-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_simsiam.py
87 lines (68 loc) · 2.92 KB
/
train_simsiam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from SimSiam.simsiam.simsiam import *
from SimSiam.simsiam.datapreparation import *
from SimSiam.optimizers import get_optimizer, LR_Scheduler
import argparse
import torch
from tqdm import tqdm
import matplotlib.pyplot as plt
import pickle
if __name__=="__main__":
"""
python3 train_simsiam.py --epochs 200 --batch_size 32 --lr 0.03 --momentum 0.9 --weight_decay 0.0005 --output_path 'simsiam_200.pth'
"""
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=1, help='number of epochs')
parser.add_argument('--batch_size', type=int, default=64, help='batchsize for dataloader')
parser.add_argument('--lr', type=float, default=0.03, help='optimizer learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='optimizer momentum')
parser.add_argument('--weight_decay', type=float, default=0.0005, help='optimizer weight decay')
parser.add_argument('--output_path', type=str, default='simsiam.pth')
opt = parser.parse_args()
print("preparing data")
if os.path.exists("ssl_data.pkl"):
print("data file found")
with open("ssl_data.pkl", "rb") as file:
data = pickle.load(file)
else:
print("generating data. This might take a while.")
data = generate_ssl_data(25_000)
with open("ssl_data.pkl", "wb") as file:
pickle.dump(data, file)
train_loader = prepare_data(data, batch_size=opt.batch_size)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = SimSiam().to(device)
# fixed parameters
warmup_epochs = 10
warmup_lr = 0
base_lr = 0.03
final_lr = 0
optimizer = get_optimizer(
'sgd', model,
lr=base_lr*opt.batch_size/256,
momentum=opt.momentum,
weight_decay=opt.weight_decay)
lr_scheduler = LR_Scheduler(
optimizer, warmup_epochs, warmup_lr*opt.batch_size/256,
opt.epochs, base_lr*opt.batch_size/256, final_lr*opt.batch_size/256,
len(train_loader),
constant_predictor_lr=True # see the end of section 4.2 predictor
)
accuracy = 0
# Start training
global_progress = tqdm(range(0, opt.epochs), desc=f'Training')
for epoch in global_progress:
model.train()
local_progress=tqdm(train_loader, desc=f'Epoch {epoch}/{opt.epochs}')
for idx, data in enumerate(local_progress):
images = data[0]
optimizer.zero_grad()
data_dict = model.forward(images[0].to(device, non_blocking=True), images[1].to(device, non_blocking=True))
loss = data_dict['loss'].mean()
loss.backward()
optimizer.step()
lr_scheduler.step()
local_progress.set_postfix(data_dict)
epoch_dict = {"epoch":epoch}
global_progress.set_postfix(epoch_dict)
PATH = opt.output_path
torch.save(model.state_dict(), PATH)