-
Notifications
You must be signed in to change notification settings - Fork 12
/
main.py
337 lines (325 loc) · 19.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import math
import random
random.seed(1)
import numpy as np
np.random.seed(1)
import argparse
from model.digit5 import CNN, Classifier
from model.amazon import AmazonMLP, AmazonClassifier
from model.officecaltech10 import OfficeCaltechNet, OfficeCaltechClassifier
from model.domainnet import DomainNet, DomainNetClassifier
from datasets.DigitFive import digit5_dataset_read
from datasets.AmazonReview import amazon_dataset_read
from lib.utils.federated_utils import *
from train.train import train, test
from datasets.MiniDomainNet import get_mini_domainnet_dloader
from datasets.OfficeCaltech10 import get_office_caltech10_dloader
from datasets.DomainNet import get_domainnet_dloader
from datasets.Office31 import get_office31_dloader
import os
from os import path
import shutil
import yaml
# Default settings
parser = argparse.ArgumentParser(description='K3DA Official Implement')
# Dataset Parameters
parser.add_argument("--config", default="DigitFive.yaml")
parser.add_argument('-bp', '--base-path', default="./")
parser.add_argument('--target-domain', type=str, help="The target domain we want to perform domain adaptation")
parser.add_argument('--source-domains', type=str, nargs="+", help="The source domains we want to use")
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
# Train Strategy Parameters
parser.add_argument('-t', '--train-time', default=1, type=str,
metavar='N', help='the x-th time of training')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-dp', '--data-parallel', action='store_false', help='Use Data Parallel')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
# Optimizer Parameters
parser.add_argument('--optimizer', default="SGD", type=str, metavar="Optimizer Name")
parser.add_argument('-m', '--momentum', default=0.9, type=float, metavar='M', help='Momentum in SGD')
parser.add_argument('--wd', '--weight-decay', default=5e-4, type=float)
parser.add_argument('-bm', '--bn-momentum', type=float, default=0.1, help="the batchnorm momentum parameter")
parser.add_argument("--gpu", default="0", type=str, metavar='GPU plans to use', help='The GPU id plans to use')
args = parser.parse_args()
# import config files
with open(r"./config/{}".format(args.config)) as file:
configs = yaml.full_load(file)
# set the visible GPU
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import CosineAnnealingLR
import torch.nn as nn
torch.manual_seed(1)
torch.cuda.manual_seed(1)
def main(args=args, configs=configs):
# set the dataloader list, model list, optimizer list, optimizer schedule list
train_dloaders = []
test_dloaders = []
models = []
classifiers = []
optimizers = []
classifier_optimizers = []
optimizer_schedulers = []
classifier_optimizer_schedulers = []
# build dataset
if configs["DataConfig"]["dataset"] == "DigitFive":
domains = ['mnistm', 'mnist', 'syn', 'usps', 'svhn']
# [0]: target dataset, target backbone, [1:-1]: source dataset, source backbone
# generate dataset for train and target
print("load target domain {}".format(args.target_domain))
target_train_dloader, target_test_dloader = digit5_dataset_read(args.base_path,
args.target_domain,
configs["TrainingConfig"]["batch_size"])
train_dloaders.append(target_train_dloader)
test_dloaders.append(target_test_dloader)
# generate CNN and Classifier for target domain
models.append(CNN(args.data_parallel).cuda())
classifiers.append(Classifier(args.data_parallel).cuda())
domains.remove(args.target_domain)
args.source_domains = domains
print("target domain {} loaded".format(args.target_domain))
# create DigitFive dataset
print("Source Domains :{}".format(domains))
for domain in domains:
# generate dataset for source domain
source_train_dloader, source_test_dloader = digit5_dataset_read(args.base_path, domain,
configs["TrainingConfig"]["batch_size"])
train_dloaders.append(source_train_dloader)
test_dloaders.append(source_test_dloader)
# generate CNN and Classifier for source domain
models.append(CNN(args.data_parallel).cuda())
classifiers.append(Classifier(args.data_parallel).cuda())
print("Domain {} Preprocess Finished".format(domain))
num_classes = 10
elif configs["DataConfig"]["dataset"] == "AmazonReview":
domains = ["books", "dvd", "electronics", "kitchen"]
print("load target domain {}".format(args.target_domain))
target_train_dloader, target_test_dloader = amazon_dataset_read(args.base_path,
args.target_domain,
configs["TrainingConfig"]["batch_size"])
train_dloaders.append(target_train_dloader)
test_dloaders.append(target_test_dloader)
# generate MLP and Classifier for target domain
models.append(AmazonMLP(args.data_parallel).cuda())
classifiers.append(AmazonClassifier(args.data_parallel).cuda())
domains.remove(args.target_domain)
args.source_domains = domains
print("target domain {} loaded".format(args.target_domain))
# create DigitFive dataset
print("Source Domains :{}".format(domains))
for domain in domains:
# generate dataset for source domain
source_train_dloader, source_test_dloader = amazon_dataset_read(args.base_path, domain,
configs["TrainingConfig"]["batch_size"])
train_dloaders.append(source_train_dloader)
test_dloaders.append(source_test_dloader)
# generate CNN and Classifier for source domain
models.append(AmazonMLP(args.data_parallel).cuda())
classifiers.append(AmazonClassifier(args.data_parallel).cuda())
print("Domain {} Preprocess Finished".format(domain))
num_classes = 2
elif configs["DataConfig"]["dataset"] == "OfficeCaltech10":
domains = ['amazon', 'webcam', 'dslr', "caltech"]
target_train_dloader, target_test_dloader = get_office_caltech10_dloader(args.base_path,
args.target_domain,
configs["TrainingConfig"]["batch_size"]
, args.workers)
train_dloaders.append(target_train_dloader)
test_dloaders.append(target_test_dloader)
models.append(
OfficeCaltechNet(configs["ModelConfig"]["backbone"], bn_momentum=args.bn_momentum,
pretrained=configs["ModelConfig"]["pretrained"],
data_parallel=args.data_parallel).cuda())
classifiers.append(
OfficeCaltechClassifier(configs["ModelConfig"]["backbone"], 10, args.data_parallel).cuda()
)
domains.remove(args.target_domain)
args.source_domains = domains
for domain in domains:
source_train_dloader, source_test_dloader = get_office_caltech10_dloader(args.base_path, domain,
configs["TrainingConfig"][
"batch_size"], args.workers)
train_dloaders.append(source_train_dloader)
test_dloaders.append(source_test_dloader)
models.append(
OfficeCaltechNet(configs["ModelConfig"]["backbone"], args.bn_momentum,
pretrained=configs["ModelConfig"]["pretrained"],
data_parallel=args.data_parallel).cuda())
classifiers.append(
OfficeCaltechClassifier(configs["ModelConfig"]["backbone"], 10, args.data_parallel).cuda()
)
num_classes = 10
elif configs["DataConfig"]["dataset"] == "Office31":
domains = ['amazon', 'webcam', 'dslr']
target_train_dloader, target_test_dloader = get_office31_dloader(args.base_path,
args.target_domain,
configs["TrainingConfig"]["batch_size"],
args.workers)
train_dloaders.append(target_train_dloader)
test_dloaders.append(target_test_dloader)
models.append(
OfficeCaltechNet(configs["ModelConfig"]["backbone"], bn_momentum=args.bn_momentum,
pretrained=configs["ModelConfig"]["pretrained"],
data_parallel=args.data_parallel).cuda())
classifiers.append(
OfficeCaltechClassifier(configs["ModelConfig"]["backbone"], 31, args.data_parallel).cuda()
)
domains.remove(args.target_domain)
args.source_domains = domains
for domain in domains:
source_train_dloader, source_test_dloader = get_office31_dloader(args.base_path, domain,
configs["TrainingConfig"]["batch_size"],
args.workers)
train_dloaders.append(source_train_dloader)
test_dloaders.append(source_test_dloader)
models.append(
OfficeCaltechNet(configs["ModelConfig"]["backbone"], args.bn_momentum,
pretrained=configs["ModelConfig"]["pretrained"],
data_parallel=args.data_parallel).cuda())
classifiers.append(
OfficeCaltechClassifier(configs["ModelConfig"]["backbone"], 31, args.data_parallel).cuda()
)
num_classes = 31
elif configs["DataConfig"]["dataset"] == "MiniDomainNet":
domains = ['clipart', 'painting', 'real', 'sketch']
target_train_dloader, target_test_dloader = get_mini_domainnet_dloader(args.base_path, args.target_domain,
configs["TrainingConfig"]["batch_size"],
args.workers)
train_dloaders.append(target_train_dloader)
test_dloaders.append(target_test_dloader)
models.append(
DomainNet(configs["ModelConfig"]["backbone"], args.bn_momentum, configs["ModelConfig"]["pretrained"],
args.data_parallel).cuda())
classifiers.append(DomainNetClassifier(configs["ModelConfig"]["backbone"], 126, args.data_parallel).cuda())
domains.remove(args.target_domain)
args.source_domains = domains
for domain in domains:
source_train_dloader, source_test_dloader = get_mini_domainnet_dloader(args.base_path, domain,
configs["TrainingConfig"][
"batch_size"], args.workers)
train_dloaders.append(source_train_dloader)
test_dloaders.append(source_test_dloader)
models.append(DomainNet(configs["ModelConfig"]["backbone"], args.bn_momentum,
pretrained=configs["ModelConfig"]["pretrained"],
data_parallel=args.data_parallel).cuda())
classifiers.append(DomainNetClassifier(configs["ModelConfig"]["backbone"], 126, args.data_parallel).cuda())
num_classes = 126
elif configs["DataConfig"]["dataset"] == "DomainNet":
domains = ['clipart', 'infograph', 'painting', 'quickdraw', 'real', 'sketch']
target_train_dloader, target_test_dloader = get_domainnet_dloader(args.base_path,
args.target_domain,
configs["TrainingConfig"]["batch_size"],
args.workers)
train_dloaders.append(target_train_dloader)
test_dloaders.append(target_test_dloader)
models.append(
DomainNet(configs["ModelConfig"]["backbone"], args.bn_momentum, configs["ModelConfig"]["pretrained"],
args.data_parallel).cuda())
classifiers.append(DomainNetClassifier(configs["ModelConfig"]["backbone"], 345, args.data_parallel).cuda())
domains.remove(args.target_domain)
args.source_domains = domains
for domain in domains:
source_train_dloader, source_test_dloader = get_domainnet_dloader(args.base_path, domain,
configs["TrainingConfig"]["batch_size"],
args.workers)
train_dloaders.append(source_train_dloader)
test_dloaders.append(source_test_dloader)
models.append(DomainNet(configs["ModelConfig"]["backbone"], args.bn_momentum,
pretrained=configs["ModelConfig"]["pretrained"],
data_parallel=args.data_parallel).cuda())
classifiers.append(DomainNetClassifier(configs["ModelConfig"]["backbone"], 345, args.data_parallel).cuda())
num_classes = 345
else:
raise NotImplementedError("Dataset {} not implemented".format(configs["DataConfig"]["dataset"]))
# federated learning step 1: initialize model with the same parameter (use target as standard)
for model in models[1:]:
for source_weight, target_weight in zip(model.named_parameters(), models[0].named_parameters()):
# consistent parameters
source_weight[1].data = target_weight[1].data.clone()
# create the optimizer for each model
for model in models:
optimizers.append(
torch.optim.SGD(model.parameters(), momentum=args.momentum,
lr=configs["TrainingConfig"]["learning_rate_begin"], weight_decay=args.wd))
for classifier in classifiers:
classifier_optimizers.append(
torch.optim.SGD(classifier.parameters(), momentum=args.momentum,
lr=configs["TrainingConfig"]["learning_rate_begin"], weight_decay=args.wd))
# create the optimizer scheduler with cosine annealing schedule
for optimizer in optimizers:
optimizer_schedulers.append(
CosineAnnealingLR(optimizer, configs["TrainingConfig"]["total_epochs"],
eta_min=configs["TrainingConfig"]["learning_rate_end"]))
for classifier_optimizer in classifier_optimizers:
classifier_optimizer_schedulers.append(
CosineAnnealingLR(classifier_optimizer, configs["TrainingConfig"]["total_epochs"],
eta_min=configs["TrainingConfig"]["learning_rate_end"]))
# create the event to save log info
writer_log_dir = path.join(args.base_path, configs["DataConfig"]["dataset"], "runs",
"train_time:{}".format(args.train_time) + "_" +
args.target_domain + "_" + "_".join(args.source_domains))
print("create writer in {}".format(writer_log_dir))
if os.path.exists(writer_log_dir):
flag = input("{} train_time:{} will be removed, input yes to continue:".format(
configs["DataConfig"]["dataset"], args.train_time))
if flag == "yes":
shutil.rmtree(writer_log_dir, ignore_errors=True)
writer = SummaryWriter(log_dir=writer_log_dir)
# begin train
print("Begin the {} time's training, Dataset:{}, Source Domains {}, Target Domain {}".format(args.train_time,
configs[
"DataConfig"][
"dataset"],
args.source_domains,
args.target_domain))
# create the initialized domain weight
domain_weight = create_domain_weight(len(args.source_domains))
# adjust training strategy with communication round
batch_per_epoch, total_epochs = decentralized_training_strategy(
communication_rounds=configs["UMDAConfig"]["communication_rounds"],
epoch_samples=configs["TrainingConfig"]["epoch_samples"],
batch_size=configs["TrainingConfig"]["batch_size"],
total_epochs=configs["TrainingConfig"]["total_epochs"])
# train model
for epoch in range(args.start_epoch, total_epochs):
domain_weight = train(train_dloaders, models, classifiers, optimizers,
classifier_optimizers, epoch, writer, num_classes=num_classes,
domain_weight=domain_weight, source_domains=args.source_domains,
batch_per_epoch=batch_per_epoch, total_epochs=total_epochs,
batchnorm_mmd=configs["UMDAConfig"]["batchnorm_mmd"],
communication_rounds=configs["UMDAConfig"]["communication_rounds"],
confidence_gate_begin=configs["UMDAConfig"]["confidence_gate_begin"],
confidence_gate_end=configs["UMDAConfig"]["confidence_gate_end"],
malicious_domain=configs["UMDAConfig"]["malicious"]["attack_domain"],
attack_level=configs["UMDAConfig"]["malicious"]["attack_level"],
mix_aug=(configs["DataConfig"]["dataset"] != "AmazonReview"))
test(args.target_domain, args.source_domains, test_dloaders, models, classifiers, epoch,
writer, num_classes=num_classes, top_5_accuracy=(num_classes > 10))
for scheduler in optimizer_schedulers:
scheduler.step(epoch)
for scheduler in classifier_optimizer_schedulers:
scheduler.step(epoch)
# save models every 10 epochs
if (epoch + 1) % 10 == 0:
# save target model with epoch, domain, model, optimizer
save_checkpoint(
{"epoch": epoch + 1,
"domain": args.target_domain,
"backbone": models[0].state_dict(),
"classifier": classifiers[0].state_dict(),
"optimizer": optimizers[0].state_dict(),
"classifier_optimizer": classifier_optimizers[0].state_dict()
},
filename="{}.pth.tar".format(args.target_domain))
def save_checkpoint(state, filename):
filefolder = "{}/{}/parameter/train_time:{}".format(args.base_path, configs["DataConfig"]["dataset"],
args.train_time)
if not path.exists(filefolder):
os.makedirs(filefolder)
torch.save(state, path.join(filefolder, filename))
if __name__ == "__main__":
main()