-
Notifications
You must be signed in to change notification settings - Fork 399
/
Sublayers.py
104 lines (78 loc) · 3.4 KB
/
Sublayers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
class Norm(nn.Module):
def __init__(self, d_model, eps = 1e-6):
super().__init__()
self.size = d_model
# create two learnable parameters to calibrate normalisation
self.alpha = nn.Parameter(torch.ones(self.size))
self.bias = nn.Parameter(torch.zeros(self.size))
self.eps = eps
def forward(self, x):
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \
/ (x.std(dim=-1, keepdim=True) + self.eps) + self.bias
return norm
def attention(q, k, v, d_k, mask=None, dropout=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
scores = F.softmax(scores, dim=-1)
if dropout is not None:
scores = dropout(scores)
output = torch.matmul(scores, v)
return output
class MultiHeadAttention(nn.Module):
def __init__(self, heads, d_model, dropout = 0.1):
super().__init__()
self.d_model = d_model
self.d_k = d_model // heads
self.h = heads
self.q_linear = 全连接层(d_model, d_model)
self.v_linear = 全连接层(d_model, d_model)
self.k_linear = 全连接层(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.out = 全连接层(d_model, d_model)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
# perform linear operation and split into N heads
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
# transpose to get dimensions bs * N * sl * d_model
k = k.transpose(1,2)
q = q.transpose(1,2)
v = v.transpose(1,2)
# calculate attention using function we will define next
scores = attention(q, k, v, self.d_k, mask, self.dropout)
# concatenate heads and put through final linear layer
concat = scores.transpose(1,2).contiguous()\
.view(bs, -1, self.d_model)
output = self.out(concat)
return output
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff=2048, dropout = 0.1):
super().__init__()
# We set d_ff as a default to 2048
self.linear_1 = 全连接层(d_model, d_ff)
self.dropout = nn.Dropout(dropout)
self.linear_2 = 全连接层(d_ff, d_model)
def forward(self, x):
x = self.dropout(gelu(self.linear_1(x)))
x = self.linear_2(x)
return x
class 全连接层(nn.Module):
def __init__(self,输入_接口, 输出_接口):
super().__init__()
np.random.seed(1)
self.weight = nn.Parameter(torch.FloatTensor(np.random.uniform(-1/np.sqrt(输入_接口), 1/np.sqrt(输入_接口), (输入_接口, 输出_接口))))
self.bias = nn.Parameter(torch.FloatTensor(np.random.uniform(-1/np.sqrt(输入_接口), 1/np.sqrt(输入_接口), 输出_接口)))
def forward(self, x):
输出=torch.matmul(x,self.weight)
输出=输出+self.bias
return 输出