1; */ /* guard already set */
if (nextlen == 0)
max_count = 138, min_count = 3;
// Temp local variables
uint32_t bi_valid = s->bi_valid;
uint64_t bi_buf = s->bi_buf;
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[n+1].Len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
do {
send_code(s, curlen, s->bl_tree, bi_buf, bi_valid);
} while (--count != 0);
} else if (curlen != 0) {
if (curlen != prevlen) {
send_code(s, curlen, s->bl_tree, bi_buf, bi_valid);
count--;
}
Assert(count >= 3 && count <= 6, " 3_6?");
send_code(s, REP_3_6, s->bl_tree, bi_buf, bi_valid);
send_bits(s, count-3, 2, bi_buf, bi_valid);
} else if (count <= 10) {
send_code(s, REPZ_3_10, s->bl_tree, bi_buf, bi_valid);
send_bits(s, count-3, 3, bi_buf, bi_valid);
} else {
send_code(s, REPZ_11_138, s->bl_tree, bi_buf, bi_valid);
send_bits(s, count-11, 7, bi_buf, bi_valid);
}
count = 0;
prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
// Store back temp variables
s->bi_buf = bi_buf;
s->bi_valid = bi_valid;
}
/* ===========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
static int build_bl_tree(deflate_state *s) {
int max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
/* Build the bit length tree: */
build_tree(s, (tree_desc *)(&(s->bl_desc)));
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
if (s->bl_tree[bl_order[max_blindex]].Len != 0)
break;
}
/* Update opt_len to include the bit length tree and counts */
s->opt_len += 3*((unsigned long)max_blindex+1) + 5+5+4;
Tracev((stderr, "\ndyn trees: dyn %lu, stat %lu", s->opt_len, s->static_len));
return max_blindex;
}
/* ===========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
static void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes) {
int rank; /* index in bl_order */
Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes");
// Temp local variables
uint32_t bi_valid = s->bi_valid;
uint64_t bi_buf = s->bi_buf;
Tracev((stderr, "\nbl counts: "));
send_bits(s, lcodes-257, 5, bi_buf, bi_valid); /* not +255 as stated in appnote.txt */
send_bits(s, dcodes-1, 5, bi_buf, bi_valid);
send_bits(s, blcodes-4, 4, bi_buf, bi_valid); /* not -3 as stated in appnote.txt */
for (rank = 0; rank < blcodes; rank++) {
Tracev((stderr, "\nbl code %2u ", bl_order[rank]));
send_bits(s, s->bl_tree[bl_order[rank]].Len, 3, bi_buf, bi_valid);
}
Tracev((stderr, "\nbl tree: sent %lu", s->bits_sent));
// Store back temp variables
s->bi_buf = bi_buf;
s->bi_valid = bi_valid;
send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
Tracev((stderr, "\nlit tree: sent %lu", s->bits_sent));
send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
Tracev((stderr, "\ndist tree: sent %lu", s->bits_sent));
}
/* ===========================================================================
* Send a stored block
*/
void Z_INTERNAL zng_tr_stored_block(deflate_state *s, char *buf, uint32_t stored_len, int last) {
/* buf: input block */
/* stored_len: length of input block */
/* last: one if this is the last block for a file */
zng_tr_emit_tree(s, STORED_BLOCK, last); /* send block type */
zng_tr_emit_align(s); /* align on byte boundary */
cmpr_bits_align(s);
put_short(s, (uint16_t)stored_len);
put_short(s, (uint16_t)~stored_len);
cmpr_bits_add(s, 32);
sent_bits_add(s, 32);
if (stored_len) {
memcpy(s->pending_buf + s->pending, (unsigned char *)buf, stored_len);
s->pending += stored_len;
cmpr_bits_add(s, stored_len << 3);
sent_bits_add(s, stored_len << 3);
}
}
/* ===========================================================================
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
*/
void Z_INTERNAL zng_tr_flush_bits(deflate_state *s) {
bi_flush(s);
}
/* ===========================================================================
* Send one empty static block to give enough lookahead for inflate.
* This takes 10 bits, of which 7 may remain in the bit buffer.
*/
void Z_INTERNAL zng_tr_align(deflate_state *s) {
zng_tr_emit_tree(s, STATIC_TREES, 0);
zng_tr_emit_end_block(s, static_ltree, 0);
bi_flush(s);
}
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and write out the encoded block.
*/
void Z_INTERNAL zng_tr_flush_block(deflate_state *s, char *buf, uint32_t stored_len, int last) {
/* buf: input block, or NULL if too old */
/* stored_len: length of input block */
/* last: one if this is the last block for a file */
unsigned long opt_lenb, static_lenb; /* opt_len and static_len in bytes */
int max_blindex = 0; /* index of last bit length code of non zero freq */
/* Build the Huffman trees unless a stored block is forced */
if (UNLIKELY(s->sym_next == 0)) {
/* Emit an empty static tree block with no codes */
opt_lenb = static_lenb = 0;
s->static_len = 7;
} else if (s->level > 0) {
/* Check if the file is binary or text */
if (s->strm->data_type == Z_UNKNOWN)
s->strm->data_type = detect_data_type(s);
/* Construct the literal and distance trees */
build_tree(s, (tree_desc *)(&(s->l_desc)));
Tracev((stderr, "\nlit data: dyn %lu, stat %lu", s->opt_len, s->static_len));
build_tree(s, (tree_desc *)(&(s->d_desc)));
Tracev((stderr, "\ndist data: dyn %lu, stat %lu", s->opt_len, s->static_len));
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
/* Build the bit length tree for the above two trees, and get the index
* in bl_order of the last bit length code to send.
*/
max_blindex = build_bl_tree(s);
/* Determine the best encoding. Compute the block lengths in bytes. */
opt_lenb = (s->opt_len+3+7) >> 3;
static_lenb = (s->static_len+3+7) >> 3;
Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %u lit %u ",
opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
s->sym_next / 3));
if (static_lenb <= opt_lenb)
opt_lenb = static_lenb;
} else {
Assert(buf != NULL, "lost buf");
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
}
if (stored_len+4 <= opt_lenb && buf != NULL) {
/* 4: two words for the lengths
* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can't have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
zng_tr_stored_block(s, buf, stored_len, last);
} else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
zng_tr_emit_tree(s, STATIC_TREES, last);
compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree);
cmpr_bits_add(s, s->static_len);
} else {
zng_tr_emit_tree(s, DYN_TREES, last);
send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1);
compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree);
cmpr_bits_add(s, s->opt_len);
}
Assert(s->compressed_len == s->bits_sent, "bad compressed size");
/* The above check is made mod 2^32, for files larger than 512 MB
* and unsigned long implemented on 32 bits.
*/
init_block(s);
if (last) {
zng_tr_emit_align(s);
}
Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last));
}
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
static void compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree) {
/* ltree: literal tree */
/* dtree: distance tree */
unsigned dist; /* distance of matched string */
int lc; /* match length or unmatched char (if dist == 0) */
unsigned sx = 0; /* running index in sym_buf */
if (s->sym_next != 0) {
do {
dist = s->sym_buf[sx++] & 0xff;
dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
lc = s->sym_buf[sx++];
if (dist == 0) {
zng_emit_lit(s, ltree, lc);
} else {
zng_emit_dist(s, ltree, dtree, lc, dist);
} /* literal or match pair ? */
/* Check that the overlay between pending_buf and sym_buf is ok: */
Assert(s->pending < s->lit_bufsize + sx, "pending_buf overflow");
} while (sx < s->sym_next);
}
zng_emit_end_block(s, ltree, 0);
}
/* ===========================================================================
* Check if the data type is TEXT or BINARY, using the following algorithm:
* - TEXT if the two conditions below are satisfied:
* a) There are no non-portable control characters belonging to the
* "black list" (0..6, 14..25, 28..31).
* b) There is at least one printable character belonging to the
* "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
* - BINARY otherwise.
* - The following partially-portable control characters form a
* "gray list" that is ignored in this detection algorithm:
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
* IN assertion: the fields Freq of dyn_ltree are set.
*/
static int detect_data_type(deflate_state *s) {
/* black_mask is the bit mask of black-listed bytes
* set bits 0..6, 14..25, and 28..31
* 0xf3ffc07f = binary 11110011111111111100000001111111
*/
unsigned long black_mask = 0xf3ffc07fUL;
int n;
/* Check for non-textual ("black-listed") bytes. */
for (n = 0; n <= 31; n++, black_mask >>= 1)
if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
return Z_BINARY;
/* Check for textual ("white-listed") bytes. */
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0)
return Z_TEXT;
for (n = 32; n < LITERALS; n++)
if (s->dyn_ltree[n].Freq != 0)
return Z_TEXT;
/* There are no "black-listed" or "white-listed" bytes:
* this stream either is empty or has tolerated ("gray-listed") bytes only.
*/
return Z_BINARY;
}
/* ===========================================================================
* Flush the bit buffer, keeping at most 7 bits in it.
*/
static void bi_flush(deflate_state *s) {
if (s->bi_valid == 64) {
put_uint64(s, s->bi_buf);
s->bi_buf = 0;
s->bi_valid = 0;
} else {
if (s->bi_valid >= 32) {
put_uint32(s, (uint32_t)s->bi_buf);
s->bi_buf >>= 32;
s->bi_valid -= 32;
}
if (s->bi_valid >= 16) {
put_short(s, (uint16_t)s->bi_buf);
s->bi_buf >>= 16;
s->bi_valid -= 16;
}
if (s->bi_valid >= 8) {
put_byte(s, s->bi_buf);
s->bi_buf >>= 8;
s->bi_valid -= 8;
}
}
}
/* ===========================================================================
* Reverse the first len bits of a code using bit manipulation
*/
Z_INTERNAL uint16_t PREFIX(bi_reverse)(unsigned code, int len) {
/* code: the value to invert */
/* len: its bit length */
Assert(len >= 1 && len <= 15, "code length must be 1-15");
#define bitrev8(b) \
(uint8_t)((((uint8_t)(b) * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32)
return (bitrev8(code >> 8) | (uint16_t)bitrev8(code) << 8) >> (16 - len);
}