-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathisfm.py
104 lines (78 loc) · 2.61 KB
/
isfm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import cv2
import numpy as np
import os
from scipy.optimize import least_squares
import copy
import open3d as o3d
from tqdm import tqdm
import matplotlib.pyplot as plt
def img_downscale(img, downscale):
downscale = int(downscale/2)
i = 1
while(i <= downscale):
img = cv2.pyrDown(img)
i = i + 1
return img
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
# Input Camera Intrinsic Parameters
K = np.array([[2393.952166119461, -3.410605131648481e-13, 932.3821770809047], [0, 2398.118540286656, 628.2649953288065], [0, 0, 1]])
# Suppose if computationally heavy, then the images can be downsampled once. Note that downsampling is done in powers of two, that is, 1,2,4,8,...
downscale = 2
K[0,0] = K[0,0] / float(downscale)
K[1,1] = K[1,1] / float(downscale)
K[0,2] = K[0,2] / float(downscale)
K[1,2] = K[1,2] / float(downscale)
# Current Path Directory
path = os.getcwd()
# Input the directory where the images are kept. Note that the images have to be named in order for this particular implementation
#img_dir = path + '/Sample Dataset/'
img_dir = '/home/arihant/Desktop/gustav/'
img_list = sorted(os.listdir(img_dir))
images = []
for img in img_list:
if '.jpg' in img.lower() or '.png' in img.lower():
images = images + [img]
#print(images)
i = 0
sift = cv2.xfeatures2d.SIFT_create()
bf = cv2.BFMatcher(crossCheck = False)
indexes = np.array([], dtype = np.int16)
tot_images = 10
descriptors = np.array([])
keypoints = np.array([])
while(i < tot_images):
img = img_downscale(cv2.imread(img_dir + '/' + images[i]), downscale)
imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
kp, des = sift.detectAndCompute(imggray, None)
if i == 0:
descriptors = np.array(des)
else:
descriptors = np.vstack((descriptors, des))
#if i != 0:
j = 0
while(j < i):
kp0 = keypoints[indexes[0:j].sum():indexes[0:j + 1].sum()]
des0 = descriptors[indexes[0:j].sum():indexes[0:j + 1].sum()]
matches = bf.knnMatch(des0, des, k=2)
good = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good.append(m)
pts0 = np.float32([kp0[m.queryIdx].pt for m in good])
pts1 = np.float32([kp[m.trainIdx].pt for m in good])
E, mask = cv2.findEssentialMat(pts0, pts1, K, method=cv2.RANSAC, prob = 0.999, threshold = 0.4, mask = None)
pts0 = pts0[mask.ravel() == 1]
pts1 = pts1[mask.ravel() == 1]
_, R, t, mask = cv2.recoverPose(E, pts0, pts1, K)
pts0 = pts0[mask.ravel() > 0]
pts1 = pts1[mask.ravel() > 0]
print(len(pts0))
j = j + 1
keypoints = np.append(keypoints, kp)
indexes = np.append(indexes, len(kp))
cv2.imshow('image', img)
i = i + 1
if cv2.waitKey(1) & 0xff == ord('q'):
break
i = 0
cv2.destroyAllWindows()