forked from aschein/prgpmf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
apf.pyx
623 lines (514 loc) · 25.6 KB
/
apf.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
# cython: boundscheck = False
# cython: initializedcheck = False
# cython: wraparound = False
# cython: cdivision = True
# cython: language_level = 3
import sys
import numpy as np
import numpy.random as rn
import tensorly as tl
import sktensor as skt
cimport numpy as np
from copy import deepcopy
from cython.parallel import parallel, prange
from apf.base.mcmc_model_parallel cimport MCMCModel
from apf.base.sample cimport _sample_gamma, _sample_dirichlet, _sample_trunc_poisson, _sample_poisson
from apf.base.allocate cimport _compute_prob, _allocate
from apf.base.cyutils cimport _sum_double_vec
from apf.base.utils import uttut, uttkrp, sp_uttkrp
cdef extern from "gsl/gsl_rng.h" nogil:
ctypedef struct gsl_rng:
pass
cdef class APF(MCMCModel):
def __init__(self, tuple data_shp, tuple core_shp, double eps=0.1,
int binary=0, list mtx_is_dirichlet=[],
object seed=None, object n_threads=None):
super(APF, self).__init__(seed=seed, n_threads=n_threads)
# Params
self.data_shp = self.param_list['data_shp'] = data_shp
self.core_shp = self.param_list['core_shp'] = core_shp
self.eps = self.param_list['eps'] = eps
self.binary = self.param_list['binary'] = binary
self.mtx_is_dirichlet = self.param_list['mtx_is_dirichlet'] = mtx_is_dirichlet
self.n_modes = M = len(self.data_shp)
self.max_data_dim = D = max(self.data_shp)
self.max_core_dim = K = max(self.core_shp)
self.n_classes = Q = np.prod(self.core_shp)
self.is_tucker = int(len(self.core_shp) > 1)
if self.is_tucker:
assert len(self.core_shp) == len(self.data_shp)
self.subs_QM = np.array(list(np.ndindex(core_shp)), dtype=np.int32)
self.core_dims_M = np.array(core_shp, dtype=np.int32)
else:
self.core_dims_M = np.repeat(Q, repeats=M).astype(np.int32)
self.data_dims_M = np.array(data_shp, dtype=np.int32)
assert all([m in range(M) for m in self.mtx_is_dirichlet])
impute_Y_M = np.zeros(M, dtype=np.int32)
impute_Y_M[self.mtx_is_dirichlet] = 1
self.impute_Y_M = impute_Y_M
self.impute_Y_Q = 0
self.impute_after = 0
# State variables
self.b_M = np.ones(M)
self.mtx_MKD = np.zeros((M, K, D))
self.core_Q = np.ones(Q)
self.Y_MKD = np.zeros((M, K, D), dtype=np.int)
self.Y_Q = np.zeros(Q, dtype=np.int)
# Cache and auxiliary data structures
X = self.n_threads
self.Y_XQ = np.zeros((X, Q), dtype=np.int)
self.Y_XMKD = np.zeros((X, M, K, D), dtype=np.int)
self.N_XMQ = np.zeros((X, M, Q), dtype=np.uint32)
self.P_XMQ = np.zeros((X, M, Q))
self.shp_MKD = np.zeros((M, K, D))
self.mtx_MK = np.zeros((M, K))
# Copy of the data
self.n_nonzero = 0 # placeholders
self.nonzero_data_P = np.zeros(0, dtype=np.int)
self.nonzero_subs_PM = np.zeros((0, M), dtype=np.int32)
self.n_missing = 0
self.missing_data_P = np.zeros(0, dtype=np.int)
self.missing_subs_PM = np.zeros((0, M), dtype=np.int32)
# Whether *all* data entries indexed by a given mode dimension are missing
self.all_missing_MD = np.zeros((M, D), dtype=np.int32)
# Whether *any* data entries indexed by a given mode dimension are missing
self.any_missing_MD = np.zeros((M, D), dtype=np.int32)
# Whether *any-but-NOT-all* data entries indexed by a given mode dimension are missing
self.any_not_all_missing_MD = np.zeros((M, D), dtype=np.int32)
self.mask = None
self.inv_mask = None
cdef list _get_variables(self):
"""
Return variable names, values, and sampling methods for testing.
MUST BE IN TOPOLOGICAL ORDER!
"""
variables = [('core_Q', self.core_Q, self._update_core_Q),
('b_M', self.b_M, self._update_b_M),
('mtx_MKD', self.mtx_MKD, self._update_mtx_MKD),
('Y_MKD', self.Y_MKD, self._update_Y_PQ),
('Y_Q', self.Y_Q, self._dummy_update)]
return variables
cdef void _dummy_update(self, int update_mode) nogil:
pass
def _initialize_data(self, data):
if isinstance(data, skt.sptensor):
self._initialize_sparse_data(data)
else:
self._initialize_dense_data(data)
def _initialize_sparse_data(self, sp_data):
"""Initialize from a sparse tensor (sktensor.sptensor).
This method currently is incompatible with a mask.
"""
self.n_missing = 0
self.missing_data_P = np.zeros(self.n_missing, dtype=int)
self.missing_subs_PM = np.zeros((0, self.n_modes), dtype=np.int32)
self.all_missing_MD[:] = 0
self.any_missing_MD[:] = 0
self.any_not_all_missing_MD[:] = 0
nonzero_subs = sp_data.subs
self.n_nonzero = nonzero_subs[0].shape[0]
self.nonzero_data_P = sp_data.vals
if self.n_nonzero > 0:
self.nonzero_subs_PM = np.array(nonzero_subs, dtype=np.int32, order='F').T
else:
self.nonzero_subs_PM = np.zeros((0, self.n_modes), dtype=np.int32)
def _initialize_dense_data(self, data):
cdef:
np.npy_intp m, d
if not isinstance(data, np.ma.core.MaskedArray):
data = np.ma.array(data, mask=None)
assert data.shape == self.data_shp
assert (data >= 0).all() is np.ma.masked or True
if self.binary:
assert (data <= 1).all() is np.ma.masked or True
missing_subs = np.where(data.mask)
self.n_missing = missing_subs[0].shape[0]
self.missing_data_P = np.zeros(self.n_missing, dtype=int)
if self.n_missing > 0:
self.missing_subs_PM = np.array(missing_subs, dtype=np.int32, order='F').T
all_missing_MD = np.zeros_like(self.all_missing_MD)
any_missing_MD = np.zeros_like(self.any_missing_MD)
for m in range(self.n_modes):
modes = tuple([m_ for m_ in range(self.n_modes) if m_ != m])
all_missing_MD[m, :self.data_shp[m]] = np.all(data.mask, axis=modes)
any_missing_MD[m, :self.data_shp[m]] = np.any(data.mask, axis=modes)
self.all_missing_MD, self.any_missing_MD = all_missing_MD, any_missing_MD
self.any_not_all_missing_MD = (1-all_missing_MD) * any_missing_MD
else:
self.missing_subs_PM = np.zeros((0, self.n_modes), dtype=np.int32)
self.all_missing_MD[:] = 0
self.any_missing_MD[:] = 0
self.any_not_all_missing_MD[:] = 0
filled_data = data.astype(np.int).filled(fill_value=0)
nonzero_subs = filled_data.nonzero()
self.n_nonzero = nonzero_subs[0].shape[0]
self.nonzero_data_P = filled_data[nonzero_subs]
if self.n_nonzero > 0:
self.nonzero_subs_PM = np.array(nonzero_subs, dtype=np.int32, order='F').T
else:
self.nonzero_subs_PM = np.zeros((0, self.n_modes), dtype=np.int32)
def fit(self, data, n_itns=1000, initialize=True, verbose=1,
impute_after=0, schedule={}, fix_state={}, init_state={}):
self._initialize_data(data)
schedule = deepcopy(schedule)
init_state = deepcopy(init_state)
for k in fix_state.keys():
schedule[k] = lambda x: False
if k in init_state.keys() and verbose:
print('WARNING: Variable appears in fix_state and init_state.')
init_state[k] = fix_state[k] # fix_state takes priority!
if initialize:
if verbose:
print('\nINITIALIZING...\n')
self._initialize_state(init_state)
elif init_state:
if verbose:
print('\n Setting given states...\n')
self.set_state(init_state)
self.impute_after = impute_after
if verbose:
print('\nSTARTING INFERENCE...\n')
self._update(n_itns=n_itns, verbose=int(verbose), schedule=schedule)
def get_matrices(self, transpose=False):
cdef:
np.npy_intp m, K_m, D_m
for m, (K_m, D_m) in enumerate(zip(self.core_dims_M, self.data_dims_M)):
mtx = self.mtx_MKD[m, :K_m, :D_m]
yield np.transpose(mtx) if transpose else np.array(mtx)
def set_matrices(self, matrices=[], modes=None, transpose=False):
cdef:
np.npy_intp m, K_m, D_m, k, d
if modes is None:
modes = range(len(matrices))
for m, mtx in zip(modes, matrices):
if transpose:
mtx = np.transpose(mtx)
K_m, D_m = self.core_dims_M[m], self.data_dims_M[m]
assert mtx.shape == (K_m, D_m)
for k, d in np.ndindex(K_m, D_m):
self.mtx_MKD[m, k, d] = mtx[k, d]
self.mtx_MKD[m, K_m:, D_m:] = 0
def reconstruct(self, subs=()):
mtxs = list(self.get_matrices(transpose=True))
if self.is_tucker:
core = np.reshape(self.core_Q, self.core_shp)
return tl.tucker_to_tensor(core, mtxs)[subs]
else:
return tl.kruskal_to_tensor(mtxs, weights=self.core_Q)[subs]
def decode(self, mtx, mode, subs=()):
mtxs = list(self.get_matrices(transpose=True))
mtxs[mode] = mtx
if self.is_tucker:
core = np.reshape(self.core_Q, self.core_shp)
return tl.tucker_to_tensor(core, mtxs)[subs]
else:
return tl.kruskal_to_tensor(mtxs, weights=self.core_Q)[subs]
def get_dense_mask(self, missing_val_is=1):
if self.n_missing == 0:
return None
if missing_val_is == 1:
if self.mask is None:
subs = tuple([self.missing_subs_PM[:, m] for m in range(self.n_modes)])
self.mask = np.zeros(self.data_shp, dtype=np.int32)
self.mask[subs] = 1
return self.mask
elif missing_val_is == 0:
if self.inv_mask is None:
subs = tuple([self.missing_subs_PM[:, m] for m in range(self.n_modes)])
self.inv_mask = np.ones(self.data_shp, dtype=np.int32)
self.inv_mask[subs] = 0
return self.inv_mask
else:
raise ValueError('missing val must be 0 or 1')
cdef void _generate_state(self):
"""
Generate internal state.
"""
for key, _, update_func in self._get_variables():
if key not in ['Y_MKD', 'Y_Q']:
update_func(self, update_mode=self._GENERATE_MODE)
cdef void _generate_data(self):
self._update_Y_PQ(update_mode=self._GENERATE_MODE)
cdef void _update_Y_PQ(self, int update_mode):
cdef:
np.npy_intp p, m
int tid, any_impute_vars
double mu_p
if update_mode == self._GENERATE_MODE:
# Generate data as if came in the form of a tensor
# The point of this is to make sure _initialize_data works
# This works for testing even when binary=True
data = np.ma.MaskedArray(rn.poisson(self.reconstruct()),
mask=self.get_dense_mask())
self._initialize_data(data)
self.Y_XQ[:] = 0
self.Y_XMKD[:] = 0
any_impute_vars = int(any(self.impute_Y_M) or self.impute_Y_Q)
if any_impute_vars and self._total_itns >= self.impute_after:
# This is the imputation step; we still run this in GENERATE_MODE
# because the code that calls _initialize_data doesnt save the masked vals.
# We always impute missing vals BEFORE thinning observed nonzero ones because
# we first zero out the latent sources for modes with gamma-distributed factors
# (which can update with the missing data marginalized out instead of imputed).
for p in prange(self.n_missing, schedule='static', nogil=True):
tid = self._get_thread()
_compute_prob(self.missing_subs_PM[p],
self.core_dims_M,
self.core_Q,
self.mtx_MKD,
self.P_XMQ[tid])
mu_p = _sum_double_vec(self.P_XMQ[tid, 0, :self.core_dims_M[0]])
self.missing_data_P[p] = _sample_poisson(self.rngs[tid], mu_p)
if self.missing_data_P[p] > 0:
self.N_XMQ[tid] = 0
_allocate(self.missing_data_P[p],
self.missing_subs_PM[p],
self.core_dims_M,
self.Y_XMKD[tid],
self.Y_XQ[tid],
self.P_XMQ[tid],
self.N_XMQ[tid],
self.rngs[tid])
if (np.array(self.missing_data_P) < 0).any():
raise ValueError('Lambda values too large (>2e9).')
# print(np.sum(self.missing_data_P), np.sum(self.Y_XQ))
assert np.sum(self.missing_data_P) == np.sum(self.Y_XQ)
# Delete any imputed sources for variables that marginalize them out.
if not self.impute_Y_Q:
self.Y_XQ[:] = 0
for m in range(self.n_modes):
if not self.impute_Y_M[m]:
for tid in range(self.n_threads):
# This inner loop is necesssary because the following assignment fails:
#
# self.Y_XMKD[:, m] = 0 # doesn't work!
#
# assert np.all(np.array(self.Y_XMKD[:, m]) == 0) # fails!
#
# For some reason, this does NOT zero out all the entries.
# Might have something to do with this being declared a C-continuous memview.
self.Y_XMKD[tid, m] = 0
# This is where we thin the observed nonzeros. =For the binary model, this step
# also imputes missing count values at the observed nonzero entries.
# There's no reason to call this during GENERATE_MODE since we dont binarize
# the generated count tensor in the above code that calls _initialize_data.
for p in prange(self.n_nonzero, schedule='static', nogil=True):
tid = self._get_thread()
_compute_prob(self.nonzero_subs_PM[p],
self.core_dims_M,
self.core_Q,
self.mtx_MKD,
self.P_XMQ[tid])
if (update_mode != self._GENERATE_MODE) and self.binary:
mu_p = _sum_double_vec(self.P_XMQ[tid, 0, :self.core_dims_M[0]])
self.nonzero_data_P[p] = _sample_trunc_poisson(self.rngs[tid], mu_p)
if self.nonzero_data_P[p] > 0:
self.N_XMQ[tid] = 0
_allocate(self.nonzero_data_P[p],
self.nonzero_subs_PM[p],
self.core_dims_M,
self.Y_XMKD[tid],
self.Y_XQ[tid],
self.P_XMQ[tid],
self.N_XMQ[tid],
self.rngs[tid])
# This is where we reduce thread-local arrays into single ones.
self.Y_MKD = np.sum(self.Y_XMKD, axis=0, dtype=np.int)
self.Y_Q = np.sum(self.Y_XQ, axis=0, dtype=np.int)
cdef void _update_mtx_MKD(self, int update_mode):
cdef:
np.npy_intp m
for m in range(self.n_modes):
# Padding with zeros and updating the cached sum mtx_MK
# is handled within update_mtx_m. Make sure to do those
# steps in any alternative method.
self._update_mtx_m_KD(m, update_mode)
# self.mtx_MKD[m, :, self.data_shp[m]:] = 0
# self.mtx_MK = np.sum(self.mtx_MKD, axis=2)
cdef void _update_mtx_m_KD(self, int mode, int update_mode):
cdef:
np.npy_intp D_m, K_m, k, d,
double shp_kd, rte_kd, s
gsl_rng * rng
double[:,::1] zeta_DK
D_m = self.data_dims_M[mode]
K_m = self.core_dims_M[mode]
self.mtx_MKD[mode] = 0
if mode in self.mtx_is_dirichlet:
for k in prange(K_m, schedule='static', nogil=True):
rng = self.rngs[self._get_thread()]
for d in range(D_m):
self.shp_MKD[mode, k, d] = self.eps
if update_mode == self._INFER_MODE:
self.shp_MKD[mode, k, d] += self.Y_MKD[mode, k, d]
_sample_dirichlet(rng,
self.shp_MKD[mode, k, :D_m],
self.mtx_MKD[mode, k, :D_m])
assert np.all(np.array(self.mtx_MKD) >= 0)
self.mtx_MK[mode] = 1
else:
self.mtx_MK[mode] = 0
if update_mode == self._INITIALIZE_MODE:
s = 1 # smoothness parameter
for k in prange(K_m, schedule='static', nogil=True):
rng = self.rngs[self._get_thread()]
for d in range(D_m):
self.mtx_MKD[mode, k, d] = s * _sample_gamma(rng, s, 1./s)
self.mtx_MK[mode, k] += self.mtx_MKD[mode, k, d]
else:
if update_mode == self._INFER_MODE:
zeta_DK = self._compute_zeta_m_DK(mode)
for k in prange(K_m, schedule='static', nogil=True):
rng = self.rngs[self._get_thread()]
for d in range(D_m):
shp_kd = self.eps
rte_kd = self.eps * self.b_M[mode]
if update_mode == self._INFER_MODE:
shp_kd = shp_kd + self.Y_MKD[mode, k, d]
rte_kd = rte_kd + zeta_DK[d, k]
self.mtx_MKD[mode, k, d] = _sample_gamma(rng, shp_kd, 1./rte_kd)
self.mtx_MK[mode, k] += self.mtx_MKD[mode, k, d]
cdef double[:,::1] _compute_zeta_m_DK(self, int mode):
cdef:
np.npy_intp m, D, K
list modes, vects, mtxs
tuple subs
np.ndarray core, mask, tmp
np.ndarray[double, ndim=1] zeta_K, vals
np.ndarray[double, ndim=2] zeta_DK, correction_DK
np.ndarray[np.npy_intp, ndim=1] all_missing_subs_D
np.ndarray[np.npy_intp, ndim=1] any_not_all_missing_subs_D
# First compute zeta as if there are no missing entries
modes = [m for m in range(self.n_modes) if m != mode]
if self.is_tucker:
# This implements a multi-mode dot.
# tl.tenalg.multi_mode_dot and tl.tucker_to_vec dont work.
# They seem to be broken for more than 3 modes.
core = np.reshape(self.core_Q, self.core_shp)
tmp = np.rollaxis(core, mode, 0)
for m in modes[::-1]:
tmp = tl.dot(tmp, self.mtx_MK[m, :self.core_dims_M[m]])
zeta_K = tmp
else:
zeta_K = np.array(self.core_Q)
for m in modes:
zeta_K *= self.mtx_MK[m]
D, K = self.data_shp[mode], self.core_dims_M[mode]
zeta_DK = np.ones((D, K)) * zeta_K
# If there are missing entries that are not being imputed, calculate corrections
if (self.n_missing > 0) and (not self.impute_Y_M[mode]):
all_missing_subs_D = np.where(self.all_missing_MD[mode])[0]
if all_missing_subs_D.shape[0] > 0:
zeta_DK[all_missing_subs_D] = 0
any_not_all_missing_subs_D = np.where(self.any_not_all_missing_MD[mode])[0]
if any_not_all_missing_subs_D.shape[0] > 0:
if self.is_tucker:
mask = np.take(self.get_dense_mask(), any_not_all_missing_subs_D, axis=mode)
mtxs = list(self.get_matrices(transpose=True))
mtxs[mode] = mtxs[mode][any_not_all_missing_subs_D] # remove rows that have no missing entries
# this is the main speedup beyond simply
# calling a tensor operation on the inverted mask
correction_DK = uttut(tens=mask,
mode=mode,
mtxs=mtxs,
core=core,
transpose=True)
else:
if self.n_missing > 2500000: # check this heuristic!
mask = np.take(self.get_dense_mask(), any_not_all_missing_subs_D, axis=mode)
mtxs = list(self.get_matrices(transpose=True))
mtxs[mode] = mtxs[mode][any_not_all_missing_subs_D] # remove rows that have no missing entries
# this is the main speedup beyond simply
# calling a tensor operation on the inverted mask
correction_DK = uttkrp(tens=mask,
mode=mode,
mtxs=mtxs,
core=np.array(self.core_Q),
transpose=True)
else:
vals = np.ones(self.n_missing)
subs = tuple([self.missing_subs_PM[:, m] for m in range(self.n_modes)])
mtxs = list(self.get_matrices(transpose=True))
correction_DK = sp_uttkrp(subs=subs,
vals=vals,
mode=mode,
mtxs=mtxs,
core=np.array(self.core_Q),
transpose=True)[any_not_all_missing_subs_D]
zeta_DK[any_not_all_missing_subs_D] = zeta_DK[any_not_all_missing_subs_D] - correction_DK
return zeta_DK
@property
def core_Q_prior(self):
"""
Returns the prior shape and rate parameter for the core elements.
Useful for extension classes that impose hyperiors over the core.
"""
return self.eps, self.eps
cdef void _update_core_Q(self, int update_mode):
cdef:
np.npy_intp q
double prior_shp, prior_rte, shp_q, rte_q
double[::1] zeta_Q
gsl_rng * rng
if update_mode == self._INFER_MODE:
zeta_Q = self._compute_zeta_Q()
prior_shp, prior_rte = self.core_Q_prior
for q in prange(self.n_classes, schedule='static', nogil=True):
rng = self.rngs[self._get_thread()]
shp_q, rte_q = prior_shp, prior_rte
if update_mode == self._INFER_MODE:
shp_q = shp_q + self.Y_Q[q]
rte_q = rte_q + zeta_Q[q]
self.core_Q[q] = _sample_gamma(rng, shp_q, 1./rte_q)
@property
def zeta_Q(self):
return self._compute_zeta_Q()
cdef double[::1] _compute_zeta_Q(self):
cdef:
list vects, mtxs
tuple subs
np.ndarray mask
np.ndarray[double, ndim=1] zeta_Q, vals
if self.is_tucker:
if self.n_missing == 0 or self.impute_Y_Q:
# Compute the Kronecker product of summed arrays
# This is faster than calling tl.tenalg.kronecker
zeta_Q = np.take(self.mtx_MK[0], self.subs_QM[:, 0])
for m in range(1, self.n_modes):
zeta_Q *= np.take(self.mtx_MK[m], self.subs_QM[:, m])
return zeta_Q
else:
mtxs = list(self.get_matrices())
mask = self.get_dense_mask(missing_val_is=0)
return tl.tucker_to_vec(mask, mtxs)
else:
if self.n_missing == 0 or self.impute_Y_Q:
return np.prod(self.mtx_MK, axis=0)
elif self.n_missing < 15000000: # check this heuristic!
zeta_Q = np.prod(self.mtx_MK, axis=0)
mtxs = list(self.get_matrices())
vals = np.ones(self.n_missing)
subs = tuple([self.missing_subs_PM[:, m] for m in range(self.n_modes)])
zeta_Q -= np.sum(mtxs[0] * sp_uttkrp(subs=subs,
vals=vals,
mode=0,
mtxs=mtxs), axis=1)
return zeta_Q
else:
mtxs = list(self.get_matrices())
mask = self.get_dense_mask(missing_val_is=0)
return np.sum(mtxs[0] * uttkrp(tens=mask, mode=0, mtxs=mtxs), axis=1)
cdef void _update_b_M(self, int update_mode):
cdef:
np.npy_intp m
for m in range(self.n_modes):
if m not in self.mtx_is_dirichlet:
self._update_b_m(m, update_mode)
cdef void _update_b_m(self, int mode, int update_mode):
cdef:
double shp, rte
shp = rte = 10.
if update_mode == self._INFER_MODE:
shp += self.eps * self.data_shp[mode] * self.core_dims_M[mode]
rte += self.eps * np.sum(self.mtx_MK[mode])
self.b_M[mode] = _sample_gamma(self.rng, shp, 1./rte)