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Chapter 1

Introduction

This document is a reference manual for E-ACSL. E-ACSL is an acronym for “Executable
ANSI/ISO C Specification Language”. It is an “executable” subset of stable ACSL [1] imple-
mented [2] in the Frama-C platform [5]. “Stable” means that no experimental ACSL feature
is supported by E-ACSL. Contrary to ACSL, each E-ACSL specification is executable: it
may be evaluated at runtime.

In this document, we assume that the reader has a good knowledge of both ACSL [1] and the
ANSI C programming language [7, 8].

1.1 Organization of this document

This document is organized in the very same way that the reference manual of ACSL [1].

Instead of being a fully new reference manual, this document points out the differences between
E-ACSL and ACSL. Each E-ACSL construct which is not pointed out must be considered to
have the very same semantics than its ACSL counterpart. For clarity, each relevant grammar
rules are given in BNF form in separate figures like the ACSL reference manual does. In
these rules, constructs with semantic changes are displayed in blue.

1.2 Generalities about Annotations

No difference with ACSL.

1.3 Notations for grammars

No difference with ACSL.
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Chapter 2

Specification language

2.1 Lexical rules

No difference with ACSL.

2.2 Logic expressions

No difference with ACSL, but guarded quantificatication..

More precisely, grammars of terms and binders presented respectively Figures 2.1 and 2.3 are
the same than the one of ACSL, while Figure 2.2 presents grammar of predicates. The only
difference between E-ACSL and ACSL predicates are quantifications.

Reals are not correctly supported by the E-ACSL plug-in right now. Only floating point
numbers are supported: real constants and operations are seen as C floating point constants
and operations.

Quantification

E-ACSL quantification must be computable. They are limited to two limited forms.

Guarded integer quantification Guarded universal quantification is denoted by
\ f o r a l l τ x1,. . .,xn;
a1 <= x1 <= b1 . . . && an <= xn <= bn
==> p

and guarded existential quantification by
\ e x i s t s τ x1,. . .,xn;
a1 <= x1 <= b1 . . . && an <= xn <= bn
&& p

Each variable must be guarded exactly once and the guard of xi must appear before the
guard of xj if i < j (i.e. order of guards must follow order of binders).

Following the definition, each quantified variable belongs to a finite interval. Since finite
interval is only computable in practice for integers, this form of quantifier is limited to
integer and its subtype. Thus there is no guarded quantification over float, real, C
pointers or logic types.
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CHAPTER 2. SPECIFICATION LANGUAGE

literal ::= \true | \false boolean constants
| integer integer constants
| real real constants
| string string constants
| character character constants

bin-op ::= + | - | * | / | % | << | >>
| == | != | <= | >= | > | <
| && | || | ^^ boolean operations
| & | | | --> | <--> | ^ bitwise operations

unary-op ::= + | - unary plus and minus
| ! boolean negation
| ~ bitwise complementation
| * pointer dereferencing
| & address-of operator

term ::= literal literal constants
| id variables
| unary-op term
| term bin-op term
| term [ term ] array access
| { term \with [ term ] = term } array functional modifier
| term . id structure field access
| { term \with . id = term } field functional modifier
| term -> id
| ( type-expr ) term cast
| id ( term (, term)∗ ) function application
| ( term ) parentheses
| term ? term : term ternary condition
| \let id = term ; term local binding
| sizeof ( term )
| sizeof ( C-type-name )
| id : term syntactic naming
| string : term syntactic naming

Figure 2.1: Grammar of terms
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2.2. LOGIC EXPRESSIONS

rel-op ::= == | != | <= | >= | > | <

pred ::= \true | \false
| term (rel-op term)+ comparisons
| id ( term (, term)∗ ) predicate application
| ( pred ) parentheses
| pred && pred conjunction
| pred || pred disjunction
| pred ==> pred implication
| pred <==> pred equivalence
| ! pred negation
| pred ^^ pred exclusive or
| term ? pred : pred ternary condition
| pred ? pred : pred
| \let id = term ; pred local binding
| \let id = pred ; pred
| \forall binders ;

integer-guards ==> pred univ. integer quantification
| \exists binders ;

integer-guards && pred exist. integer quantification
| \forall binders ;

iterator-guard ==> pred univ. iterator quantification
| \exists binders ;

iterator-guard && pred exist. iterator quantification
| \forall binders ; pred univ. quantification
| \exists binders ; pred exist. quantification
| id : pred syntactic naming
| string : pred syntactic naming

integer-guards ::= interv (&& interv)∗

interv ::= (term integer-guard-op)+

id
(integer-guard-op term)+

integer-guard-op ::= <= | <

iterator-guard ::= id ( term , term )

Figure 2.2: Grammar of predicates
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CHAPTER 2. SPECIFICATION LANGUAGE

binders ::= binder (, binder)∗

binder ::= type-expr variable-ident
(,variable-ident)∗

type-expr ::= logic-type-expr | C-type-name

logic-type-expr ::= built-in-logic-type
| id type identifier

built-in-logic-type ::= boolean | integer | real

variable-ident ::= id | * variable-ident
| variable-ident []
| ( variable-ident )

Figure 2.3: Grammar of binders and type expressions

Iterator quantification In order to iterate over non-integer types, E-ACSL introduces a
notion of iterators over types: standard ACSL unguarded quantifications are only
allowed over a type which an iterator is attached to.

Iterators are introduced by a specific construct which attachs two sets — namely nexts
and the guards — to a binary predicate over a type τ . Both sets must have the same
cardinal. This construct is described by the grammar of Figure 2.4. For a type τ , nexts

declaration ::= //@ iterator id ( wildcard-param , wildcard-param ) :
nexts terms ; guards predicates ;

wildcard-param ::= parameter
| _

terms ::= term (, term)∗

predicates ::= predicate (, predicate)∗

Figure 2.4: Grammar of iterator declarations

is a set of terms which take an argument of type τ and return a value of type τ which
computes the next element in this type, while guards is a set of predicates which take an
argument of type τ and are valid (resp. invalid) to continue (resp. stop) the iteration.

Furthermore, the guard of a quantification using an iterator must be the predicate given
in the definition of the iterator. This abstract binary predicate takes two arguments of
the same type. One of them must be unnamed by using a wildcard (character under-
score ’_’). The unnamed argument must be binded to the guantifier, while the other
corresponds to the term from which the iteration begins.

Example 2.1 The following example introduces binary trees and a predicate which is
valid if and only if each value of a binary tree is even.

s t r u c t btree {
i n t va l ;
s t r u c t btree * l e f t , * r i g h t ;

};

/∗@ iterator access (_, struct btree ∗t ) :
@ nexts t−>left , t−>right ;

16



2.2. LOGIC EXPRESSIONS

@ guards \ v a l i d (t−>le f t ) , \ v a l i d (t−>right ) ; ∗/

/∗@ predicate is_even( struct btree ∗t ) =
@ \ f o r a l l struct btree ∗tt ; access ( tt , t ) ==> tt−>val % 2 == 0; ∗/

Unguarded quantification They are only allowed over boolean and char.

2.2.1 Operators precedence

No difference with ACSL.

Figure 2.5 summarizes operator precedences.

class associativity operators
selection left [· · ·] -> .
unary right ! ~ + - * & (cast) sizeof
multiplicative left * / %
additive left + -
shift left << >>
comparison left < <= > >=
comparison left == !=
bitwise and left &
bitwise xor left ^
bitwise or left |
bitwise implies left -->
bitwise equiv left <-->
connective and left &&
connective xor left ^^
connective or left ||
connective implies right ==>
connective equiv left <==>
ternary connective right · · ·?· · ·:· · ·
binding left \forall \exists \let
naming right :

Figure 2.5: Operator precedence

2.2.2 Semantics

No difference with ACSL, but undefinedness and same laziness than C.

More precisely, while ACSL is a 2-valued logic with only total functions, E-ACSL is a 3-
valued logic with partial functions since terms and predicates may be “undefined”.

In this logic, the semantics of a term denoting a C expression e is undefined if e leads to a
runtime error. Consequently the semantics of any term t (resp. predicate p) containing a
C expression e leading to a runtime error is undefined if e has to be evaluated in order to
evaluate t (resp. p).

Example 2.2 The semantics of all the below predicates are undefined:

17



CHAPTER 2. SPECIFICATION LANGUAGE

• 1/0 == 1/0

• f(*p) for any logic function f and invalid pointer p

Furthermore, C-like operators &&, ||, ^^ and _ ? _ : _ are lazy like in C: their right members
are evaluated only if required. Thus the amount of undefinedness is limited. Consequently,
predicate p ==> q is also lazy since it is equivalent to !p || q. It is also the case for guarded
quantifications since guards are conjunctions and for ternary condition since it is equivalent
to a disjunction of implications.

Example 2.3 Below, the first, second and fourth predicates are invalid while the third one is
valid:

• \false && 1/0 == 1/0

• \forall integer x, -1 <= x <= 1 ==> 1/x > 0

• \forall integer x, 0 <= x <= 0 ==> \false ==> -1 <= 1/x <= 1

• \exists integer x, 1 <= x <= 0 && -1 <= 1/x <= 1

In particular, the second one is invalid since the quantification is in fact an enumeration over
a finite number of elements, it amounts to 1/-1 > 0 && 1/0 > 0 && 1/1 > 0. The first atomic
proposition is invalid, so the rest of the conjunction (and in particular 1/0) is not evaluated.
The fourth one is invalid since it is an existential quantification over an empty range.

A contrario the semantics of predicates below is undefined:

• 1/0 == 1/0 && \false

• -1 <= 1/0 <= 1 ==> \true

• \exists integer x, -1 <= x <= 1 && 1/x > 0

Furthermore, casting a term denoting a C expression e to a smaller type τ is undefined if e is
not representable in τ .

Example 2.4 Below, the first term is well-defined, while the second one is undefined.

• (char)127

• (char)128

Handling undefinedness in tools It is the responsibility of each tool which interprets
E-ACSL to ensure that an undefined term is never evaluated. For instance, they may exit
with a proper error message or, if they generate C code, they may guard each generated
undefined C expression in order to be sure that they are always safely used.

This behavior is consistent with both ACSL [1] and mainstream specification languages for
runtime assertion checking like JML [9]. Consistency means that, if it exists and is defined,
the E-ACSL predicate corresponding to a valid (resp. invalid) ACSL predicate is valid (resp.
invalid). Thus it is possible to reuse tools interpreting ACSL like the Frama-C’s value
analysis plug-in [6] in order to interpret E-ACSL, and it is also possible to perform runtime
assertion checking of E-ACSL predicates in the same way than JML predicates. Reader
interested by the implications (especially issues) of such a choice may read articles of Patrice
Chalin [3, 4].
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2.3. FUNCTION CONTRACTS

2.2.3 Typing

No difference with ACSL, but no user-defined types.

It is not possible to define logic types introduced by the specification writer (see Section 2.6).

2.2.4 Integer arithmetic and machine integers

No difference with ACSL.

2.2.5 Real numbers and floating point numbers

No difference with ACSL.

Exact real numbers and even floating point numbers are usually difficult to implement. Thus
you would not wonder if most tools do not support them (or support them partially).

2.2.6 C arrays and pointers

No difference with ACSL.

Ensuring validity of memory accesses is usually difficult to implement, since it requires the
implementation of a memory model. Thus you would not wonder if most tools do not support
it (or support it partially).

2.2.7 Structures, Unions and Arrays in logic

No difference with ACSL.

Logic arrays without an explicit length are usually difficult to implement. Thus you would not
wonder if most tools do not support them (or support them partially).

2.2.8 String literals

No difference with ACSL.

2.3 Function contracts

No difference with ACSL, but no terminates and abrupt clauses.

Figure 2.6 shows grammar of function contracts. This is a simplified version of ACSL one
without terminates and abrupt clauses. Section 2.5 (resp. 2.9) explains why E-ACSL has no
terminates (resp. abrupt) clause.

2.3.1 Built-in constructs \old and \result

No difference with ACSL.

Figure 2.7 summarizes grammar extension of terms with \old and \result .

19



CHAPTER 2. SPECIFICATION LANGUAGE

function-contract ::= requires-clause∗

decreases-clause? simple-clause∗

named-behavior∗ completeness-clause∗

requires-clause ::= requires pred ;

decreases-clause ::= decreases term ( for id)? ;

simple-clause ::= assigns-clause | ensures-clause

assigns-clause ::= assigns locations ;

locations ::= location (, location) ∗ | \nothing

location ::= tset

ensures-clause ::= ensures pred ;

named-behavior ::= behavior id : behavior-body

behavior-body ::= assumes-clause∗ requires-clause∗ simple-clause∗

assumes-clause ::= assumes pred ;

completeness-clause ::= complete behaviors (id (, id)∗)? ;
| disjoint behaviors (id (, id)∗)? ;

Figure 2.6: Grammar of function contracts

term ::= \old ( term ) old value
| \result result of a function

pred ::= \old ( pred )

Figure 2.7: \old and \result in terms

20



2.3. FUNCTION CONTRACTS

2.3.2 Simple function contracts

No difference with ACSL.

\assigns is usually difficult to implement, since it requires the implementation of a memory
model. Thus you would not wonder if most tools do not support it (or support it partially).

2.3.3 Contracts with named behaviors

No difference with ACSL.

2.3.4 Memory locations and sets of terms

No difference with ACSL, but ranges and set comprehensions are limited in order to be finite.

Figure 2.8 describes grammar of sets of terms. The only differences with ACSL are that
both lower and upper bounds of ranges are mandatory and that the predicate inside set
comprehension must be guarded and bind only one variable. In that way, each set of terms is
finite and their members easily identifiable.

tset ::= \empty empty set
| tset -> id
| tset . id
| * tset
| & tset
| tset [ tset ]
| term .. term range
| \union ( tset (, tset)∗ ) union of locations
| \inter ( tset (, tset)∗ ) intersection
| tset + tset
| ( tset )
| { tset | binders (; pred)? } set comprehension
| { (tset (, tset)∗)? }
| term implicit singleton

pred ::= \subset ( tset , tset ) set inclusion
| term \in tset set membership

Figure 2.8: Grammar for sets of terms

Example 2.5 The set { x | integer x; 0 <= x <= 9 || 20 <= x <= 29 } denotes the set of
all integers between 0 and 9 and between 20 and 29.

Ranges are currently only supported in memory built-ins described in Section 2.7.1 and 2.13.

Example 2.6 The predicate \valid (&t[0 .. 9]) is supported and denotes that the ten first
cells of the array t are valid. Writing the term &t[0 .. 9] alone, outside any memory built-in,
is not yet supported.
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CHAPTER 2. SPECIFICATION LANGUAGE

2.3.5 Default contracts, multiple contracts

No difference with ACSL.

2.4 Statement annotations

2.4.1 Assertions

No difference with ACSL.

Figure 2.9 summarizes grammar for assertions.

C-compound-statement ::= { declaration∗ statement∗ assertion+ }

C-statement ::= assertion statement

assertion ::= /*@ assert pred ; */
| /*@ for id (, id)∗ : assert pred ; */

Figure 2.9: Grammar for assertions

2.4.2 Loop annotations

No difference with ACSL, but loop invariants lose their inductive nature.

Figure 2.10 shows grammar for loop annotations. There is no syntactic difference with ACSL.

loop assigns is usually difficult to implement, since it requires the implementation of a memory
model. Thus you would not wonder if most tools do not support it (or support it partially).

Loop invariants

The semantics of loop invariants is the same than the one defined in ACSL, except that
they are not inductive. More precisely, if one does not take care of side effects (semantics of
specifications about side effects in loop is the same in E-ACSL than the one in ACSL), a
loop invariant I is valid in ACSL if and only if:

• I holds before entering the loop; and

• if I is assumed true in some state where the loop condition c is also true, and if execution
of the loop body in that state ends normally at the end of the body or with a "continue"
statement, I is true in the resulting state.

In E-ACSL, the same loop invariant I is valid if and only if:

• I holds before entering the loop; and

• if execution of the loop body in that state ends normally at the end of the body or with
a "continue" statement, I is true in the resulting state.

22



2.4. STATEMENT ANNOTATIONS

statement ::= /*@ loop-annot */
while ( C-expression ) C-statement

| /*@ loop-annot */
for
( C-expression ; C-expression ; C-expression )
statement

| /*@ loop-annot */
do C-statement
while ( C-expression ) ;

loop-annot ::= loop-clause∗

loop-behavior∗

loop-variant?

loop-clause ::= loop-invariant
| loop-assigns

loop-invariant ::= loop invariant pred ;

loop-assigns ::= loop assigns locations ;

loop-behavior ::= for id (, id)∗ :
loop-clause∗ annotation for behavior id

loop-variant ::= loop variant term ;
| loop variant term for id ; variant for relation id

Figure 2.10: Grammar for loop annotations
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CHAPTER 2. SPECIFICATION LANGUAGE

Thus the only difference with ACSL is that E-ACSL does not assume that the invariant
previously holds when one checks that it holds at the end of the loop body. In other words
a loop invariant I is equivalent to put an assertion I just before entering the loop and at the
very end of the loop body.

Example 2.7 In the following, bsearch(t,n,v) searches for element v in array t between
indices 0 and n-1.

/∗@ requires n >= 0 && \ v a l i d ( t+(0..n−1));
@ assigns \noth ing ;
@ ensures −1 <= \ r e s u l t <= n−1;
@ behavior success :
@ ensures \ r e s u l t >= 0 ==> t [ \ r e s u l t ] == v;
@ behavior fa i lure :
@ assumes t_is_sorted : \ f o r a l l integer k1 , int k2 ;
@ 0 <= k1 <= k2 <= n−1 ==> t [k1 ] <= t [k2 ] ;
@ ensures \ r e s u l t == −1 ==>
@ \ f o r a l l integer k ; 0 <= k < n ==> t [k ] != v;
@∗/

i n t bsearch ( doub l e t [], i n t n, doub l e v) {
i n t l = 0, u = n-1;
/∗@ loop invariant 0 <= l && u <= n−1;

@ for fa i lure : loop invariant
@ \ f o r a l l integer k ; 0 <= k < n ==> t [k ] == v ==> l <= k <= u;
@∗/

wh i l e ( l <= u ) {
i n t m = l + (u- l )/2; // better than ( l+u)/2
i f ( t [m] < v) l = m + 1;
e l s e i f ( t [m] > v) u = m - 1;
e l s e r e t u r n m;

}
r e t u r n -1;

}

In E-ACSL, this annotated function is equivalent to the following one since loop invariants
are not inductive.

/∗@ requires n >= 0 && \ v a l i d ( t+(0..n−1));
@ assigns \noth ing ;
@ ensures −1 <= \ r e s u l t <= n−1;
@ behavior success :
@ ensures \ r e s u l t >= 0 ==> t [ \ r e s u l t ] == v;
@ behavior fa i lure :
@ assumes t_is_sorted : \ f o r a l l integer k1 , int k2 ;
@ 0 <= k1 <= k2 <= n−1 ==> t [k1 ] <= t [k2 ] ;
@ ensures \ r e s u l t == −1 ==>
@ \ f o r a l l integer k ; 0 <= k < n ==> t [k ] != v;
@∗/

i n t bsearch ( doub l e t [], i n t n, doub l e v) {
i n t l = 0, u = n-1;
/∗@ assert 0 <= l && u <= n−1;

@ for fa i lure : assert
@ \ f o r a l l integer k ; 0 <= k < n ==> t [k ] == v ==> l <= k <= u;
@∗/

wh i l e ( l <= u ) {
i n t m = l + (u- l )/2; // better than ( l+u)/2
i f ( t [m] < v) l = m + 1;
e l s e i f ( t [m] > v) u = m - 1;
e l s e r e t u r n m;
/∗@ assert 0 <= l && u <= n−1;

@ for fa i lure : assert
@ \ f o r a l l integer k ; 0 <= k < n ==> t [k ] == v ==> l <= k <= u;
@∗/ ;

}
r e t u r n -1;

}
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assertion ::= /*@ invariant pred ; */
| /*@ for id (, id)∗ : invariant pred ; */

Figure 2.11: Grammar for general inductive invariants

General inductive invariant
Syntax of these kinds of invariant is shown Figure 2.11

In E-ACSL, these kinds of invariants put everywhere in a loop body is exactly equivalent to
an assertion.

2.4.3 Built-in construct \at

No difference with ACSL, but no forward references.

The construct \at(t,id) (where id is a regular C label, a label added within a ghost statement
or a default logic label) follows the same rule than its ACSL counterpart, except that a more
restrictive scoping rule must be respected in addition to the standard ACSL scoping rule:
when evaluating \at(t,id) at a propram point p, the program point p′ denoted by id must
be executed after p the program execution flow.

Example 2.8 In the following example, both assertions are accepted and valid in ACSL,
but only the first one is accepted and valid in E-ACSL since evaluating the term
\at(*(p+\at(*q,Here)),L1) at L2 requires to evaluate the term \at(*q,Here) at L1: that
is forbidden since L1 is executed before L2.

/∗@ requires \ v a l i d (p+(0..1));
@ requires \ v a l i d (q) ;
@∗/

vo i d f ( i n t *p, i n t *q) {
*p = 0;
*(p+1) = 1;
*q = 0;
L1: *p = 2;
*(p+1) = 3;
*q = 1;
L2:
/∗@ assert ( \at (∗(p+\at (∗q,L1)) ,Here) == 2); ∗/
/∗@ assert ( \at (∗(p+\at (∗q,Here)) ,L1) == 1); ∗/
r e t u r n ;

}

For the time being, \at can be applied to any term or predicate that uses quantified variables,
let-binded variables and C variables.

Example 2.9 The \at construct of the following example is supported.
main( vo i d ) {

i n t m = 2;
i n t n = 7;;
K: ;
n = 875;
/∗@ assert

\ l e t k = 3;
\ e x i s t s integer u; 9 <= u < 21 &&
\ f o r a l l integer v ; −5 < v <= (u < 15 ? u + 6 : k) ==>

\at (n + u + v > 0 , K) ; ∗/ ;
r e t u r n 0;

}
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However, quantified variables that use C variables in their bounds and let-binded variables
that use C variables in their definition are not yet supported.

Example 2.10 The \at construct of the following example is not yet supported since the
quantified variable i uses the C variable n in the definition of its upper bound.

/∗@ ensures \ f o r a l l int i ; 0 <= i < n−1 ==> \o ld ( t [ i ] ) == t [ i +1]; ∗/
vo i d r e v e r s e ( i n t * t , i n t n) { }

2.4.4 Statement contracts

No difference with ACSL, but no abrupt clauses.

Figure 2.6 shows grammar of statement contracts. Like function contracts, this is a simplified
version of ACSL with no abrupt clauses. All other constructs are unchanged.

statement ::= /*@ statement-contract */ statement

statement-contract ::= ( for id (, id)∗ :)? requires-clause∗

simple-clause∗ named-behavior-stmt∗

completeness-clause∗

named-behavior-stmt ::= behavior id : behavior-body-stmt

behavior-body-stmt ::= assumes-clause∗

requires-clause∗ simple-clause-stmt∗

Figure 2.12: Grammar for statement contracts

2.5 Termination

No difference with ACSL, but no terminates clauses.

2.5.1 Integer measures

No difference with ACSL.

2.5.2 General measures

No difference with ACSL.

2.5.3 Recursive function calls

No difference with ACSL.

2.5.4 Non-terminating functions

No such feature in E-ACSL, since it is still experimental in ACSL.
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2.6 Logic specifications

Limited to stable and computable features.

Figure 2.13 presents grammar of logic definitions. This is the same than the one of ACSL
without polymorphic definitions, lemmas, nor axiomatics.

C-global-decl ::= /*@ logic-def + */

logic-def ::= logic-const-def
| logic-function-def
| logic-predicate-def

type-expr ::= id

logic-const-def ::= logic type-expr id = term ;

logic-function-def ::= logic type-expr id parameters = term ;

logic-predicate-def ::= predicate id parameters? = pred ;

parameters ::= ( parameter (, parameter)∗ )

parameter ::= type-expr id

Figure 2.13: Grammar for global logic definitions

2.6.1 Predicate and function definitions

No difference with ACSL.

2.6.2 Lemmas

No such feature in E-ACSL: lemmas are user-given propositions. They are written usually
to help theorem provers to establish validity of specifications. Thus they are mostly useful
for verification activities based on deductive methods which are out of the scope of E-ACSL.
Furthermore, they often requires human help to be proven, although E-ACSL targets are
automatic tools.

2.6.3 Inductive predicates

No such feature in E-ACSL: inductive predicates are not computable if they really use their
inductive nature.

2.6.4 Axiomatic definitions

No such feature in E-ACSL: by nature, an axiomatic is not computable.

2.6.5 Polymorphic logic types

No such feature in E-ACSL, since it is still experimental in ACSL.
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2.6.6 Recursive logic definitions

No difference with ACSL.

2.6.7 Higher-order logic constructions

No such feature in E-ACSL, since it is still experimental in ACSL.

2.6.8 Concrete logic types

No such feature in E-ACSL, since it is still experimental in ACSL.

2.6.9 Hybrid functions and predicates

No difference with ACSL.

Hybrid functions and predicates are usually difficult to implement, since they require the im-
plementation of a memory model (or at least to support \at). Thus you would not wonder if
most tools do not support them (or support them partially).

2.6.10 Memory footprint specification: reads clause

No such feature in E-ACSL, since it is still experimental in ACSL.

2.6.11 Specification Modules

No difference with ACSL.

2.7 Pointers and physical adressing

No difference with ACSL, but separation.

Figure 2.14 shows the additional constructs for terms and predicates which are related to
memory location.

2.7.1 Memory blocks and pointer dereferencing

No difference with ACSL.

\base_addr, \block_length, \valid , \valid_read and \offset are usually difficult to implement,
since they require the implementation of a memory model. Thus you would not wonder if most
tools do not support them (or support them partially).

2.7.2 Separation

No difference with ACSL.

\separated are usually difficult to implement, since they require the implementation of a mem-
ory model. Thus you would not wonder if most tools do not support them (or support them
partially).
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term ::= \null
| \base_addr one-label? ( term )
| \block_length one-label? ( term )
| \offset one-label? ( term )
| \allocation one-label? ( term )

pred ::= \allocable one-label? ( term )
| \freeable one-label? ( term )
| \fresh two-labels? ( term, term )
| \valid one-label? ( location-address )
| \valid_read one-label? ( location-address )
| \separated ( location-address , location-addresses )

one-label ::= { id }

two-labels ::= { id, id }

location-addresses ::= location-address (, location-address)∗

location-address ::= tset

Figure 2.14: Grammar extension of terms and predicates about memory

2.7.3 Allocation and deallocation

All these constructs are usually difficult to implement, since they require the implementation
of a memory model. Thus you would not wonder if most tools do not support them (or support
them partially).

Warning: this section is still almost experimental in ACSL. Thus it might still evolve in
the future.

2.8 Sets and lists

2.8.1 Finite sets

No difference with ACSL.

2.8.2 Finite lists

No difference with ACSL.

Figure 2.15 shows the notations for built-in lists.

2.9 Abrupt termination

No such feature in E-ACSL, since it is still experimental in ACSL.

29



CHAPTER 2. SPECIFICATION LANGUAGE

term ::= [| |] empty list
| [| term (, term)∗ |] list of elements
| term ^ term list concatenation (overloading bitwise-xor

operator)
| term *^ term list repetition

Figure 2.15: Notations for built-in list datatype

2.10 Dependencies information

No such feature in E-ACSL, since it is still experimental in ACSL.

2.11 Data invariants

No difference with ACSL.

Figure 2.16 summarizes grammar for declarations of data invariants.

declaration ::= /*@ data-inv-decl */

data-inv-decl ::= data-invariant | type-invariant

data-invariant ::= inv-strength? global invariant
id : pred ;

type-invariant ::= inv-strength? type invariant
id ( C-type-name id ) = pred ;

inv-strength ::= weak | strong

Figure 2.16: Grammar for declarations of data invariants

2.11.1 Semantics

No difference with ACSL.

2.11.2 Model variables and model fields

No difference with ACSL.

Figure 2.17 summarizes grammar for declarations of model variables and fields.

declaration ::= C-declaration
| /*@ model parameter ; */ model variable
| /*@ model C-type-name { parameter ;? } ; */ model field

Figure 2.17: Grammar for declarations of model variables and fields
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2.12 Ghost variables and statements

No difference with ACSL, but no specific construct for volatile variables.

Figure 2.18 summarizes grammar for ghost statements which is the same than the one of
ACSL.

ghost-type-specifier ::= C-type-specifier
| logic-type

declaration ::= C-declaration
| /*@ ghost ghost-declaration */

direct-declarator ::= C-direct-declarator
| direct-declarator

( C-parameter-type-list? )
/*@ ghost
( ghost-parameter-list )
*/ ghost args

postfix-expression ::= C-postfix-expression
| postfix-expression

( C-argument-expression-list? )
/*@ ghost
( ghost-argument-expression-list )
*/ call with ghosts

statement ::= C-statement
| statements-ghost

statements-ghost ::= /*@ ghost
ghost-statement+ */

ghost-selection-statement ::= C-selection-statement
| if ( C-expression )

statement
/*@ ghost else
ghost-statement+

*/

struct-declaration ::= C-struct-declaration
| /*@ ghost

struct-declaration */ ghost field

Figure 2.18: Grammar for ghost statements

2.12.1 Volatile variables

No such feature in E-ACSL, since it is still experimental in ACSL.

2.13 Undefined values, dangling pointers
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No difference with ACSL.

\initialized and \dangling are usually difficult to implement, since they require the implemen-
tation of a memory model. Thus you would not wonder if most tools do not support them (or
support them partially).

2.14 Well-typed pointers

No such feature in E-ACSL, since it is still experimental in ACSL.
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Chapter 3

Libraries

Disclaimer: this chapter is yet empty. It is left here to give an idea of what the final document
will look and to be consistent with the ACSL reference manual [1].
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Chapter 4

Conclusion

This document presents an Executable ANSI/ISO C Specification Language. It provides a
subset of ACSL [1] implemented [2] in the Frama-C platform [5] in which each construct
may be evaluated at runtime. The specification language described here is intented to evolve
in the future in two directions. First it is based on ACSL which is itself still evolving. Second
the considered subset of ACSL may also change.
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Appendices
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APPENDIX A. APPENDICES

A.1 Changes

Version 1.13

• Update according to ACSL 1.13:

– Section 2.3.4: add syntax for set membership.

Version 1.12

• Update according to ACSL 1.12:

– Section 2.3.4: add subsections for build-in lists.

– Section 2.4.4: fix syntax rule for statement contracts in allowing completeness
clauses.

– Section 2.7.1: add syntax for defining a set by giving explicitly its element.

– Section 2.14: new section.

Version 1.9

• Section 2.7.3: new section.

• Update according to ACSL 1.9.

Version 1.8

• Section 2.3.4: fix example 2.5.

• Section 2.7: add grammar of memory-related terms and predicates.

Version 1.7

• Update according to ACSL 1.7.

• Section 2.7.2: no more absent.

Version 1.5-4

• Fix typos.

• Section 2.2: fix syntax of guards in iterators.

• Section 2.2.2: fix definition of undefined terms and predicates.

• Section 2.2.3: no user-defined types.

• Section 2.3.1: no more implementation issue for \old.

• Section 2.4.3: more restrictive scoping rule for label references in \at.
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A.1. CHANGES

Version 1.5-3

• Fix various typos.

• Warn about features known to be difficult to implement.

• Section 2.2: fix semantics of ternary operator.

• Section 2.2: fix semantics of cast operator.

• Section 2.2: improve syntax of iterator quantifications.

• Section 2.2.2: improve and fix example 2.3.

• Section 2.4.2: improve explanations about loop invariants.

• Section 2.6.9: add hybrid functions and predicates.

Version 1.5-2

• Section 2.2: remove laziness of operator <==>.

• Section 2.2: restrict guarded quantifications to integer.

• Section 2.2: add iterator quantifications.

• Section 2.2: extend unguarded quantifications to char.

• Section 2.3.4: extend syntax of set comprehensions.

• Section 2.4.2: simplify explanations for loop invariants and add example..

Version 1.5-1

• Fix many typos.

• Highlight constructs with semantic changes in grammars.

• Explain why unsupported features have been removed.

• Indicate that experimental ACSL features are unsupported.

• Add operations over memory like \valid .

• Section 2.2: lazy operators &&, ||, ^^, ==> and <==>.

• Section 2.2: allow unguarded quantification over boolean.

• Section 2.2: revise syntax of \exists .

• Section 2.2.2: better semantics for undefinedness.

• Section 2.3.4: revise syntax of set comprehensions.

• Section 2.4.2: add loop invariants, but they lose their inductive ACSL nature.

• Section 2.5.2: add general measures for termination.

• Section 2.6.11: add specification modules.
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Version 1.5-0

• Initial version.
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