-
Notifications
You must be signed in to change notification settings - Fork 31
/
meep_materials.py
839 lines (751 loc) · 38.6 KB
/
meep_materials.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
#!/usr/bin/env python
#-*- coding: utf-8 -*-
"""
meep_materials.py
This script contains definitions of materials suitable for the FDTD algorithm.
However, only the materials from the sections "Generic" and "Prepared for FDTD" are
ready to be fed to MEEP, and they are valid only for a given spectral range.
On the contrary, the materials in the "Realistic" section are defined for whole
spectrum from microwave to optical range, so the number of Lorentzian oscillators
would have to be manually reduced to make the simulation run effectively.
About this script:
* Written in 2012-2015 by Filip Dominec (dominecf at the server of fzu.cz)
* Being distributed under the GPL license, this script is free as speech after five beers.
* You are encouraged to use and modify it as you need. Feel free to write me if needed.
* Hereby I thank to the MEEP/python_meep authors and people of meep mailing list who helped me a lot.
See also:
http://f.dominec.eu/meep/ -- my MEEP page
http://f.dominec.eu/eps/ -- permittivity spectra plot into graphs
TODO:
* implement material self-adjustment for stability
1) wipe out all oscillators above f_c (sum Δε into ε_infty)
2) adjust the Drude term to be stable when f_c < omega_p/2π
3) re-express all oscillators above FRoI as one oscillator (is it possible? what are the summing rules
for lorentzians with different frequency and losses?)
4) do something with that Debye term can be unstable
* make a manifest of materials and their source files;
* add the plot_eps.py file and its directory into the project??
Last edited: 2015-02-19
"""
import numpy as np
from scipy.constants import epsilon_0, c, pi
percm = c/1e-2
## -- Generic --
class material_dielectric():#{{{
"""
This model defines a simple nondispersive dielectric.
The predefined permittivity of 2 holds e. g. for polyethylene, teflon etc. and other materials that
have a flat index of refraction ~ 1.4 both at microwave and optical frequencies
"""
def __init__(self, where=None, eps=2., loss=0, chi2=0, chi3=0):
self.eps = eps*(1-loss)
## TODO: make the loss effect well defined (for some frequency), and write
if loss != 0:
self.pol = [
{'omega':5e12, 'gamma':10e12, 'sigma':100*loss}, ## TODO make clearer
]
else:
self.pol = []
self.name = "Lossy dielectric"
#self.chi2 = chi2
#self.chi3 = chi3
self.where = where
#}}}
# TODO def MakeDrudian()
class material_DrudeMetal():#{{{
""" Defines a generic metal with a Drude model
In Drude model, the electrons are expected to move freely with some inertia, which
together with their density determines the plasma frequency omega_p.
Losses are introduced by letting them to randomly scatter with the frequency gamma.
The relative permittivity eps_r(omega) of metal can then be calculated as:
eps_r(omega) = 1 - omega_p**2 / (omega**2 - i*omega*gamma),
Low-frequency limit of permittivity (eps = eps' + 1j * eps''):
eps' ---> - omega_p**2/gamma**2,
eps'' ---> omega_p / (omega * gamma),
and the high-frequency limit of permittivity:
eps' ---> 1 - omega**2/omega_p**2
eps'' ---> 1/omega**3
"""
#def __init__(self, where=None, lfconductivity=15e6, f_c=1e14): XXX
def __init__(self, where=None, lfconductivity=15e3, f_c=1e14, gamma_factor = .5, epsplus=0):
"""
At microwave frequencies (where omega << gamma), the most interesting property of the metal
is its conductivity sigma(omega), which may be approximated by a nearly constant real value:
conductivity = epsilon/1j * frequency * eps0 * 2pi
Therefore, for convenience, we allow the user to specify the low-frequency conductivity sigma0 and compute
the scattering frequency as:
Values similar to those of aluminium are used by default:
dielectric part of permittivity: 1.0,
plasma frequency = 3640 THz
low-frequency conductivity: 40e6 [S/m]
The gamma_factor is required for numerical stability. It has always to be lower than the timestepping frequency f_c,
but sometimes the simulation is unstable even though and then it has to be reduced e.g. to 1e-2 or to even smaller value.
"""
## Design a new metallic model. We use 'omega_p' and 'gamma' in angular units, as is common in textbooks
## We need to put the scattering frequency below fc, so that Re(eps) is not constant at f_c (it would hinder
## our trick that ensures FDTD stability)
self.gamma = f_c * gamma_factor * 2*np.pi
## TODO: test when unstable -> reduce self.gamma by 100 -> test again -> finally write automatic selection of value
## Knowing the scattering frequency gamma, the virtual plasma frequency is now determined by lfconductivity
omega_p = np.sqrt(self.gamma * lfconductivity / epsilon_0)
## The following step is required for FDTD stability:
## Add such an high-frequency-epsilon value that shifts the permittivity to be positive at f_c
## If self.eps>1, the frequency where permittivity goes positive will generally be less than f_p
self.eps = max((omega_p/2/np.pi / f_c)**2, 1.) + epsplus
#print 'self.eps', self.eps
#print "gamma =", self.gamma
#print 'omega_p = ', omega_p
#print 'LFC = %.3e' % (omega_p**2 * epsilon_0 / self.gamma)
## Feed MEEP with a Lorentz oscillator of arbitrarily low frequency f_0 so that it behaves as the Drude model
omega_0 = .1
self.pol = [
{'omega': omega_0/(2*np.pi), 'gamma': self.gamma/(2*np.pi), 'sigma': (omega_p/omega_0)**2}, # (Lorentz) model
## Note: meep also uses keywords 'omega' and 'gamma', but they are non-angular units
]
self.name = "Drude metal for up to %.2g Hz" % f_c
self.where = where
#}}}
## -- Prepared for FDTD simulations in the terahertz range (obsoleted) --
class material_Metal_THz():#{{{ ## Obsoleted
"""
This model, by default, defines a metal similar to aluminium. Its parameters are roughly:
dielectric eps=1.,
plasma frequency = 3640 THz [see e. g. Pendry1999] and
losses gamma=25e12 (roughly by electron scattering time)
However, for simulations e. g. at 1 THz, this gives complex epsilon of (-21000 + 500000j), which may be correct,
but it makes the simulation unstable. (This can be detected soon, as computation with gigantic numbers or NaNs
gets few times slower.)
We therefore may use a "pseudometal" with reduced plasma frequency, which has to be _lower_ than the frequency of
timestepping. This still gives correct results for simulations in terahertz range.
Quite a good metal model (up to 2 THz) is: 'omega':1.39e+9, 'gamma':1.0e+10, sigma=5e8
For sigma over approx 1e10 (depending also on resolution) the simulation diverges.
"""
def __init__(self, where, sigmafactor=1):
self.eps = 50.
omega0 = 1e-5 ## arbitrary low frequency that makes Lorentz model behave as Drude model
omega_p = 3640e12 ## plasma frequency of aluminium
#sigmafactor = 30e12**2 /omega_p**2
#sigmafactor = 30e12**2 /omega_p**2
self.pol = [
#{'omega':1.39e9, 'gamma': 1.0e10, 'sigma':2.6e9},
#{'omega': omega0, 'gamma': 25e12, 'sigma': sigmafactor * omega_p**2 / omega0**2}, # (Lorentz) model for Al
#{'omega': omega0, 'gamma': 1e12, 'sigma': sigmafactor * omega_p**2 / omega0**2}, # stable? model at THz
{'omega':1.39e9, 'gamma': 1e10, 'sigma':1e10}, # Original value, use sigmafactor=1
#{'omega':1.39e9, 'gamma': 1e13, 'sigma':1e10}, # Lossy
]
self.name = "Metal with reduced carrier density (for stable low-res simulations in THz range)"
self.where = where
#}}}
class material_Metal_THz_resistive():#{{{ ## Obsoleted
"""
This model, by default, defines a metal similar to aluminium. Its parameters are roughly:
dielectric eps=1.,
plasma frequency = 3640 THz [see e. g. Pendry1999] and
losses gamma=25e12 (roughly by electron scattering time)
However, for simulations e. g. at 1 THz, this gives complex epsilon of (-21000 + 500000j), which may be correct,
but it makes the simulation unstable. (This can be detected soon, as computation with gigantic numbers or NaNs
gets few times slower.)
We therefore may use a "pseudometal" with reduced plasma frequency, which has to be _lower_ than the frequency of
timestepping. This still gives correct results for simulations in terahertz range.
Quite a good metal model (up to 2 THz) is: 'omega':1.39e+9, 'gamma':1.0e+10, sigma=5e8
For sigma over approx 1e10 (depending also on resolution) the simulation diverges.
"""
def __init__(self, where, sigmafactor=1):
self.eps = 50.
omega0 = 1e-5 ## arbitrary low frequency that makes Lorentz model behave as Drude model
omega_p = 3640e12 ## plasma frequency of aluminium
#sigmafactor = 30e12**2 /omega_p**2
#sigmafactor = 30e12**2 /omega_p**2
self.pol = [
#{'omega':1.39e9, 'gamma': 1.0e10, 'sigma':2.6e9},
#{'omega': omega0, 'gamma': 25e12, 'sigma': sigmafactor * omega_p**2 / omega0**2}, # (Lorentz) model for Al
#{'omega': omega0, 'gamma': 1e12, 'sigma': sigmafactor * omega_p**2 / omega0**2}, # stable? model at THz
{'omega':1.39e9, 'gamma': 1e12, 'sigma':6e9}, # Original value, use sigmafactor=1
#{'omega':1.39e9, 'gamma': 1e13, 'sigma':1e10}, # Lossy
]
self.name = "Metal with reduced carrier density (for stable low-res simulations in THz range)"
self.where = where
#}}}
class material_TiO2_THz():#{{{ ## for THz application only
"""
This model defines the TiO2 material for 0 - 2 THz frequencies as a lossy dielectric.
For instance, at 500 GHz, epsilon = 94 + 1.2j
The epsilon=22. constant is the remaining high-frequency part of permittivity (from [Baumard1977]).
Polarizability resonances to obtain absorption [Baumard1977] with following changes:
1) We used only one resonance at 5.6 THz, as the other should be negligible
2) The resonance width was reported to vary from 8e11 to 1.6e12 Hz according to composition [Baumard1977].
We used 1.05e12 to match our experimental data for losses in bulk TiO2.
"""
def __init__(self, where=None):
self.eps = 12.
self.pol = [
#{'omega':5.67e12, 'gamma':1.05e12, 'sigma':70.}, ## strongest optical phonon resonance in THz range
{'omega':5.67e12, 'gamma':1.05e12, 'sigma':50+30.}, ## strongest optical phonon resonance in THz range
]
self.name = "polycrystalline TiO2 (rutile)"
self.where = where
#}}}
class material_TiO2_THz_HIEPS():#{{{ ## for THz application only
"""
This model defines the TiO2 material for 0 - 2 THz frequencies as a lossy dielectric.
For instance, at 500 GHz, epsilon = 94 + 1.2j
The epsilon=22. constant is the remaining high-frequency part of permittivity (from [Baumard1977]).
Polarizability resonances to obtain absorption [Baumard1977] with following changes:
1) We used only one resonance at 5.6 THz, as the other should be negligible
2) The resonance width was reported to vary from 8e11 to 1.6e12 Hz according to composition [Baumard1977].
We used 1.05e12 to match our experimental data for losses in bulk TiO2.
"""
def __init__(self, where=None):
self.eps = 22.*2
self.pol = [
#{'omega':5.67e12, 'gamma':1.05e12, 'sigma':70.}, ## strongest optical phonon resonance in THz range
{'omega':5.67e12, 'gamma':1.05e12, 'sigma':70.*2}, ## strongest optical phonon resonance in THz range
]
self.name = "polycrystalline TiO2 (rutile)"
self.where = where
#}}}
class material_TiO2_NC_THz():#{{{ ## for THz application only
"""
TiO2 used in Navarro-Cia publication:
"The TiO2 particle is modelled by a perfect
sphere of radius r = 15 um and electric
permittivity r = 94 + 2.35i (tan = 0.025)"
"""
def __init__(self, where=None):
self.eps = 21.8
self.pol = [
#{'omega':5.67e12, 'gamma':1.05e12, 'sigma':70.}, ## strongest optical phonon resonance in THz range
{'omega':5.67e12, 'gamma':1.05e12*(2.35/2.43), 'sigma':70.}, ## strongest optical phonon resonance in THz range
]
self.name = "polycrystalline TiO2 (rutile)"
self.where = where
#}}}
class material_STO_THz():#{{{ ## for THz application only
"""
STO
1st phonon shifts with temperature:
4K: 250 GHz, 22000
90K: 850 GHz, 1400
300K: 2300 GHz, 310
"""
def __init__(self, where=None):
self.eps = 100.
self.pol = [
#{'omega':2e12, 'gamma':.7e12, 'sigma':210.},
{'omega':2e12, 'gamma':.3e12, 'sigma':210.}, ## XXX
]
self.name = "Strontium titanate (T = 300 K) for THz"
self.where = where
#}}}
class material_STO_hiloss():#{{{ ## for THz application only
"""
STO
1st phonon shifts with temperature:
4K: 250 GHz, 22000
90K: 850 GHz, 1400
300K: 2300 GHz, 310
"""
def __init__(self, where=None):
self.eps = 100.
self.pol = [
{'omega':2e12, 'gamma':1e12, 'sigma':210.},
]
self.name = "Strontium titanate (T = 300 K) for THz, double loss"
self.where = where
#}}}
class material_STO_HTChen():#{{{
"""
This model defines strontium titanate that fits the HT Chen structure
"""
def __init__(self, where=None, eps=2., loss=.5):
self.eps = eps*(1-loss)
## TODO: make the loss effect well defined (for some frequency)
if loss != 0:
self.pol = [
{'omega':5.67e12, 'gamma':4.05e12, 'sigma':eps*loss}, ## XXX test
{'omega':2e12, 'gamma':2e13, 'sigma':100*loss}, ## XXX test
{'omega':6e12, 'gamma':6e13, 'sigma':100*loss}, ## XXX test
]
else:
self.pol = []
self.name = "Common dielectric (PE, PTFE etc.)"
self.where = where
#}}}
#class material_Sapphire_THz():#{{{ ## for THz application only
#}}}
## -- Realistic (simulations may require to make a copy and optimize) --
class material_STO():#{{{
"""
Strontium titanate
1st phonon shifts with temperature
4K: 250 GHz, 22000
90K: 850 GHz, 1400
300K: 2300 GHz, 310
"""
def __init__(self, where=None):
#self.eps = 100.
self.eps = 1.
self.pol = [
{'omega':2.3e12, 'gamma':.4e12*1.000, 'sigma':310},
{'omega':15.5e12, 'gamma':5e12, 'sigma':6.5},
{'omega':1e15, 'gamma':1e13*1.000, 'sigma':4},
]
self.name = "Strontium titanate (T = 300 K)"
self.where = where
#}}}
class material_Sapphire():#{{{
"""
Drude-Lorentz model (to be checked with references below)
Thomas M. E. et al.: "Frequency and temperature dependence of the refractive index of sapphire",
Infrared Physics & Technology, Volume 39, Issue 4, 1998
(from http://www.sciencedirect.com/science/article/pii/S1350449598000103)
Compare with
Schubert M. et al.: "Infrared dielectric anisotropy and phonon modes of sapphire"
Phys. Rev. B 61, 8187–8201 (2000)
http://www.mt-berlin.com/frames_cryst/descriptions/sapphire.htm:
Refractive index at 0.532 µm n0=1.7717, ne=1.76355
Schott PDF:
Dielectric Constant 11.5 (103 to 109 Hz, 25 °C) parallel to c-axis (extraordinary)
9.3 (103 to 109 Hz, 25 °C) perpendicular to c-axis (ordinary)
Loss Tangent 8.6 x 10–5 (@1010 Hz, 25 °C) parallel to c-axis
3.0 x 10–5 (@1010 Hz, 25 °C) perpendicular to c-axis
http://www.tydexoptics.com/products/thz_optics/thz_materials/:
absorption spectrum to be fit
"""
def __init__(self, where=None, ordinary=1):
self.eps = 1.
extraordinary = 1 - ordinary
self.pol = [
#Ordinary (tg delta ~ 4e-6 @ 1e10 Hz)
{'omega':1.1517E+13, 'gamma':1.2669E+11, 'sigma':3.3000E-01*ordinary},
#{'omega':1.3154E+13, 'gamma':7.8923E+10, 'sigma':2.7880E+00*ordinary},
{'omega':1.3154E+13, 'gamma':.5E+12 , 'sigma':2.7880E+00*ordinary}, ## increases losses in THz
#{'omega':1.7029E+13, 'gamma':2.0435E+11, 'sigma':2.9800E+00*ordinary},
{'omega':1.7029E+13, 'gamma':.5E+12 , 'sigma':2.9800E+00*ordinary},
{'omega':1.8989E+13, 'gamma':1.8989E+11, 'sigma':1.4500E-01*ordinary},
{'omega':2.4264E+13, 'gamma':3.8094E+12, 'sigma':1.8500E-02*ordinary},
{'omega':2.5691E+15, 'gamma':2.5691E+10, 'sigma':6.5069E-01*ordinary},
{'omega':4.1245E+15, 'gamma':4.1245E+10, 'sigma':1.4314E+00*ordinary},
#Extraordinary (tg delta ~ 1.1e-5 @ 1e10 Hz)
{'omega':1.1973E+13, 'gamma':2.3946E+11, 'sigma':6.7850E+00*extraordinary},
{'omega':1.7502E+13, 'gamma':6.1259E+11, 'sigma':1.5600E+00*extraordinary},
{'omega':1.9600E+13, 'gamma':1.1760E+12, 'sigma':1.6000E-02*extraordinary},
{'omega':2.4636E+15, 'gamma':2.4636E+10, 'sigma':5.5069E-01*extraordinary},
{'omega':4.0484E+15, 'gamma':4.0484E+10, 'sigma':1.5042E+00*extraordinary},
]
self.name = "Sapphire"
self.where = where
#}}}
class material_TiO2():#{{{
"""
This model defines the rutile (titanium dioxide, TiO2) for 0 - 500 THz frequencies as a lossy dielectric.
Rutile is anisotropic. By default a polycrystalline averaging is assumed. Set the parameter:
extraordinary=1.0 for extraordinary ray
extraordinary=0.0 for ordinary ray
If you run simulations in the 0-4 THz range, feel free to substitute the second and higher resonances by
eps=7 or something.
The magnitude of the first resonance is more importand, one has to fine tune it.
Additionally, the width of the resonance at omega=5.6 THz can be changed from gamma=810 GHz to higher values
to account for higher losses due to impurities etc. (For example, 1.05e12 better matched THz experimental data.)
The ultraviolet absorption could not be exactly modelled using finite number of lorentzian oscillators. Two
of them are used, but note they introduce unrealistic high damping in the optical region.
"""
def __init__(self, where=None, extraordinary=.33):
self.eps = 1
self.pol = [
# Optical phonon resonance in THz range from Baumard1977, manually tuned to better fit experiment
{'omega':5.67e12, 'gamma':.85e12, 'sigma':50+90*extraordinary},
{'omega':11.43e12, 'gamma':.495e12, 'sigma':0.9*extraordinary},
{'omega':15.24e12, 'gamma':.72e12, 'sigma':2.6*extraordinary},
{'omega':1.0e15, 'gamma':.15e15, 'sigma':2.8 + .5*extraordinary}, ## imprecise two-Lorentzian approximation in UV
{'omega':1.08e15, 'gamma':.15e15, 'sigma':2 + .4*extraordinary}
]
self.name = "polycrystalline TiO2 (rutile)"
self.shortname = "TiO2 (rutile)"
self.where = where
#}}}
class material_SiO2():#{{{
""" Amorphous SiO2
Optical resonances fitted manually to experimental spectra
Note: Discrete Lorentzian oscillators used predict higher losses in the mid-IR region
Note2: crystalline SiO2 should be similar, but is slightly birefringent
From Gunde, M. K.: "Vibrational modes in amorphous silicon dioxide"
Physica B: Physics of Condensed Matter, Volume 292, Issue 3-4, p. 286-295.
"""
def __init__(self, where=None, sigmafactor=1):
#self.eps = 2.4 ## used if no VIS/UV oscillators defined; may range from 2.3-2.5 [Huber]
self.eps = 1
self.pol = [
{'omega': 447*percm, 'gamma': 49*percm, 'sigma':.923},
{'omega': 811*percm, 'gamma': 69*percm, 'sigma':.082},
{'omega':1064*percm, 'gamma': 75*percm, 'sigma':.663},
{'omega':1165*percm, 'gamma': 80*percm, 'sigma':.058},
{'omega':1228*percm, 'gamma': 65*percm, 'sigma':.017},
{'omega': 2.6e15, 'gamma': .5e15, 'sigma': .5},
{'omega': 2.8e15, 'gamma': .2e15, 'sigma': .55},
]
self.name = "Amorphous silica glass"
self.shortname = "SiO2 (IR)"
self.where = where
#}}}
class material_SiC():#{{{
""" Silicon carbide, or SiC
THz and optical resonances fitted manually to spectra from databases/experiment
Note: Discrete Lorentzian oscillators used predict higher losses in the mid-IR region
http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC/basic.html (gives phonon at 25.0 THz?)
"""
def __init__(self, where=None, sigmafactor=1):
#self.eps = 2.4 ## used if no VIS/UV oscillators defined; may range from 2.3-2.5 [Huber]
self.eps = 1
self.pol = [
{'omega': 23.75e12, 'gamma': .20e12, 'sigma': 3.4}, # optical phonon
{'omega': 1.75e15, 'gamma': .4e15, 'sigma': 5.4},
]
self.name = "Silicon carbide"
self.shortname = "SiC"
self.where = where
#}}}
class material_Si_NIR():#{{{
""" Undoped silicon, Si for near IR and visible range
Could not approximate the infrared absorption exactly with Lorentzians
http://www.reading.ac.uk/infrared/library/infraredmaterials/ir-infraredmaterials-si.aspx
"""
def __init__(self, where=None, sigmafactor=1):
self.eps = 1 ## flat permittivity for MIR-NIR
self.pol = [
{'omega': 1.e15, 'gamma': .15e15, 'sigma': 7.5},
{'omega': 0.83e15, 'gamma': .05e15, 'sigma': 3.0},
]
self.name = "Silicon for 0.4-1.1 microns"
self.shortname = "Si (NIR-VIS)"
self.where = where
#}}}
class material_Si_MIR():#{{{
""" Undoped silicon, Si for middle infrared range (1.5-5 microns)
Could not approximate the infrared absorption exactly with Lorentzians
"""
def __init__(self, where=None, sigmafactor=1):
self.eps = 11.4 ## flat permittivity for MIR-NIR
self.pol = [
{'omega': 1.8e13, 'gamma': .5e13, 'sigma': .3e-3},
]
self.name = "Silicon for 1.5-5 microns"
self.shortname = "Si (MIR)"
self.where = where
#}}}
class material_InP():#{{{
""" Indium Phosphide
THz and optical resonances fitted manually to experimental spectra
Note: Discrete Lorentzian oscillators used predict higher losses in the mid-IR region
THz optical phonon by
http://www.ewels.info/science/publications/thesis/html/node52.html
http://www.ioffe.ru/SVA/NSM/Semicond/InP/basic.html
Borcherds et al., "Phonon dispersion curves in indium phosphide",
(The SCOUT database reports permittivity crossing zero around 36.6e12 Hz,
which seems to be either wrong, or based on some conductivity due to doping.)
According to Domashevskaya2008 [http://www.sciencedirect.com/science/article/pii/S0921510707005156],
the longitudinal phonon should be found around 380 cm^-1 = 11.4 THz.
Note: if we do not know the oscillator strength, but can find the frequencies where
permittivity crosses zero and also know the high-frequency permittivity far above the
oscillator, then the oscillator strength may be estimated using the Lyddane-Sachs-Teller relation
eps_b / eps_s = (omega_L / omega_T)**2
so
eps_b - eps_s = [(omega_L / omega_T)**2 - 1] * eps_s
"""
def __init__(self, where=None, sigmafactor=1):
self.eps = 1
self.pol = [
{'omega': 9.15e12, 'gamma': .5e12, 'sigma': 2.6}, # optical phonon
{'omega': 1.14e15, 'gamma': .25e15, 'sigma': 6.},
{'omega': 0.772e15, 'gamma': .20e15, 'sigma': 3.},
]
self.name = "Indium Phosphide"
self.shortname = "InP"
self.where = where
#}}}
class material_GaAs():#{{{
""" Gallium arsenide
THz and optical resonances fitted manually to experimental spectra
Note: Discrete Lorentzian oscillators used predict higher losses in the mid-IR region
Note2: Various sources either state it is transmissive around 10 um (= 33 THz), or absorptive:
http://www.phoenixinfrared.com/materials/galliumarsenide.html
http://www.iiviinfrared.com/Optical-Materials/gaas.html
So the MIR absorption may be caused by some impurities; it could not be properly included
in the model presented.
[http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaAs/basic.html]
Optical phonon at 35 meV = 8.46 THz
permittivity in NIR = 10.89 [ioffe/GaAs]
[http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaAs/basic.html]
TO 8.13, LO 8.79 [Strauch1989] -> strenght calculated
damping unknown
"""
def __init__(self, where=None, sigmafactor=1):
self.eps = 1
self.pol = [
{'omega': 8.13e12, 'gamma': 1e12, 'sigma': ((8.79e12/8.13e12)**2-1)*10.89}, # optical phonon damping unknown!
{'omega': 0.725e15, 'gamma': .06e15, 'sigma': 1.89}, ## manual fit
{'omega': 0.780e15, 'gamma': .1e15, 'sigma': 2.}, ## manual fit
{'omega': 1.14e15, 'gamma': .30e15, 'sigma': 6.}, ## manual fit
]
self.name = "Gallium arsenide"
self.shortname = "GaAs"
self.where = where
#}}}
class material_Al():#{{{
""" Drude-Lorentz model for Aluminium
This model defines aluminium with Drude component and several resonances in
near-IR and visible range.
plasma frequency = 3640 THz [see e. g. Pendry1999] and
losses gamma=25e12 (roughly electron scattering frequency)
"""
def __init__(self, where=None, resistivity=0., eps=0.):
self.eps = 1.
omega0 = 1e-20 ## arbitrary low frequency that makes Lorentz model behave as Drude model
omega_p = 3640e12 ## plasma frequency of aluminium
#sigmafactor = 1
self.pol = [
#{'omega': 1e6*c*1e-20, 'gamma': 1e6*c*0.037908, 'sigma': 7.6347e+41},
{'omega': omega0, 'gamma': 1e6*c*0.037908, 'sigma': 7.6347e+41 * 1e-20**2 * (1e6*c)**2 / omega0**2},
{'omega': 1e6*c*0.13066, 'gamma': 1e6*c*0.26858, 'sigma': 1941},
{'omega': 1e6*c*1.2453, 'gamma': 1e6*c*0.25165, 'sigma': 4.7065},
{'omega': 1e6*c*1.4583, 'gamma': 1e6*c*1.0897, 'sigma': 11.396},
{'omega': 1e6*c*2.8012, 'gamma': 1e6*c*2.7278, 'sigma': 0.55813}]
#{'omega':1.39e9, 'gamma': 1.0e10, 'sigma':2.6e9},
#{'omega': omega0, 'gamma': 25e12, 'sigma': sigmafactor * omega_p**2 / omega0**2}, # (Lorentz) model for Al
#{'omega': omega0, 'gamma': 1e12, 'sigma': sigmafactor * omega_p**2 / omega0**2}, # stable? model at THz
#{'omega':1.39e9, 'gamma': 1e10, 'sigma':1e10}, # Original value, use sigmafactor=1
#]
self.name = "Aluminium"
self.shortname = "Al"
self.where = where
#}}}
class material_Au(): #{{{
""" Drude-Lorentz model for gold """
def __init__(self, where=None, resistivity=0., eps=0.):
self.eps = 1.
omega0 = 1e6*c*1e-20 ## arbitrary low frequency that makes Lorentz model behave as Drude model
self.pol = [
{'omega': omega0, 'gamma': 1e6*c*0.042747, 'sigma': 4.0314e+41 * 1e-20**2 * (1e6*c)**2 / omega0**2},
{'omega':1e6*c*0.33472, 'gamma':1e6*c*0.19438, 'sigma':11.363}, ## sum of Lorentzians = 17.86
{'omega':1e6*c*0.66944, 'gamma':1e6*c*0.27826, 'sigma':1.1836},
{'omega':1e6*c*2.3947 , 'gamma':1e6*c*0.7017 , 'sigma':0.65677},
{'omega':1e6*c*3.4714 , 'gamma':1e6*c*2.0115 , 'sigma':2.6455},
{'omega':1e6*c*10.743 , 'gamma':1e6*c*1.7857 , 'sigma':2.0148},
]
self.name = "Gold"
self.shortname = "Au"
self.where = where
#}}}
class material_Ag():#{{{
""" Drude-Lorentz model for silver """
def __init__(self, where=None, resistivity=0., eps=0.):
self.eps = 1.
omega0 = 1e6*c*1e-20 ## arbitrary low frequency that makes Lorentz model behave as Drude model
self.pol = [
{'omega': omega0, 'gamma': 1e6*c* 0.038715 , 'sigma': 4.4625e+41 * 1e-20**2 * (1e6*c)**2 / omega0**2}, ## Drude term
{'omega': 1e6*c*0.6581, 'gamma': 1e6*c*3.1343 , 'sigma':7.9247},
{'omega': 1e6*c*3.6142, 'gamma': 1e6*c*0.36456 , 'sigma':0.50133},
{'omega': 1e6*c*6.6017, 'gamma': 1e6*c*0.052426, 'sigma':0.013329},
{'omega': 1e6*c*7.3259, 'gamma': 1e6*c*0.7388 , 'sigma':0.82655},
{'omega': 1e6*c*16.365, 'gamma': 1e6*c*1.9511 , 'sigma':1.1133},
]
self.name = "Silver (Drude-Lorentz)"
self.shortname = "Ag"
self.where = where
#}}}
class material_Ti():#{{{
""" Drude-Lorentz model for titanium, edited from Rakic et al., Appl. Opt. 1998 """
def __init__(self, where=None, resistivity=0., eps=0.):
self.eps = 1.
omega0 = 1e6*c*1e-20 ## arbitrary low frequency that makes Lorentz model behave as Drude model
self.pol = [
{'omega': omega0, 'gamma': 1e6*c*0.066137, 'sigma': 5.1166e+40 * 1e-20**2 * (1e6*c)**2 / omega0**2}, ## Drude term
{'omega': 1e6*c*0.62669,'gamma': 1e6*c*1.8357, 'sigma': 79.136},
{'omega': 1e6*c*1.2461, 'gamma': 1e6*c*2.0309, 'sigma': 8.7496},
{'omega': 1e6*c*2.0236, 'gamma': 1e6*c*1.3413, 'sigma': 1.5787},
{'omega': 1e6*c*1.5671, 'gamma': 1e6*c*1.4211, 'sigma': 0.014077},
]
self.name, self.shortname = "Titanium", "Ti"
self.where = where
#}}}
## -- Obsoleted or experimental --
class material_DrudeMetal_old():#{{{
""" Defines a generic metal with a Drude model
In Drude model, the electrons are expected to move freely with some inertia, which
together with their density determines the plasma frequency omega_p.
Losses are introduced by letting them to randomly scatter with the frequency gamma.
The relative permittivity eps_r(omega) of metal can then be calculated as:
eps_r(omega) = 1 - omega_p**2 / (omega**2 - i*omega*gamma),
Low-frequency limit of permittivity (eps = eps' + 1j * eps''):
eps' ---> - omega_p**2/gamma**2,
eps'' ---> omega_p / (omega * gamma),
and the high-frequency limit of permittivity:
eps' ---> 1 - omega**2/omega_p**2
eps'' ---> 1/omega**3
"""
#def __init__(self, where=None, lfconductivity=15e6, f_c=1e14): XXX
def __init__(self, where=None, lfconductivity=15e3, f_c=1e14):
"""
At microwave frequencies (where omega << gamma), the most interesting property of the metal
is its conductivity sigma(omega), which may be approximated by a nearly constant real value:
conductivity = epsilon/1j * frequency * eps0 * 2pi
Therefore, for convenience, we allow the user to specify the low-frequency conductivity sigma0 and compute
the scattering frequency as:
"""
#self.gamma = omega_p**2 * epsilon_0 / lfconductivity
"""
Values similar to those of aluminium are used by default:
dielectric part of permittivity: 1.0,
plasma frequency = 3640 THz
low-frequency conductivity: 40e6 [S/m]
"""
## Design a new metallic model
## We need to put the scattering frequency below fc, so that Re(eps) is not constant at f_c
self.gamma = .5 * f_c
## The virtual plasma frequency is now determined by lfconductivity
f_p = (self.gamma * lfconductivity / (2*pi) / epsilon_0)**.5
self.eps = (f_p/f_c)**2 ## add such an epsilon value, that just shifts the permittivity to be positive at f_c
#self.eps = 1 ##XXX
print "F_C", f_c
print "GAMMA", self.gamma
print "F_P", f_p
print "LFC", lfconductivity
print "eps", self.eps
print
## Feed MEEP with a (fake) Drude model
f_0 = 1e5 ## arbitrary low frequency that makes Lorentz model behave as Drude model
self.pol = [
{'omega': f_0, 'gamma': self.gamma, 'sigma': f_p**2 / f_0**2}, # (Lorentz) model
]
self.name = "Drude metal for <%.2g Hz" % f_c
self.where = where
#}}}
class material_testsnom():#{{{
"""
This material is just for testing the s-SNOM response
"""
def __init__(self, where=None):
self.eps = 1.5
self.pol = [
#{'omega': 1e10, 'gamma':1e11, 'sigma':100},
#{'omega':500e12, 'gamma':200e12, 'sigma':1},
{'omega': 2e13, 'gamma':3e12, 'sigma':42},
]
self.name = ""
self.where = where
#}}}
class material_NbN_03K():#{{{
"""
Niobium nitride -- low-temperature type-II superconductor (Tk ~ 15 K ?)
"""
def __init__(self, where=None):
#self.eps = 100.
self.eps = 3.
self.pol = [
{'omega':2.3e12, 'gamma':.4e12*1.000, 'sigma':5},
]
self.name = "Niobium nitride (T = 3 K)"
self.where = where
#}}}
class material_AuL():#{{{
""" Drude-Lorentz model for Gold """
def __init__(self, where=None, resistivity=0., eps=0.):
#self.eps = 1.
self.eps = 1.
omega0 = 1e6*c*1e-20 ## arbitrary low frequency that makes Lorentz model behave as Drude model
self.pol = [
{'omega': omega0, 'gamma': 1e6*c*0.042747, 'sigma': 4.0314e+39 * 1e-20**2 * (1e6*c)**2 / omega0**2},
{'omega':1e6*c*0.33472, 'gamma':1e6*c*0.19438, 'sigma':11.363}, ## sum of Lorentzians = 17.86
{'omega':1e6*c*0.66944, 'gamma':1e6*c*0.27826, 'sigma':1.1836},
{'omega':1e6*c*2.3947 , 'gamma':1e6*c*0.7017 , 'sigma': 0.65677},
{'omega':1e6*c*3.4714 , 'gamma':1e6*c*2.0115 , 'sigma': 2.6455},
{'omega':1e6*c*10.743 , 'gamma':1e6*c*1.7857 , 'sigma': 2.0148},
]
self.name = "Gold (Drude-Lorentz)"
self.shortname = "Au"
self.where = where
#}}}
class material_Au2():#{{{
""" Drude-Lorentz model for Gold """
def __init__(self, where=None, resistivity=0., eps=0.):
#self.eps = 1.
self.eps = 18.86
omega0 = 1e6*c*1e-20 ## arbitrary low frequency that makes Lorentz model behave as Drude model
self.pol = [
{'omega': omega0, 'gamma': 1e6*c*0.042747, 'sigma': 4.0314e+41 * 1e-20**2 * (1e6*c)**2 / omega0**2},
]
self.name = "Gold (Drude-Lorentz)"
self.shortname = "Au"
self.where = where
#}}}
class material_Au3():#{{{
""" Drude-Lorentz model for Gold """
def __init__(self, where=None, resistivity=0., eps=0.):
#self.eps = 1.
self.eps = 18.86
omega0 = 1e6*c*1e-20 ## arbitrary low frequency that makes Lorentz model behave as Drude model
self.pol = [
{'omega': omega0, 'gamma': 0, 'sigma': 4.0314e+41 * 1e-20**2 * (1e6*c)**2 / omega0**2},
]
self.name = "Gold (lossy Drude)"
self.shortname = "Au"
self.where = where
#}}}
class material_AuL():#{{{
""" Drude-Lorentz model for Gold - new prototype
"""
def __init__(self, where=None, resistivity=0., eps=0.):
#self.eps = 1.
self.eps = 1.
self.pol = [
#{'omega': omega0, 'gamma': 1e6*c*0.042747, 'sigma': 4.0314e+39 * 1e-20**2 * (1e6*c)**2 / omega0**2},
{'omega':1e6*c*0.33472, 'gamma':1e6*c*0.19438, 'sigma':11.363}, ## sum of Lorentzians = 17.86
{'omega':1e6*c*0.66944, 'gamma':1e6*c*0.27826, 'sigma':1.1836},
{'omega':1e6*c*2.3947 , 'gamma':1e6*c*0.7017 , 'sigma': 0.65677},
{'omega':1e6*c*3.4714 , 'gamma':1e6*c*2.0115 , 'sigma': 2.6455},
{'omega':1e6*c*10.743 , 'gamma':1e6*c*1.7857 , 'sigma': 2.0148},
]
#self.Drude_omegap = 4.0314e+39 * 1e-20**2 * (1e6*c)**2)**.5,
#self.Drude_gamma = 1e6*c*0.042747
self.name = "Gold (New Drude-Lorentz)"
self.shortname = "Au"
self.where = where
#}}}
class material_SiO2_stability_test():#{{{
""" Amorphous SiO2 for mid_infrared
Optical resonances fitted manually to experimental spectra
Note: Discrete Lorentzian oscillators used predict higher losses in the mid-IR region
Note2: crystalline SiO2 should be similar, but is slightly birefringent
From Gunde, M. K.: "Vibrational modes in amorphous silicon dioxide"
Physica B: Physics of Condensed Matter, Volume 292, Issue 3-4, p. 286-295.
"""
def __init__(self, where=None, sigmafactor=1):
#self.eps = 2.4 ## used if no VIS/UV oscillators defined; may range from 2.3-2.5 [Huber]
#self.eps = 1+.5+.55+ .082+ .663+ .058+ .017
## S = 0.5783 eps(f_c)=1 UNSTAB, ok
## S = 0.5763 eps(f_c)=1 stab
## S = 0.5763 eps(f_c)=.99 stab, WEIRD!
## S = 0.5783 eps(f_c)=.95 UNSTAB, ok
## S = 0.5763 eps(f_c)=.9989+0.015j UNSTAB, WEIRD!
#M S = 0.5763 eps(f_c)=.9989+0.015j UNSTAB, WEIRD!
omega0 = 3.0e-10
omega = 3.0e13
self.eps = 1.42
self.pol = [
#{'omega': 447*percm, 'gamma': 49*percm, 'sigma':.923},
{'omega': omega0, 'gamma': 9e12, 'sigma':.523 * (omega/omega0)**2},
]
self.name = "Amorphous silica glass (SiO2) for IR range"
self.shortname = "SiO2 (IR)"
self.where = where
#}}}
class material():#{{{
""" Base class for materials """
def __init__(self, where=None):
self.eps = 1
self.pol = [
]
self.name = "default material"
self.shortname = "default"
self.where = where
#}}}