-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtm_Wedge2D.py
230 lines (192 loc) · 11.7 KB
/
tm_Wedge2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#!/usr/bin/env python
#-*- coding: utf-8 -*-
"""
rtsim.py
This is a simulation of a broadband electromagnetic pulse propagating through a structure.
The structure is loaded from a module. After the simulation, its s-parameters are calculated and saved.
About this script:
* Written in 2012-2013 by Filip Dominec (dominecf at the server of fzu.cz)
* Being distributed under the GPL license, this script is free as speech after five beers.
* You are encouraged to use and modify it as you need. Feel free to write me if needed.
* Hereby I thank to the MEEP/python_meep authors and people of meep mailing list who helped me a lot.
Features and conventions:
* 3D simulation with Bloch-periodic walls,
* simulation outputs to r/t spectra, .gif animation and 3-D visualisation,
* structure defined by a slow but versatile Python callback,
* easy switching between time-domain and frequency-domain simulation,
* realistic dispersive material models,
* calculation of complex amplitude parameters s11 (reflection), s21 (transmission)
* all units in metric system (native time unit is then (1 m)/c = 3.33 ns),
* meep remains in its own namespace ("import meep" instead of "from meep import *")
"""
import numpy as np
import time, sys, os
from scipy.constants import pi, c
import meep_utils
import meep_mpi as meep
#import meep
meep.master_printf("=== Initialisation ===\n")
sim_param, model_param = meep_utils.process_param(sys.argv[1:])
print model_param
## Model selection
#from model_SphereWireNew import *; model = SphereWire_model(**model_param) ## OK
#from model_SphereWireNew import *; model = SphereFishnet_model(**model_param) ## OK
#from model_SphereWireNew import *; model = SphereElliptic_model(**model_param)
#from model_SphereWireNew import *; model = SimpleEllipsoid_model(**model_param)
#from model_CKEBars import *
#model = CKEBars_model_test(**model_param)
#from model_PKCutSheet import *
#model = PKCutSheet_model(**model_param)
from model_simple_structures import *
#model = XCylWire_model(**model_param)
#model = YCylWire_model(**model_param)
#model = XRectWire_model(**model_param)
#model = XRectWireMet_model(**model_param)
#model = XCylWire_model_test(**model_param)
#model = dielbar_model(**model_param); # meep.use_averaging(True)
#model = PKCutSheet_model_test(**model_param)
#model = Fishnet_model(**model_param)
#model = Wedge_model(**model_param)
model = Wedge2D_model(**model_param)
#from model_SapphireBars import *
#model = SapphireBars(**model_param)
if sim_param['frequency_domain']: model.simulation_name += ("_frequency=%.4e" % sim_param['frequency'])
meep.master_printf("Simulation name:\n\t%s\n" % model.simulation_name) ## TODO print parameters in a table
## Initialize volume
vol = meep.vol2d(model.size_T, model.size_L, 1./model.resolution)
volume_except_pml = meep.volume(
meep.vec(-model.size_T/2, -model.size_L/2+model.pml_thickness*0),
meep.vec( model.size_T/2, model.size_L/2-model.pml_thickness*0))
vol.center_origin()
## Define the Perfectly Matched Layers
perfectly_matched_layers = meep.pml(model.pml_thickness) ## PML on both faces at Z axis
if not sim_param['frequency_domain']:
meep.master_printf("== Time domain structure setup ==\n")
## Define each polarizability by redirecting the callback to the corresponding "where_material" function
## Define the frequency-independent epsilon for all materials (needed here, before defining s, or unstable)
model.double_vec = model.get_static_permittivity; meep.set_EPS_Callback(model.__disown__())
s = meep.structure(vol, meep.EPS, perfectly_matched_layers, meep.identity())
## Add all the materials
model.build_polarizabilities(s)
## Add the source dependence
#srctype = meep.band_src_time(model.srcFreq/c, model.srcWidth/c, model.simtime*c/1.1)
srctype = meep.gaussian_src_time(model.srcFreq/c, model.srcWidth/c) ## , 0, 1000e-12 ??
else:
meep.master_printf("== Frequency domain structure setup (for frequency of %g Hz) ==\n" % sim_param['frequency'])
if (model.Kx!=0 or model.Ky!=0): print "Warning: frequency-domain solver may be broken for nonperpendicular incidence"
## Frequency-domain simulation does not support dispersive materials yet. We must define each material by
## using the nondispersive permittivity and the nondispersive conductivity
## (both calculated from polarizabilities at given frequency)
## Define the frequency-independent epsilon for all materials (has to be done _before_ defining s, or unstable)
my_eps = meep_utils.MyHiFreqPermittivity(model, sim_param['frequency'])
meep.set_EPS_Callback(my_eps.__disown__())
s = meep.structure(vol, meep.EPS, perfectly_matched_layers, meep.identity())
## Create callback to set nondispersive conductivity (depends on material polarizabilities and frequency)
mc = meep_utils.MyConductivity(model, sim_param['frequency'])
meep.set_COND_Callback(mc.__disown__())
s.set_conductivity(meep.E_stuff, meep.COND) ## only "E_stuff" worked here for me
srctype = meep.continuous_src_time(sim_param['frequency']/c)
## Create fields with Bloch-periodic boundaries (any nonzero transversal component of k-vector is possible)
f = meep.fields(s)
f.use_bloch(meep.X, -model.Kx/(2*np.pi))
f.use_bloch(meep.Y, -model.Ky/(2*np.pi))
## Add a source of a plane wave (with possibly oblique incidence)
## Todo implement in MEEP: we should define an AmplitudeVolume() object and reuse it for monitors later
srcvolume = meep.volume(
meep.vec(-model.size_x/2, -model.size_y/2, -model.size_z/2+model.pml_thickness), ## TODO try from -inf to +inf
meep.vec(model.size_x/2, model.size_y/2, -model.size_z/2+model.pml_thickness))
## TODO move whole amplitude factor to meep_utils, exp(-1j*(a*x+b*y) - ((c*x)**2 + (d*y)**2))
class AmplitudeFactor(meep.Callback):
def __init__(self, Kx=0, Ky=0):
meep.Callback.__init__(self)
(self.Kx, self.Ky) = Kx, Ky
def complex_vec(self, vec): ## Note: the 'vec' coordinates are _relative_ to the source center
## The source amplitude is complex and has the form of an oblique plane wave
return np.exp(-1j*(self.Kx*vec.x() + self.Ky*vec.y()) - (vec.x()/.5e-3)**2 - (vec.y()/.5e-3)**2)
af = AmplitudeFactor(Kx=model.Kx, Ky=model.Ky)
meep.set_AMPL_Callback(af.__disown__())
f.add_volume_source(meep.Ex, srctype, srcvolume, meep.AMPL)
#f.add_volume_source(meep.Ex, srctype, srcvolume)
## Define monitors and visualisation output
monitor_options = {'size_x':model.size_x, 'size_y':model.size_y, 'Kx':model.Kx, 'Ky':model.Ky}
monitor1_Ex = meep_utils.AmplitudeMonitorPlane(comp=meep.Ex, z_position=model.monitor_z1, **monitor_options)
monitor1_Hy = meep_utils.AmplitudeMonitorPlane(comp=meep.Hy, z_position=model.monitor_z1, **monitor_options)
monitor2_Ex = meep_utils.AmplitudeMonitorPlane(comp=meep.Ex, z_position=model.monitor_z2, **monitor_options)
monitor2_Hy = meep_utils.AmplitudeMonitorPlane(comp=meep.Hy, z_position=model.monitor_z2, **monitor_options)
snapshot_maker = meep_utils.SnapshotMaker(snapshot_times=[model.simtime-float(X)/4/model.srcFreq for X in range(1)],
field=f, outputdir=model.simulation_name, volume=volume_except_pml)
#snapshot_maker = meep_utils.SnapshotMaker(snapshot_times=[],
#field=f, outputdir=model.simulation_name, volume=volume_except_pml)
#slice_makers = [meep_utils.SliceMaker(field=f, component=meep.Ex, timestep=.1e-12, normal="x",
#position=0., model=model, outputdir=model.simulation_name, pad=model.pml_thickness, outputHDF=True, outputVTK=True, outputGIF=False)]
#slice_makers = [meep_utils.SliceMaker(field=f, component=meep.Ex, timestep=.1e-12, normal="y",
#position=0., model=model, outputdir=model.simulation_name, pad=model.pml_thickness, outputHDF=True, outputVTK=True, outputGIF=False)]
pad = model.pml_thickness
slice_makers = [
#meep_utils.SliceMaker(field=f, component=meep.Ex, timestep=.1e-12, normal="z",
#position=model.metalpos-2e-6, model=model, outputdir=model.simulation_name, pad=model.pml_thickness, outputHDF=True, outputVTK=True, outputGIF=False),
#meep_utils.SliceMaker(field=f, component=meep.Ex, timestep=.1e-12, normal="z",
#position=15e-6, model=model, outputdir=model.simulation_name, pad=model.pml_thickness, outputHDF=True, outputVTK=True, outputGIF=False),
#meep_utils.SliceMaker(field=f, component=meep.Ex, timestep=.1e-12, normal="z",
#position=20e-6, model=model, outputdir=model.simulation_name, pad=model.pml_thickness, outputHDF=True, outputVTK=True, outputGIF=False),
#meep_utils.SliceMaker(field=f, component=meep.Ex, timestep=.1e-12, normal="z",
#position=25e-6, model=model, outputdir=model.simulation_name, pad=model.pml_thickness, outputHDF=True, outputVTK=True, outputGIF=False),
#meep_utils.SliceMaker(field=f, component=meep.Ex, timestep=.1e-12, normal="x",
#position=0e-6, model=model, outputdir=model.simulation_name, pad=model.pml_thickness, outputHDF=True, outputVTK=True, outputGIF=False),
## 1D record - for the wedge numerical experiment
meep_utils.SliceMaker(field=f, component=meep.Ex, timestep=.1e-12,
volume=meep.volume(
meep.vec(0, -model.size_y/2+pad, model.size_z/2-model.pml_thickness),
meep.vec(0, model.size_y/2-pad, model.size_z/2-model.pml_thickness)),
model=model, outputdir=model.simulation_name, pad=model.pml_thickness, outputHDF=True, outputVTK=True, outputGIF=False),
]
#slice_makers = []
meep.master_printf("=== Starting computation ===\n")
if not sim_param['frequency_domain']:
tmptime = time.time()
f.step()
print 'setup took ', -tmptime + time.time() , 's'
dt = (f.time()/c)
meep_utils.lorentzian_unstable_check_new(model, dt)
timer = meep_utils.Timer(simtime=model.simtime)
#meep.quiet(True)
count = 0
while (f.time()/c < model.simtime): ## timestepping cycle
f.step()
timer.print_progress(f.time()/c)
for monitor in (monitor1_Ex, monitor1_Hy, monitor2_Ex, monitor2_Hy): monitor.record(field=f)
for slice_maker in slice_makers: slice_maker.poll(f.time()/c)
snapshot_maker.poll(f.time()/c)
#print f.get_field(meep.Ex, meep.vec(0,0,0))
meep.all_wait() ## FIXME needed?
for slice_maker in slice_makers: slice_maker.finalize()
meep_utils.notify(model.simulation_name, run_time=timer.get_time())
else:
f.step()
print sim_param['MaxIter']
f.solve_cw(sim_param['MaxTol'], sim_param['MaxIter'], sim_param['BiCGStab'])
for monitor in (monitor1_Ex, monitor1_Hy, monitor2_Ex, monitor2_Hy): monitor.record(field=f)
snapshot_maker.take_snapshot(0)
meep_utils.notify(model.simulation_name)
with open("./last_simulation_name.txt", "w") as outfile: outfile.write(model.simulation_name)
meep.master_printf("=== Processing recorded fields ===\n")
## Get the reflection and transmission of the structure
meep.master_printf(" getting s-params\n")
import time
if meep.my_rank() == 0:
time1 = time.time()
freq, s11, s12 = meep_utils.get_s_parameters(monitor1_Ex, monitor1_Hy, monitor2_Ex, monitor2_Hy,
frequency_domain=sim_param['frequency_domain'],
frequency=sim_param['frequency'],
maxf=model.srcFreq+model.srcWidth,
pad_zeros=1.0,
Kx=model.Kx,
Ky=model.Ky)
#side_wavenumber=2*pi*modenumber*1/model.size_y)
print "S-parameter retrieval (FFT etc.) took", time.time()-time1, "s"
#meep.master_printf(" saving\n")
meep_utils.savetxt(freq=freq, s11=s11, s12=s12, model=model)
import effparam
#meep.master_printf(" done.\n")
print "All processes finishing", meep.my_rank()
meep.all_wait() # Wait until all file operations are finished