
Aoraï Plugin Tutorial
(A.k.a. LTL to ACSL)

Nicolas Stouls and Virgile Prevosto
Nicolas.Stouls@insa-lyon.fr,virgile.prevosto@cea.fr

May 28, 2019

Foreword
Aoraï is a Frama-C plugin that provides a method to automatically annotate
a C program according to an automaton F such that, if the annotations are
verified, we ensure that the program respects F . A classical method to validate
annotations then is to use the Jessie plugin and the Why tool or the WP plugin.

This document requires basic knowledge about the Frama-C platform itself
(See http://frama-c.com for more information), in particular the notions of
plug-ins and project.

Notes:

• to the question "Why this name: Aoraï ?" my answer is: why not ? Aoraï
is the name of the tallest reachable mount in the Tahiti island and its
reachability is not always obvious.

• Aoraï has an optional dependency to ltl2ba tool, but you only need it if
you intend to use the ltl syntax (see Section 3.2).

Official web site:

http://amazones.gforge.inria.fr/aorai/index.html

1

http://frama-c.com
http://amazones.gforge.inria.fr/aorai/index.html

Contents

1 Introduction 4
1.1 Quick installation . 4
1.2 Interest of Aoraï . 4
1.3 Documentation’s description . 5

2 Quick overview 6
2.1 First use . 6

2.1.1 Launching the test . 6
2.1.2 Automata and verification 7

2.2 Help Command . 8
2.3 Known Restrictions . 9

3 Aoraï’s Languages 11
3.1 YA . 11

3.1.1 YA file . 11
3.1.2 Basic YA guards . 12
3.1.3 YA extensions . 14

3.2 LTL . 15
3.3 PROMELA . 17

4 Advanced Features 18
4.1 Generated Annotated File . 18

4.1.1 Auxiliary Variables . 18
4.1.2 Deterministic lemmas . 19
4.1.3 Update functions . 19
4.1.4 Functions behaviors . 19
4.1.5 Loop Invariants . 22

4.2 Interaction with Annotated Files 23

5 Going Further 26
5.1 Theoretical Base of the Approach 26

5.1.1 Safety . 26
5.1.2 Liveness . 27

5.2 Adding from the Theory . 28

2

5.2.1 Automata Modeling . 28
5.2.2 Memorization of last Transitions 28
5.2.3 Use of Specifications instead of Invariant 28

5.3 Abstract Interpretation . 28
5.3.1 Generation of Abstract Specifications 28
5.3.2 Static Simplification . 29

5.4 Plugin Architecture . 29
5.5 Recent updates . 30

5.5.1 Frama-C Aluminium . 30
5.5.2 Frama-C Nitrogen . 30
5.5.3 Frama-C Boron . 30
5.5.4 Frama-C Beryllium . 30

6 Conclusion 31

3

Chapter 1

Introduction

1.1 Quick installation
When compiling Frama-C sources, the configure command should return the
following information about Aoraï plugin:

(...)
checking for src/aorai/Makefile.in... yes
aorai... yes
checking for ltl2ba... yes
configure: *******************************
configure: * SUMMARY: PLUG-INS AVAILABLE *
configure: *******************************
configure: aorai: yes, dynamic

ltl2ba is an external tool1. It is only needed if you want to use ltl syntax
to describe properties. To enable the new syntax after Aoraï installation, you
do not have to do anything. Just use it. Finally, just do a make/sudo make
install and enjoy. In case of problems, please refer to the Frama-C manual.

1.2 Interest of Aoraï
As explained before, Aoraï’s goal is to prove that the C program works like a
given automaton. The approach used by Aoraï has two advantages:

• the high level of abstraction helps to write simple automata and avoid the
necessity to compute all possibilities of a function2

• thanks to the collaboration between human and plugin principle, you can
easily check complex C programs (see section 4.2)

1available at http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php
2for more information, see chapter 5

4

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php

1.3 Documentation’s description
This document is divided into four parts:

• First part is a quick overview of Aoraï. It will enable you to verify basic
properties and explain the general principle of the software.

• The second part defines the three Aoraï input languages with which it is
possible to describe a given property.

• The third part explains how to prove a program annotated with Aoraï
using the Jessie plug-in.

• Finally, the last part details Aoraï’s underlying theory, and its internal
architecture in order to help people who would like to contribute to the
plug-in itself.

5

Chapter 2

Quick overview

In this chapter we will see how to use Frama-C and the couple Jessie-Aoraï to
prove that a C program has the same behavior than an automaton.

2.1 First use
The goal is to launch the examples1 and read results.

2.1.1 Launching the test
First, we will forget about the specification of the automaton, which will be
described in the second part. In fact, we consider that we have already written
the file which describes the automaton.

Jessie’s verification2 can only be done on C code augmented with ACSL an-
notations. Thus, Aoraï creates a new C file where the automaton is encoded
into ACSL annotations. Section 4.1 will give more information about the anno-
tations generated by Aoraï

If you look at the example’s archive, you will find three files:

• example.ltl and example.ya which are equivalent and give a description
of the automaton’s specifications.

• example.c is the implementation which will be checked.

With two files (automaton’s description and C file), we can create an anno-
tated file in order to process the validation with the Jessie plug-in. This is done
by the following command:

$ frama−c example . c −aora i−automata example . ya

1 From http://frama-c.com/aorai.html
2For more information about Jessie and code verification,please refer to http://frama-c.

com/jessie.html

6

http://frama-c.com/aorai.html
http://frama-c.com/jessie.html
http://frama-c.com/jessie.html

This generates a new C file example_annot.c3. In order to decide if the
original program is correct with respect to the automaton, it is sufficient to
establish that the generated C code and its associated ACSL annotations are
valid. For instance, the following command uses the Jessie plug-in to generate
proof obligations and launches gwhy

$ frama−c example_annot . c − j e s s i e

Of course, any option of Jessie itself can be used. For instance, one can
use the Why3 interface instead of gwhy, and select a different algorithm for the
generation of proof obligations:

$ frama−c example_annot . c − j e s s i e \
− j e s s i e −why−opt="−f a s t−wp" − j e s s i e −atp why3ide

Finally, since Frama-C Nitrogen, it is possible to instruct Frama-C to do
a sequence of analyses over various projects, via the -then-on option. Thus,
we do not need to use an intermediate file and to run Frama-C twice. Instead,
we just instruct jessie to operate on the aorai project that contains the code
annotated by Aoraï:

$ frama−c example . c −aora i−automata example . ya \
−then−on ao ra i − j e s s i e − j e s s i e −atp why3ide

2.1.2 Automata and verification
The main interest of Aoraï is to prove that the program can be described by an
automaton. Please keep in mind that solutions to write automata in Aoraï are
listed in the next chapter.

The automaton of our running example is described by figure 2.1.
From the descriptions contained in .ya or .ltl files, a specification — in

terms of automata states and transitions — is computed for each operation. For
instance, the following specification corresponds to the previous automaton:

opa
{

Pre : state = {2} ∧ trans = {1}
Post : \old(state) = {2} ⇒ state = {3} ∧ trans = {2}

opb
{

Pre : state = {4} ∧ trans = {3}
Post : \old(state) = {4} ⇒ state = {5} ∧ trans = {4}

opc
{

Pre : state = ∅ ∧ trans = ∅
Post : \old(state) = ∅ ⇒ state = ∅ ∧ trans = ∅

main
{

Pre : state = {1} ∧ trans = {0}
Post : \old(state) = {1} ⇒ state = {6} ∧ trans = {5}

Finally, the C-code which will be checked is given in figure 2.2.
3Or example_annot0.c if example_annot.c already exists

7

1

2

0

3

4

5

6 True

Call(opa)

not Return(opb)

Call(main)

not Call(opa)

Return(opb)

Return(main)

Figure 2.1: Automaton

Actually, the mapping between state and code is made thanks to the transi-
tions properties like CALL(opa). Note that the pre- and post-conditions of the
C functions are defined by the set of states authorized just before (resp. after)
the call.

Aoraï generates a new C program, including the automaton axiomatization,
some coherence invariants, and annotations on operations, such that if this
annotated program can be validated with the Jessie plugin, then we ensure that
it respects the given properties.

Sometimes, the automaton has not enough information to check the validity
of the C-program, and the problem is only related to the implementation which
is used. In this case you can add some properties in the automaton or in the
generated files. For more information about that, please read section 4.2.

2.2 Help Command
The frama-c -aorai-help command returns the list of options for the Aoraï
plug-in. Here are the most common ones:

-aorai-ltl <s> specifies that the property to be checked is expressed as an LTL formula
in file <s>. This option requires that ltl2ba be installed.

-aorai-automata <f> considers the property described by the ya automata (in Ya language)
from file <f>

-aorai-verbose <n> gives some information during computation, such as used/produced files
and heuristics applied

8

-aorai-show-op-spec displays, at the end of the process, the computed specification of each
operation, in terms of states and transitions.

-aorai-dot generates a dot file of the automata. Dot is a graph format used by the
GraphViz tools4.

-aorai-output-c-file <f> outputs the annotated code in file <f> (default is to suffix the name of the
first input file with _annot, and a numerical suffix if that name is already
taken).

Finally, here is a concrete example of a common call:

$ frama−c prog . c −aora i− l t l formula . l t l \
−aora i−show−op−spec

2.3 Known Restrictions
The current version of Aoraï is under development. Hence, there are some
restrictions.

• Only the safety part of the property is checked. The liveness part is not
truly considered. Currently, a liveness property is only a restriction to
the terminating state of the program that has to be an acceptation state.
Hence, if the program terminates, then the liveness property is verified.

• Currently, function pointers are not supported.

• In the init state from the automaton, conditions on C-array or C-structure
are not statically evaluated (it’s an optimization) but are supported.

4http://www.graphviz.org

9

http://www.graphviz.org

int r r =1;
//@ g l o b a l i n va r i an t inv :0<=rr <=5000;

/∗@ requires r <5000;
@ behavior j :
@ ensures \result==r+1;

∗/

int opa (int r) {return r+1;}

/∗@ requires rr>=1 && rr <=5000;
@behavior f :
@ ensures rr>=3 && rr <=5000;

∗/
void opb () { i f (rr <4998) { r r+=2;}}
/∗@ behavior d :

@ ensures r r ==600;
∗/
void opc () { r r =600;}

/∗@ requires r r==1;

∗/
int main () {

i f (rr <5000) r r=opa (r r) ;
opb () ;
goto L6 ;
opc () ;

L6 :
return 1 ;

}

Figure 2.2: Example of C File

10

Chapter 3

Aoraï’s Languages

Aoraï’s verification principle is built from the automaton. That explains why
the plugin has languages to write automata. The easiest syntax is probably the
YA one which was created for Aoraï. For compatibility reasons, other syntaxes,
like LTL or PROMELA, are supported.

3.1 YA

3.1.1 YA file
The description of the automaton can be done in more than one way, but we
recommend to follow the guidelines explained below:

• Initial states of automaton are specified using the %init keyword followed
by a comma-separated list containing the states’ name:

%init : S1 , S2 , . . . , Sn ;

• Acceptance states are specified using the %accept keyword followed by a
comma separated list containing the states’ name

%accept : S1 , S2 , . . . , Sn ;

• If the automaton is supposed to be deterministic, this can be specified
using the following directive:

%deterministic ;

• States and transitions are described by sets of the following form

s t a t e : { condit ion_1 } −> new_state_1
| { condit ion_2 } −> new_state_2
| { condition_n } −> new_state_n
;

11

condition ::= CALL (id) | RETURN (id)
| COR (id)
| true | false | ! condition
| condition && condition
| condition || condition
| (condition) | relation

relation ::= expr relop expr | expr

relop ::= < | <= | == | != | >= | >

expr ::= lval | cst | expr + expr | expr − expr
| expr ∗ expr | expr / expr | expr % expr
| (expr)

cst ::= integer

lval ::= id () . id | id () . \result | id
| lval . id | lval −> id
| lval [expr] | ∗ lval

Figure 3.1: Basic YA guards

A condition which is always true can be omitted along with its surrounding
braces:

s t a t e : −> new_state ;

In addition, the last transition can have the following form:

s t a t e : . . .
o ther −> new_state

indicating that this transition is crossed if and only if none of the preceding
transitions is activated.

3.1.2 Basic YA guards
The syntax for basic YA conditions is described in figure 3.1.

Basically, a condition is a logical expression obtained from the following
atoms:

12

• CALL, RETURN or COR event, indicating respectively the call, the
return, the call or the return of the corresponding function;

• A relation over the variables of the programs. In addition to global vari-
ables, that are directly accessed through their id, it is possible to consider
the value returned by a function or the value of its formal parameters. This
is done through f (). return and f (). a respectively. In order to be closer
to ACSL’s syntax, f ().\result is accepted as a synonym of f (). return.

Whenever f (). prm appears in a relation, the related guard has an implicit
CALL(f) event, while f (). return and f ().\result trigger a RETURN(f)
event. Note that this might result in an always-false guard if several such
expressions occur in the same guard, as in

f () . x <= g () . y

In order for this guard to hold, we should be calling at the same time f and
g, which is not possible. In addition, if such expression occurs in a negative
occurrence, that is under a negation, as in

! f () . x <= 4

the related CALL(f) event itself is not negated. In other words, the guard
above is true if and only if we call f with an argument greater than 4. Usage
of these expressions might be deprecated in future versions of Aoraï in favor of
the less ambiguous constructions presented in the next subsection.

For instance, the automaton used in the chapter 2.1 contains the following
transitions:

%init : S0 ;
%accept : S0 , S1 , S2 ,S3 ,S4 ,S5 ,S6 ;
S0 : { CALL(main) } −> S1 ;

;
S1 : { opa () . r <5000 } −> S2

;
S2 : { opa () . return<=5000 } −> S3

;
S3 : { !RETURN(opa) } −> S4

;
S4 : { RETURN(opb) } −> S5

;
S5 : { RETURN(main)} −> S6

;
S6 : −> S6

;

13

3.1.3 YA extensions
Extended YA guards

In order to describe more easily whole sequences of calls, some extensions to
the basic conditions above are available. They are described in figure 3.2. Note
however that these extensions are very experimental yet

guard ::= seq-elt

seq-elt ::= basic-elt repetition

basic-elt ::= condition | [non-empty-seq] | id pre-cond (seq) post-cond

seq ::= ε | non-empty-seq

non-empty-seq ::= seq-elt | seq-elt ; seq

repetition ::= ε | + | ∗ | ?
| { expr , expr } | { expr }
| { expr , } | { , expr }

pre-cond ::= ε | :: id | {{ condition }}

post-cond ::= ε | {{ condition }}

Figure 3.2: Extended YA guards

A guard can now be the succession of several atomic events, possibly optional
or on the contrary repeated more than one time. The repetition modifier follows
the syntax and semantics of POSIX regexps: the most general are {e1,e2} that
indicates at least e1 repetitions and at most e2 and {e1,} that indicates at least
e1 repetitions without upper bound. There are then shortcuts for the most
common patterns:

• no modifier indicates exactly one execution (equivalent to {1,1})

• + indicates 1 or more repetitions (equivalent to {1,})

• ∗ indicates any number of repetitions, including 0 (equivalent to {0,})

14

• ? is equivalent to {0,1}

• {e} is equivalent to {e,e}

• {,e} is equivalent to {0,e}

Note that a repetition modifier that allows to have a non-fixed number of
repetitions prevents the automaton to be %deterministic.

id(seq) indicates that we have a CALL(id) event, followed by the internal
sequence of event, and a RETURN(id), i.e. it describes a complete call to
id, including the calls that id itself performs. In particular, f () indicates that
f does not perform any call. When in a sequence internal to a call to f, the
identifiers found in the expressions are first searched among the formals of f,
starting with the innermost call and then among globals. It is still possible to
use f (). x to refer to parameter x of f, but if f is already in the call stack, this
will not trigger a new CALL(f) event at this point. Instead, the value of x for
the last call to f will be used.

In addition, the CALL(id) event may be further guarded by a pre-condition,
that is either the name of an ACSL behavior of id, or a basic YA condition (in
which we have access to the formals of id as explained above). Similarly, the
final RETURN(id) event can come with a post-condition, in which one can
access the \result returned by id.

For instance, the following automaton describes a function main that does
not call anything when called in behavior bhv and performs a single call to f,
when called with a parameter c less than or equal to 0, returning 0 in this latter
case:

%init : S0 ;
%accept : S f ;

S0 : { main : : bhv () } −> Sf
| { main {{ c <= 0 }} (f ()) {{ \result == 0 }} } −> Sf ;

Sf : −> Sf ;

3.2 LTL
The property to verify has to be described in LTL logic, in a .ltl file. Fig-
ure 3.3 gives the general syntax of the supported LTL constructions. The ASCII
representation of these operators is, as much as possible, the one of the C lan-
guage. Particular cases are described in fig. 3.4. Syntax of modalities is inspired
from the one of the LTL2BA tool (which is used to translate an LTL formula
in an automaton). However, in order to suppress some constraints on the input
language (such as no expression or uppercase variable), we pre- and postfix each
LTL2BA modality with an underscore.

15

/* Formula */
F ::=
(1st order) TRUE | FALSE | ’(’ F ’)’ | F ∨ F | F ∧ F | ¬F | F ⇒ F | F ⇔ F
(LTL) | ’�’ F | ’♦’ F | F ’UNTIL’ F | F ’RELEASE’ F | ’NEXT’ F
(Predicates) | ’CALL’(Ident) | ’RETURN’(Ident) | ’CALL_OR_RETURN’(Ident)
(Exprs) | E

/* Expressions */
E::= R ’=’ R | R ’<’ R | R ’>’ R | R ’≤’ R | R ’≥’ R | R ’ 6=’ R | R
R::= R ’+’ R | R ’-’ R | R ’*’ R | R ’/’ R | R ’%’ R | A
A::= Int | (R) | Ident(’[’R’]’)+ | Ident().Ident | Ident

Figure 3.3: Grammar of the LTL Logic Used

LTL Operators ASCII LTL Operators ASCII
TRUE true � _G_
FALSE false ♦ _F_
⇒ => UNTIL _U_
⇔ <=> RELEASE _R_

NEXT _X_

LTL Operators ASCII
CALL CALL
RETURN RETURN
CALL_OR_RETURN CALL_OR_RETURN

Figure 3.4: ASCII Syntax of the LTL Logic Used

Atomicity Property
(Natural) b is called only if a is called immediately before and did not return an error.
(LTL) �((¬RETURN(a) ∨ ¬status)⇒©¬CALL(b))
(ASCII) _G_((!RETURN(a)) || !status) => _X_!CALL(b))

Figure 3.5: Concrete example of LTL formula

CALL(main) && _X_ (CALL(opa) && _X_ (!RETURN(opb) && _X_
(!CALL(opa) && _X_ (RETURN(opb) && _X_ (RETURN(main))))))

Figure 3.6: LTL formula for chapter 2.1

16

Finally, figure 3.5 is a concrete example of a LTL formula and its ASCII
description. In this manual, we will prefer the mathematical notation. Further-
more, the LTL formula for the example in chapter 2.1 is written in figure 3.6

3.3 PROMELA
TODO

17

Chapter 4

Advanced Features

4.1 Generated Annotated File
The default configuration is to generate a new C file (whose name is derived from
first input file or can be set by the user; see section 2.2 for more information).
The generated file is the original program (with its annotations1) completed
with the following:

• Some auxiliary C declarations representing the automaton itself and in-
formation needed to decide if a given transition should be taken or not;

• If the automaton has been marked as deterministic, a set of lemmas
state that it is indeed the case;

• For each original C function, two functions are given with their specifi-
cation. They take care of updating the automaton’s state when entering
and exiting the function respectively;

• Each original C function gets additional ACSL behaviors, expressing how
the automaton is supposed to evolve when the function is called

• Each loop gets additional loop invariants stating in which states the au-
tomaton might be during the loop.

These annotations are detailed in the rest of this section.

4.1.1 Auxiliary Variables
We have to represent the current state of the automaton. It can take two
forms. First, if the automaton is marked as %deterministic, an enum type
representing the states of the automaton is generated. It makes it easier to
read the generated annotations when they come from a Ya file with explicitly

1 ACSL language for annotation is described at http://frama-c.com/acsl.html

18

http://frama-c.com/acsl.html

named states. We use then a single variable, aorai_CurStates which is simply
a value of the enum type corresponding to the current (unique) active state of
the automaton. Otherwise, we use a set of boolean variables, whose value is 1
when the automaton is in the corresponding state and 0 otherwise.

Furthermore, the use of extended YA constructions (section 3.1.3) might
introduce additional variables:

• Repetitions introduce a counter, aorai_counter (with a numeric suffix if
needed), except if their lower bound is 0 or 1 and they don’t have an upper
bound or their upper bound is 0 or 1 (in these cases, there is no need to
test the number of repetition done so far at the end of the sequence).

• The value of a parameter prm of function f that is accessed in another
event than CALL(f) is stored in a global variable aorai_prm in order to
be accessible in the remainder of the sequence.

4.1.2 Deterministic lemmas
When a YA automaton is marked as %deterministic, some lemmas are gener-
ated whose verification will ensure that the automaton is indeed deterministic.
Namely, for each state of the automaton, a lemma states that at any given event,
there is at most one transition exiting from this state that is active.

4.1.3 Update functions
In order to update the automaton’s status, a pair of function is defined for
each function f defined in the original C code. f_pre_func is then called when
entering f, while f_post_func is called just before f returns. Both come with
a specification that indicates what actions may occur for the automaton at
the corresponding event. For instance, we can have a look at the specification
generated for opa_pre_func in our running example, presented in figure 4.1.
Similarly, the corresponding body is shown in figure 4.2. For each state of the
automaton, we have one or two behaviors, describing whether the state can be
active or not. In addition, when there are counters or other auxiliary variables
that must be updated, other ensures clauses define their new value according to
the transition that is activated.

4.1.4 Functions behaviors
Each function f defined in the original C code gets its specification augmented
with behaviors describing how the automaton’s status changes during a call to
f. The specification of the opa function in our running example is shown in
figure 4.3.

The first requires clause indicates which state(s) can be active before en-
tering the function. Then, for each of these states, we have a requirement that
at least one of the guard of a transition exiting from this state is true.

19

/∗@ ensures aorai_CurOpStatus == aorai_Cal led ;
ensures aorai_CurOperation == op_opa ;
assigns aorai_CurOpStatus , aorai_CurOperation ,

S1 , S2 , S3 , S4 , S5 , S6 , S7 ;

behavior buch_state_S1_out :
ensures 0 == S1 ;

behavior buch_state_S2_out :
ensures 0 == S2 ;

behavior buch_state_S3_in :
assumes 1 == S2 && r >= 0 ;
ensures 1 == S3 ;

behavior buch_state_S3_out :
assumes 0 == S2 | | ! (r >= 0) ;
ensures 0 == S3 ;

behavior buch_state_S4_out :
ensures 0 == S4 ;

behavior buch_state_S5_out :
ensures 0 == S5 ;

behavior buch_state_S6_out :
ensures 0 == S6 ;

behavior buch_state_S7_out :
ensures 0 == S7 ;

∗/
void opa_pre_func (int r) ;

Figure 4.1: Specification of opa_pre_func

20

int S1_tmp ;
int S2_tmp ;
int S3_tmp ;
int S4_tmp ;
int S5_tmp ;
int S6_tmp ;
int S7_tmp ;
aorai_CurOpStatus = aorai_Cal led ;
aorai_CurOperation = op_opa ;
S1_tmp = S1 ;
S2_tmp = S2 ;
S3_tmp = S3 ;
S4_tmp = S4 ;
S5_tmp = S5 ;
S6_tmp = S6 ;
S7_tmp = S7 ;
S7_tmp = 0 ;
S6_tmp = 0 ;
S5_tmp = 0 ;
S4_tmp = 0 ;
i f (S2 == 1 && r >= 0)

S3_tmp = 1 ;
else S3_tmp = 0 ;
S2_tmp = 0 ;
S1_tmp = 0 ;
S1 = S1_tmp ;
S2 = S2_tmp ;
S3 = S3_tmp ;
S4 = S4_tmp ;
S5 = S5_tmp ;
S6 = S6_tmp ;
S7 = S7_tmp ;

Figure 4.2: Body of opa_pre_func

21

/∗@ requires
1 == S2 &&
0 == S1 && 0 == S3 && 0 == S4 &&
0 == S5 && 0 == S6 && 0 == S7 ;

requires 1 == S2 ==> r >= 0 ;
requires r < 5000 ;

behavior j :
ensures \result == \old (r)+1;

behavior Buchi_property_behavior :
ensures 1 == S4 ==> \result <= 5000 ;
ensures 0 == S1 && 0 == S2 && 0 == S3 &&

0 == S5 && 0 == S6 && 0 == S7 ;
ensures 1 == S4 ;

∗/
int opa (int r) ;

Figure 4.3: Generated specification for an existing C function

After the global requires, we find some behaviors corresponding to the
possible states of the automaton when the function returns.

Again, we might also find some post-conditions on the auxiliary variables
used by Aorai. Note however that these conditions are computed through ab-
stract interpretation and may thus be over-approximated.

4.1.5 Loop Invariants
For each loop, Aoraï defines an invariant stating in which states the automaton
can be during the loop. Since the states of the automaton when entering the
loop the first time and the states found during the executions of the loop can be
quite different, Aoraï introduces in addition a new variable, that is initially set
to 1 and reset to 0 when the loop is entered. This allows to make a distinction
between the first run and the other ones and to refine the invariant according to
value of the variable. Possible values for the auxiliary variables are also described
by loop invariants (again, the values found might be over-approximated).

An example of loop invariant can be found using the following example.
Figures 4.4 and 4.5 describe the automaton and the C code (a function main
is supposed to call f and g between 0 and 5 times). Figure 4.6 presents the
generated invariants for the while loop.

22

%init : S0 ;
%accept : S f ;

S0 : { [main ([f () ; g ()] { 0 , 5 })] } −> Sf ;
Sf : −> Sf ;

Figure 4.4: Example of YA automaton describing a loop

int f () {}

int g () {}

int main (int c) {
i f (c<0) { c = 0 ; }
i f (c>5) { c = 5 ; }
/∗@ assert 0<=c<=5; ∗/
while (c) {

f () ;
g () ;
c−−;

}
return 0 ;

}

Figure 4.5: Original C code with a loop

4.2 Interaction with Annotated Files
Once the annotated file has been generated, it remains to verify that all the
annotations hold. This section describes briefly how this can be done and some
common issues that may arise during verification.

Aoraï tries to generate ACSL annotations that stay in the fragment sup-
ported by Value Analysis, so that this plug-in might be used over the generated
code, but there is no guarantee that it will be able to establish the validity of
all annotations.

Another possibility is to use deductive verification plug-ins WP or Jessie.
Note however that the generated annotations are not guaranteed to be complete,
i.e. to it might be necessary to add further annotations in order to discharge
all proof obligations. In particular, in presence of loops, Aoraï generates loop
invariants for its own auxiliary variables, but it is likely that these variables
(especially the counters) will need to be related to the variables of the original
programs. For instance, we must add to the loop invariants of figure 4.6 that
c+aorai_counter remains constant throughout the loop (c gets decremented at
each step, while aorai_counter gets incremented), but such a relation is well

23

/∗@ loop invariant Aorai : 0 == S0 ;
loop invariant Aorai : 0 == Sf ;
loop invariant

Aorai :
1 == aora i_intermediate_state | |
0 == aora i_intermediate_state ;

loop invariant
Aorai :

1 == aorai_intermediate_state_0 | |
0 == aorai_intermediate_state_0 ;

loop invariant Aorai : 0 == aorai_intermediate_state_1 ;
loop invariant Aorai : 0 == aorai_intermediate_state_2 ;
loop invariant Aorai : 0 == aorai_intermediate_state_3 ;
loop invariant

Aorai :
1 == aora i_intermediate_state | |
1 == aorai_intermediate_state_0 ;

loop invariant
Aorai :

aorai_Loop_Init_43 != 0 ==>
\at (1 == S0 , Pre) ==>
0 == aorai_intermediate_state_0 ;

loop invariant
Aorai : aorai_Loop_Init_43 == 0 ==>

0 == aora i_intermediate_state ;
loop invariant

Aorai :
\at (1 == aora i_intermediate_state , aorai_loop_43) &&
1 == aorai_intermediate_state_0 ==>
1 <= aorai_counter <= 5 ;

∗/

Figure 4.6: Example of Generated Loop Invariants

24

beyond the scope of Aoraï itself.
Finally, as a special warning, Jessie does not use the fact that globals are

initialized to 0 when entering the main function of a program (which is in fact
treated like any other function). This fact must thus be sometimes added to
the requires of the function, especially for auxiliary variables.

25

Chapter 5

Going Further

The objective of the Aoraï plug-in is to generate an annotated C program such
that, if it is validated, then the original program respect the LTL property.
In this chapter we first introduce some theoretical bases on the approach by
annotation generation. Next we describe the two parts of the computing module:

• the specification generator (from the LTL property)

• the constraints propagation for static simplification.

5.1 Theoretical Base of the Approach
A program can be defined by a set of execution traces PATHProg and similarly,
a LTL formula can be defined by a set of accepted traces PATHBüchi. Hence,
to verify that a program is correct with respect to a LTL formula, we need to
verify two aspects:

Safety for each program trace t, there exists a Büchi path c, such that, for each
i, the cross-condition Pi from the c is verified in the context of the state
ti (figure 5.1). More formally, we have:
∀t∈PATHProg · ∃c∈PATHBüchi · ∀i ∈ 0..(size(t)− 1) · ti |= Pi(c)

Liveness for each program trace t, there is an infinite number of states synchronized
with a Büchi acceptance state. We propose to restrict this constraints to
the weaker one : there is no dead-lock (always a crossable transition from
a non acceptance state) and no live-lock (always a finite number of states
between 2 acceptance states).
Note: At this time the liveness aspect is not included in the tool.

5.1.1 Safety
In order to encode this approach in an approach by annotations and to consider
all program traces, our solution is to use a synchronization function. Such

26

Pi+1Pi−1 Pi

qi

tit0 t1 t2

q2q1q0

ti−1

qi−1

ti+1

qi+1

P0 P1 P2

Figure 5.1: Synchronization of Paths from automata and from Program

a function associates the set of states synchronized with the nth state from an
execution trace. It is the sufficient to prove that at least one state is synchronized
with each state of the execution to establish the safety of the property.
Definition 1 (Synchronization function)
Let A = 〈Q, q0, R〉 ∈ BUCHI and σ ∈ PATHProg. The synchronization function
Sync ∈ BUCHI× PATH× N→ 2Q is defined by:

• Sync(A, σ, 0) = {q0}

• For each i > 0:

Sync(A, σ, i) =

q′
∣∣∣∣∣∣
∃〈q, P, q′〉 ∈ R · ∧

σi−1 |= P∧
q ∈ SyncA, σ, i− 1)

Definition 2 (Acceptance condition)
(CSync) ∀i ∈ 0..(len(σ)− 1) · Sync(A, σ, i) 6= ∅

This verification is encoded into annotations by generating the following
assertions:

Declaration Let {q0, . . . , qn} be a set of boolean variables associated to the states. qi
is true if the system is synchronized with the state i. Initially, only q0 is
true.

Transitions A set of ghost instructions has to be generated just before each call and
return statement. These instructions have to update the set of states
synchronized with the current state.

Synchronization The synchronization condition can be expressed with an invariant verifying
that at least one state is always synchronized.

5.1.2 Liveness
This part is not developed at this time, but the method consists in verifying a
global variant between each couple of acceptance states and also the inclusion
of the set of reachable states in the set of accepting states.

27

5.2 Adding from the Theory
The previous section described a sufficient framework. However, in order to ver-
ify the correction with theorem provers, we need to use more efficient modeling
and to add some hypothesis in order to link the models from C program and
the LTL property.

5.2.1 Automata Modeling
In order to link models from the program and the property, we describe the
automaton as constants in the generated C file. This axiomatization is combined
with a set of invariants that give some properties of the automaton. For instance,
the non-reachability of a state s can be deduced from the absence of transitions
from an active state to s such that its cross-condition is true. This cross-
condition is then expressed in terms of program information. This is the link
program-automata.

5.2.2 Memorization of last Transitions
In order to memorize the last synchronization link, we keep the set of last crossed
transitions in addition with the set of old active states.

5.2.3 Use of Specifications instead of Invariant
Finally, the synchronization condition is not implemented as an invariant, but
as a pre- and post-condition on each operation. This choice is more flexible
if we can statically decide that some states cannot be synchronized with some
operation. In the following section, our objective is to describe how to automate
this simplification by using abstract interpretation.

5.3 Abstract Interpretation
Current Implementation : behavioral Property as Widening Operator

In this section we describe our method to generate the specification of each
operation. In a first part, we deduce an over-approximation of specifications by
using automata, and next we propagate the generated constraints in order to
converge to a fixpoint of specifications.

5.3.1 Generation of Abstract Specifications
Initially, each operation’s specification states that each state and transition can
be active before and after an operation. We then fix a first constraint: the main
operation starts in the initial state. Next, we verify, for each operation, if its
call or its return is always forbidden in a particular transition’s cross-condition.
If any, the associated transition is removed from the operation’s specification.

28

This process is done once on each operation. Finally, this computed constraint
has to be propagated.

5.3.2 Static Simplification
Starting from specified operations, each of them is analyzed by forward and
backward abstract interpretation. The abstraction consists in abstracting all
expressions. We only consider control statements and call and return state-
ments.

The post-condition is defined by intersecting its old value with the reachable
post-condition computed by forward propagation. Similarly, the pre-condition is
defined by intersecting its old value with the reachable pre-condition computed
by backward propagation.

If a loop is reached during this process, we compute its loop invariant in
terms of automata from its computed pre- and post-conditions.

During each pass of the program the list of use-cases of each operation is
kept. Hence, if we observe that an operation is still called from a strict subset
of its authorized input states, then we restrict its specification.

Finally, a fixpoint is computed in order to minimize the specifications.
Note that during this process, the post-conditions are described as behaviors.

Indeed, this approach allow to give a particular post-condition for each possible
pre-condition. Hence, the caller, which cannot observe the control-flow inside a
called operation, has more precise information about current active states, since
it knows each previous active states.

5.4 Plugin Architecture

LTL2BALTL
Why

C Program Frama−C pre−processor

Simplified

LTL
Büchi automata

Annoations calculus
C program
Annotated C

Jessie plugin

Provers

Automata

YA syntaxe)

(Promela or

OR

Property

Figure 5.2: Plug-in Structure

The plug-in is composed of three parts:

1. a front-end (translator);

2. a computing module for specification of operations;

29

3. a back-end (C generator, including annotations).

5.5 Recent updates

5.5.1 Frama-C Aluminium
• Generated functions now have a body in addition to a specification

5.5.2 Frama-C Nitrogen
• New translation mechanism for the automaton

• Extended Ya guards

5.5.3 Frama-C Boron
• A function that is used in a C program, but that is not defined is stubbed

by Frama-C and ignored in Aorai.

• For each function and each loop, if no state can be enabled before or after
it (not reachable), then a warning is displayed. It is usually either a dead
code, or a code violating the specification.

• In the YA and Promela formats, it is now possible to speak about call
parameters and returned value. f().a denotes the call parameter a of f
and f (). return denotes the returned value of f.

• In the annotated C file generated, array of states are indexed by the name
of the state (defined as an enum structure)

5.5.4 Frama-C Beryllium
• YA format for properties

30

Chapter 6

Conclusion

This manual is not always up-to-date and only gives some hints on the Aoraï
plug-in. If you want more information, please send me a mail at:

nicolas.stouls@insa-lyon.fr

or visit the web site:

http://amazones.gforge.inria.fr/aorai/index.html

31

http://amazones.gforge.inria.fr/aorai/index.html

	Introduction
	Quick installation
	Interest of Aoraï
	Documentation's description

	Quick overview
	First use
	Launching the test
	Automata and verification

	Help Command
	Known Restrictions

	Aoraï's Languages
	YA
	YA file
	Basic YA guards
	YA extensions

	LTL
	PROMELA

	Advanced Features
	Generated Annotated File
	Auxiliary Variables
	Deterministic lemmas
	Update functions
	Functions behaviors
	Loop Invariants

	Interaction with Annotated Files

	Going Further
	Theoretical Base of the Approach
	Safety
	Liveness

	Adding from the Theory
	 Automata Modeling
	Memorization of last Transitions
	Use of Specifications instead of Invariant

	Abstract Interpretation
	Generation of Abstract Specifications
	Static Simplification

	Plugin Architecture
	Recent updates
	Frama-C Aluminium
	Frama-C Nitrogen
	Frama-C Boron
	Frama-C Beryllium

	Conclusion

