Skip to content

Latest commit

 

History

History
335 lines (279 loc) · 23.6 KB

HSSUSY.rst

File metadata and controls

335 lines (279 loc) · 23.6 KB

HSSUSY

HSSUSY (high scale supersymmetry) is an implementation of the Standard Model, matched to the MSSM at the SUSY scale, M_\text{SUSY}. The setup of HSSUSY is shown in the following figure.

In HSSUSY, the HighScale variable is set to the SUSY scale, M_{\text{SUSY}}. At this scale the quartic Higgs coupling, \lambda(M_\text{SUSY}), is predicted from the matching to the MSSM using the full 1-loop and dominant 2- and 3-loop threshold corrections of O((\alpha_t + \alpha_b)\alpha_s + (\alpha_t + \alpha_b)^2 + \alpha_b\alpha_\tau + \alpha_\tau^2 + \alpha_t\alpha_s^2) from [1407.4081], [1504.05200], [1703.08166], [1807.03509].

The 3- and partial 4- and 5-loop renormalization group equations of [1303.4364], [1307.3536], [1508.00912], [1508.02680], [1604.00853], [1606.08659] are used to run \lambda(M_\text{SUSY}) down to the electroweak scale M_Z or M_{\text{EWSB}}.

If M_{\text{SUSY}} is set to zero, M_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1}m_{\tilde{t}_2}} is used.

The LowScale is set to M_Z. At this scale, the \overline{\text{MS}} gauge and Yukawa couplings g_{1,2,3}(M_Z), Y_{u,d,e}(M_Z), as well as the SM vacuum expectation value (VEV), v(M_Z), are calculated at the full 1-loop level from the known low-energy couplings \alpha_{\text{em}}^{\text{SM(5)}}(M_Z), \alpha_s^{\text{SM(5)}}(M_Z), from the pole masses M_Z, M_e, M_\mu, M_\tau, M_t as well as from the \overline{\text{MS}} masses m_b^{\text{SM(5)}}(m_b), m_c^{\text{SM(4)}}(m_c), m_s(2\,\text{GeV}), m_d(2\,\text{GeV}), m_u(2\,\text{GeV}). In addition to these 1-loop corrections, known 2-, 3- and 4-loop corrections are taken into account, see the following table.

Coupling Corrections
\alpha_{\text{em}} 1-loop full
\sin(\theta_W) 1-loop full
\alpha_{s}

1-loop full

2-loop O(\alpha_s^2) [hep-ph:9305305] [hep-ph:9707474]

3-loop O(\alpha_s^3) [hep-ph:9708255]

4-loop O(\alpha_s^4) [hep-ph:0512060]

m_t

1-loop full

2-loop O((\alpha_s + \alpha_t)^2) [hep-ph:9803493] [1604.01134]

3-loop O(\alpha_s^3) [hep-ph:9911434] [hep-ph:9912391]

4-loop O(\alpha_s^4) [1604.01134]

m_b 1-loop full
m_\tau 1-loop full
v 1-loop full

See the documentation of the SLHA input parameters for a description of the individual flags to enable/disable higher-order threshold corrections in FlexibleSUSY.

The Higgs and W boson pole masses, M_h and M_Z are calculated at the scale M_{\text{EWSB}}, which is an input parameter. We recommend to set M_{\text{EWSB}} = M_t.

Furthermore, the electroweak symmetry breaking condition is imposed at the scale M_{\text{EWSB}} to fix the value of the bililear Higgs coupling \mu^2(M_{\text{EWSB}}).

The Higgs and W boson pole masses, M_h and M_W, are calculated at the full 1-loop level in the Standard Model, including potential flavour mixing and momentum dependence. Depending on the given configuration flags, additional 2-, 3- and 4-loop corrections to the Higgs pole mass of O(\alpha_t\alpha_s + \alpha_b\alpha_s) [1407.4336] O((\alpha_t + \alpha_b)^2) [1205.6497] and O(\alpha_\tau^2), as well as 3-loop corrections O(\alpha_t^3 + \alpha_t^2\alpha_s + \alpha_t\alpha_s^2) [1407.4336] and 4-loop corrections O(\alpha_t\alpha_s^3) [1508.00912] can be taken into account.

HSSUSY takes the following physics parameters as input:

Parameter Description SLHA block/field Mathematica symbol
M_{\text{SUSY}} SUSY scale EXTPAR[0] MSUSY
M_1(M_\text{SUSY}) Bino mass EXTPAR[1] M1Input
M_2(M_\text{SUSY}) Wino mass EXTPAR[2] M2Input
M_3(M_\text{SUSY}) Gluino mass EXTPAR[3] M3Input
\mu(M_\text{SUSY}) \mu-parameter EXTPAR[4] MuInput
m_A(M_\text{SUSY}) running CP-odd Higgs mass EXTPAR[5] mAInput
M_{\text{EWSB}} scale at which the pole mass spectrum is calculated EXTPAR[6] MEWSB
A_t(M_\text{SUSY}) trililear stop coupling EXTPAR[7] AtInput
A_b(M_\text{SUSY}) trililear sbottom coupling EXTPAR[8] AbInput
A_\tau(M_\text{SUSY}) trililear stau coupling EXTPAR[9] AtauInput
\tan\beta(M_\text{SUSY}) \tan\beta(M_\text{SUSY})=v_u(M_\text{SUSY})/v_d(M_\text{SUSY}) EXTPAR[25] TanBeta
(m_{\tilde{q}}^2)_{ij}(M_\text{SUSY}) soft-breaking left-handed squark mass parameters MSQ2IN msq2
(m_{\tilde{u}}^2)_{ij}(M_\text{SUSY}) soft-breaking right-handed up-type squark mass parameters MSU2IN msu2
(m_{\tilde{d}}^2)_{ij}(M_\text{SUSY}) soft-breaking right-handed down-type squark mass parameters MSD2IN msd2
(m_{\tilde{l}}^2)_{ij}(M_\text{SUSY}) soft-breaking left-handed slepton mass parameters MSL2IN msl2
(m_{\tilde{e}}^2)_{ij}(M_\text{SUSY}) soft-breaking right-handed down-type slepton mass parameters MSE2IN mse2

The MSSM parameters are defined in the \overline{\text{DR}} scheme at the scale M_{\text{SUSY}}.

In addition, HSSUSY defines further input parameters / flags to enable/disable higher order threshold corrections to the quartic Higgs coupling \lambda(M_{\text{SUSY}}) and to estimate the EFT and SUSY uncertainty:

Parameter Description Possible values Recommended value SLHA block/field Mathematica symbol
n loop order for \lambda^{(n)}(M_{\text{SUSY}}) 0, 1, 2 3 EXTPAR[100] LambdaLoopOrder
\Delta_{\alpha_t\alpha_s} disable/enable 2-loop corrections to \lambda(M_{\text{SUSY}}) O(\alpha_t\alpha_s) 0, 1 1 EXTPAR[101] TwoLoopAtAs
\Delta_{\alpha_b\alpha_s} disable/enable 2-loop corrections to \lambda(M_{\text{SUSY}}) O(\alpha_b\alpha_s) 0, 1 1 EXTPAR[102] TwoLoopAbAs
\Delta_{\alpha_t\alpha_b} disable/enable 2-loop corrections to \lambda(M_{\text{SUSY}}) O(\alpha_t\alpha_b) 0, 1 1 EXTPAR[103] TwoLoopAtAb
\Delta_{\alpha_\tau\alpha_\tau} disable/enable 2-loop corrections to \lambda(M_{\text{SUSY}}) O(\alpha_\tau^2) 0, 1 1 EXTPAR[104] TwoLoopAtauAtau
\Delta_{\alpha_t\alpha_t} disable/enable 2-loop corrections to \lambda(M_{\text{SUSY}}) O(\alpha_t^2) 0, 1 1 EXTPAR[105] TwoLoopAtAt
\Delta_{\text{EFT}} disable/enable corrections to \lambda(M_{\text{SUSY}}) O(v^2/M_{\text{SUSY}}^2) 0, 1 0 EXTPAR[200] DeltaEFT
\Delta_{y_t,g_3} disable/enable 3-loop corrections from re-parametrization of \lambda(M_{\text{SUSY}}) in terms of y_t^{\text{MSSM}}, g_3^{\text{MSSM}} 0, 1 0 EXTPAR[201] DeltaYt
\Delta_{\text{OS}} disable/enable conversion of stop masses to on-shell scheme 0, 1 0 (= \overline{\text{DR}}) EXTPAR[202] DeltaOS
Q_\text{match} scale at which \lambda(Q_\text{match}) is calculated any real value 0 (= M_{\text{SUSY}}) EXTPAR[203] Qmatch
\delta(\Delta\lambda^{3L}) add uncertainty \delta(\Delta\lambda^{3L}) to \Delta\lambda^{3L} from Himalaya -1, 0, 1 0 (= uncertainty not added) EXTPAR[204] DeltaLambda3L
\Delta_{\alpha_t\alpha_s^2} disable/enable 3-loop corrections to \lambda(M_{\text{SUSY}}) O(\alpha_t\alpha_s^2) from Himalaya 0, 1 1 EXTPAR[205] ThreeLoopAtAsAs

We recommend to run HSSUSY with the following configuration flags: In an SLHA input file we recommend to use:

Block FlexibleSUSY
    0   1.0e-05      # precision goal
    1   0            # max. iterations (0 = automatic)
    2   0            # algorithm (0 = all, 1 = two_scale, 2 = semi_analytic)
    3   1            # calculate SM pole masses
    4   4            # pole mass loop order
    5   4            # EWSB loop order
    6   4            # beta-functions loop order
    7   4            # threshold corrections loop order
    8   1            # Higgs 2-loop corrections O(alpha_t alpha_s)
    9   1            # Higgs 2-loop corrections O(alpha_b alpha_s)
   10   1            # Higgs 2-loop corrections O((alpha_t + alpha_b)^2)
   11   1            # Higgs 2-loop corrections O(alpha_tau^2)
   12   0            # force output
   13   3            # Top pole mass QCD corrections (0 = 1L, 1 = 2L, 2 = 3L)
   14   1.0e-11      # beta-function zero threshold
   15   0            # calculate observables (a_muon, ...)
   16   0            # force positive majorana masses
   17   0            # pole mass renormalization scale (0 = SUSY scale)
   18   0            # pole mass renormalization scale in the EFT (0 = min(SUSY scale, Mt))
   19   0            # EFT matching scale (0 = SUSY scale)
   20   2            # EFT loop order for upwards matching
   21   1            # EFT loop order for downwards matching
   22   0            # EFT index of SM-like Higgs in the BSM model
   23   1            # calculate BSM pole masses
   24   124111421    # individual threshold correction loop orders
   25   0            # ren. scheme for Higgs 3L corrections (0 = DR, 1 = MDR)
   26   1            # Higgs 3-loop corrections O(alpha_t alpha_s^2)
   27   1            # Higgs 3-loop corrections O(alpha_b alpha_s^2)
   28   1            # Higgs 3-loop corrections O(alpha_t^2 alpha_s)
   29   1            # Higgs 3-loop corrections O(alpha_t^3)
   30   1            # Higgs 4-loop corrections O(alpha_t alpha_s^3)

In the Mathematica interface we recommend to use:

handle = FSHSSUSYOpenHandle[
    fsSettings -> {
        precisionGoal -> 1.*^-5,           (* FlexibleSUSY[0] *)
        maxIterations -> 0,                (* FlexibleSUSY[1] *)
        solver -> 0,                       (* FlexibleSUSY[2] *)
        calculateStandardModelMasses -> 1, (* FlexibleSUSY[3] *)
        poleMassLoopOrder -> 4,            (* FlexibleSUSY[4] *)
        ewsbLoopOrder -> 4,                (* FlexibleSUSY[5] *)
        betaFunctionLoopOrder -> 4,        (* FlexibleSUSY[6] *)
        thresholdCorrectionsLoopOrder -> 4,(* FlexibleSUSY[7] *)
        higgs2loopCorrectionAtAs -> 1,     (* FlexibleSUSY[8] *)
        higgs2loopCorrectionAbAs -> 1,     (* FlexibleSUSY[9] *)
        higgs2loopCorrectionAtAt -> 1,     (* FlexibleSUSY[10] *)
        higgs2loopCorrectionAtauAtau -> 1, (* FlexibleSUSY[11] *)
        forceOutput -> 0,                  (* FlexibleSUSY[12] *)
        topPoleQCDCorrections -> 3,        (* FlexibleSUSY[13] *)
        betaZeroThreshold -> 1.*^-11,      (* FlexibleSUSY[14] *)
        forcePositiveMasses -> 0,          (* FlexibleSUSY[16] *)
        poleMassScale -> 0,                (* FlexibleSUSY[17] *)
        eftPoleMassScale -> 0,             (* FlexibleSUSY[18] *)
        eftMatchingScale -> 0,             (* FlexibleSUSY[19] *)
        eftMatchingLoopOrderUp -> 2,       (* FlexibleSUSY[20] *)
        eftMatchingLoopOrderDown -> 1,     (* FlexibleSUSY[21] *)
        eftHiggsIndex -> 0,                (* FlexibleSUSY[22] *)
        calculateBSMMasses -> 1,           (* FlexibleSUSY[23] *)
        thresholdCorrections -> 124111421, (* FlexibleSUSY[24] *)
        higgs3loopCorrectionRenScheme -> 0,(* FlexibleSUSY[25] *)
        higgs3loopCorrectionAtAsAs -> 1,   (* FlexibleSUSY[26] *)
        higgs3loopCorrectionAbAsAs -> 1,   (* FlexibleSUSY[27] *)
        higgs3loopCorrectionAtAtAs -> 1,   (* FlexibleSUSY[28] *)
        higgs3loopCorrectionAtAtAt -> 1,   (* FlexibleSUSY[29] *)
        higgs4loopCorrectionAtAsAsAs -> 1, (* FlexibleSUSY[30] *)
        parameterOutputScale -> 0          (* MODSEL[12] *)
    },
    ...
];

In the Section LibraryLink documentation an example Mathematica script can be found, which illustrates how to perform a parameter scan using the HSSUSY model.

In the file model_files/HSSUSY/HSSUSY_uncertainty_estimate.m FlexibleSUSY provides the Mathematica function CalcHSSUSYDMh[], which calculates the Higgs pole mass at the 3-loop level with HSSUSY and performs an uncertainty estimate of missing higher order corrections. Three main sources of the theory uncertainty are taken into account:

  • SM uncertainty: Missing higher order corrections in the calculation of the running Standard Model top Yukawa coupling and in the calculation of the Higgs pole mass. The uncertainty from this source is estimated by (i) switching on/off the 3-loop QCD contributions in the calculation of the running top Yukawa coupling y_t^{\text{SM}}(M_Z) from the top pole mass and by (ii) varying the renormalization scale at which the Higgs pole mass is calculated within the interval [M_{\text{EWSB}}/2, 2 M_{\text{EWSB}}].
  • EFT uncertainty: Missing terms of O(v^2/M_{\text{SUSY}}^2). These missing terms are estimated by adding 1-loop terms of the form v^2/M_{\text{SUSY}}^2 to the quartic Higgs coupling \lambda(M_\text{SUSY}).
  • SUSY uncertainty: Missing higher order corrections in the calculation of the quartic Higgs coupling \lambda(M_\text{SUSY}). This uncertainty is estimated by (i) varying the matching scale within the interval [M_{\text{SUSY}}/2, 2 M_{\text{SUSY}}] and by (ii) re-parametrization of \lambda(M_\text{SUSY}) in terms of y_t^{\text{MSSM}}(M_\text{SUSY}) and g_3^{\text{MSSM}}(M_\text{SUSY}).

The following code snippet illustrates the calculation of the Higgs pole mass calculated at the 3-loop level with HSSUSY as a function of the SUSY scale (red solid line), together with the estimated uncertainty (grey band).

When this script is executed, the following figure is produced:

images/HSSUSY_Mh_MS.png

[hep-ph:9305305]Phys.Lett. B313 (1993) 441-446 [arXiv:hep-ph/9305305]
[hep-ph:9707474]Phys.Lett. B424 (1998) 367-374 [arXiv:hep-ph/9707474]
[hep-ph:9708255]Nucl.Phys. B510 (1998) 61-87 [arXiv:hep-ph/9708255]
[hep-ph:9803493]Nucl.Phys. B539 (1999) 671-690 [arXiv:hep-ph/9803493]
[hep-ph:9911434]Nucl.Phys. B573 (2000) 617-651 [arXiv:hep-ph/9911434]
[hep-ph:9912391]Phys.Lett. B482 (2000) 99-108 [arXiv:hep-ph/9912391]
[hep-ph:0004189]Comput.Phys.Commun. 133 (2000) 43-65 [arXiv:hep-ph/0004189]
[hep-ph:0105096]Nucl.Phys. B611 (2001) 403-422 [arXiv:hep-ph/0105096]
[hep-ph:0210258]Eur.Phys.J. C29 (2003) 87-101 [arXiv:hep-ph/0210258]
[hep-ph:0308231]Phys.Lett. B579 (2004) 180-188 [arXiv:hep-ph/0308231]
[hep-ph:0507139]Phys.Atom.Nucl. 71 (2008) 343-350 [arXiv:hep-ph/0507139]
[hep-ph:0509048]Phys.Rev. D72 (2005) 095009 [arXiv:hep-ph/0509048]
[hep-ph:0512060]Nucl.Phys. B744 (2006) 121-135 [arXiv:hep-ph/0512060]
[0707.0650]Int.J.Mod.Phys. A22 (2007) 5245-5277 [arXiv:0707.0650]
[0810.5101]JHEP 0902 (2009) 037 [arXiv:0810.5101]
[0901.2065]Phys.Rev. D84 (2011) 034030 [arXiv:0901.2065]
[1009.5455]C10-06-06.1 [arXiv:1009.5455]
[1205.6497]JHEP 1208 (2012) 098 [arXiv:1205.6497]
[1303.4364]Nucl.Phys. B875 (2013) 552-565 [arXiv:1303.4364]
[1307.3536]JHEP 1312 (2013) 089 [arXiv:1307.3536]
[1407.4081]JHEP 1409 (2014) 092 [arXiv:1407.4081]
[1407.4336](1, 2) Phys.Rev. D90 (2014) no.7, 073010 [arXiv:1407.4336]
[1504.05200]JHEP 1507 (2015) 159 [arXiv:1504.05200]
[1508.00912](1, 2) Phys.Rev. D92 (2015) no.5, 054029 [arXiv:1508.00912]
[1508.02680]Phys.Lett. B762 (2016) 151-156 [arXiv:1508.02680]
[1604.00853]JHEP 1606 (2016) 175 [arXiv:1604.00853]
[1606.08659]Phys.Rev.Lett. 118 (2017) no.8, 082002 [arXiv:1606.08659]
[1604.01134](1, 2) Phys.Rev. D93 (2016) no.9, 094017 [arXiv:1604.01134]
[1703.08166]Eur.Phys.J. C77 (2017) no.5, 334 [arXiv:1703.08166]
[1807.03509]Eur.Phys.J. C78 (2018) no.10, 874 [arXiv:1807.03509]