-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgsfda.py
239 lines (210 loc) · 10.8 KB
/
gsfda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy as np
import torch.nn as nn
from torch.nn import functional as F
from train.shot.shot_plus_utils import CrossEntropyLabelSmooth
from utils.avgmeter import AverageMeter
from torch.utils.tensorboard import SummaryWriter
import torch
from collections import defaultdict
from sklearn.metrics import confusion_matrix
def gsfda_build_banks(train_dloader, bottleneck_dim, num_classes, backbone, classifier, preprocess):
backbone.eval()
classifier.eval()
num_samples = len(train_dloader.dataset)
feature_bank = torch.zeros(num_samples, bottleneck_dim, dtype=torch.float32)
score_bank = torch.zeros(num_samples, num_classes, dtype=torch.float32).cuda()
with torch.no_grad():
for batch_id, batch in enumerate(train_dloader):
image = batch[0].cuda()
idx = batch[2]
with torch.no_grad():
image = preprocess(image)
feature, _ = backbone(image, s=100, t=1, all_mask=False, no_embedding=False)
feature_norm = F.normalize(feature)
feature_bank[idx] = feature_norm.detach().clone().cpu()
score = classifier(feature)
score_softmax = nn.Softmax(-1)(score)
score_bank[idx] = score_softmax.detach().clone()
return feature_bank, score_bank
def gsfda_pretrain(train_dloader_list, backbone_list, classifier_list,
optimizer_list, classifier_optimizer_list,
batch_per_epoch, class_num, reg_par=0.75, preprocess=None):
for model in backbone_list:
model.train()
for classifier in classifier_list:
classifier.train()
task_criterion = CrossEntropyLabelSmooth(class_num).cuda()
for train_dloader, model, classifier, optimizer, classifier_optimizer in zip(train_dloader_list,
backbone_list, classifier_list,
optimizer_list,
classifier_optimizer_list):
for i, (image_s, label_s, *_) in enumerate(train_dloader):
if i > batch_per_epoch:
break
image_s = image_s.cuda()
if preprocess is not None:
with torch.no_grad():
image_s = preprocess(image_s)
label_s = label_s.long().cuda()
optimizer.zero_grad()
classifier_optimizer.zero_grad()
feature_s, masks = model(image_s, t=0, s=100, all_mask=True, no_embedding=False)
output_s1 = classifier(feature_s[0])
output_s2 = classifier(feature_s[1])
# sparsity regularization for domain attention
reg = 0
count = 0
for m in masks[0]:
reg += m.sum() # numerator
count += np.prod(m.size()).item() # denominator
for m in masks[1]:
reg += m.sum() # numerator
count += np.prod(m.size()).item() # denominator
reg /= count
classifier_loss = task_criterion(output_s1, label_s) + task_criterion(output_s2, label_s) + reg_par * reg
classifier_loss.backward()
optimizer.step()
classifier_optimizer.step()
def gsfda_train(train_dloader, backbone, backbone_optimizer, classifier, classifier_optimizer,
fea_bank, score_bank, batch_per_epoch, class_num, bottleneck_dim,
epsilon=1e-5, gen_par=1, k=2, preprocess=None):
backbone.train()
classifier.train()
for batch_id, batch in enumerate(train_dloader):
if batch_id > batch_per_epoch:
break
inputs = batch[0].cuda()
idx = batch[2]
with torch.no_grad():
inputs = preprocess(inputs)
backbone_optimizer.zero_grad()
classifier_optimizer.zero_grad()
features, masks = backbone(inputs, t=1, s=100, all_mask=False, no_embedding=False)
outputs = classifier(features)
outputs_sm = nn.Softmax(dim=1)(outputs)
outputs_re = outputs_sm.unsqueeze(1)
with torch.no_grad():
output_f_norm = F.normalize(features)
fea_bank[idx].fill_(-0.1) # do not use the current mini-batch in fea_bank
output_f_ = output_f_norm.cpu().detach().clone()
distance = output_f_ @ fea_bank.T
_, idx_near = torch.topk(distance, dim=-1, largest=True, k=k)
score_near = score_bank[idx_near] # batch x K x num_class
score_near = score_near.permute(0, 2, 1)
# update banks
fea_bank[idx] = output_f_.detach().clone().cpu()
score_bank[idx] = outputs_sm.detach().clone()
const = torch.log(torch.bmm(outputs_re, score_near)).sum(-1)
loss = -torch.mean(const)
msoftmax = outputs_sm.mean(dim=0)
gentropy_loss = torch.sum(msoftmax * torch.log(msoftmax + epsilon))
loss += gentropy_loss * gen_par
loss.backward()
for n, p in backbone.bottleneck.named_parameters():
if n.find('fc') != -1:
if n.find('bias') == -1:
mask_ = ((1 - masks)).view(-1, 1).expand(bottleneck_dim, 2048).cuda()
p.grad.data *= mask_
else: # no bias here
mask_ = ((1 - masks)).squeeze().cuda()
p.grad.data *= mask_
elif n.find('bn') != -1:
mask_ = ((1 - masks)).view(-1).cuda()
p.grad.data *= mask_
for n, p in classifier.named_parameters():
if n.find('weight_v') != -1:
masks__ = masks.view(1, -1).expand(class_num, bottleneck_dim)
mask_ = ((1 - masks__)).cuda()
p.grad.data *= mask_
backbone_optimizer.step()
classifier_optimizer.step()
def gsfda_test_per_domain(domain_name, test_dloader, backbone, classifier, epoch, writer, num_classes=345,
top_5_accuracy=True, is_src=True, no_embedding=False):
backbone.eval()
classifier.eval()
domain_loss = AverageMeter()
tmp_score = []
tmp_label = []
task_criterion = nn.CrossEntropyLoss().cuda()
embedding_verbose = " (no_embedding)" if no_embedding is True else ""
mask_t = 0 if is_src else 1
for _, item in enumerate(test_dloader): # change from (image, _) to item
image = item[0]
label = item[1]
image = image.cuda()
label = label.long().cuda()
with torch.no_grad():
if no_embedding:
feature = backbone(image, t=mask_t, s=100, all_mask=False, no_embedding=no_embedding)
else:
feature, _ = backbone(image, t=mask_t, s=100, all_mask=False, no_embedding=no_embedding)
output = classifier(feature)
label_onehot = torch.zeros(label.size(0), num_classes).cuda().scatter_(1, label.view(-1, 1), 1)
task_loss = task_criterion(output, label)
domain_loss.update(float(task_loss.item()), image.size(0))
tmp_score.append(torch.softmax(output, dim=1))
# turn label into one-hot code
tmp_label.append(label_onehot)
if type(writer) == SummaryWriter:
writer.add_scalar(tag="domain_{}_loss{}".format(domain_name, embedding_verbose), scalar_value=domain_loss.avg,
global_step=epoch + 1)
else:
writer.log({"domain_{}_loss{}".format(domain_name, embedding_verbose): domain_loss.avg}, step=epoch + 1)
tmp_score = torch.cat(tmp_score, dim=0).detach()
tmp_label = torch.cat(tmp_label, dim=0).detach()
_, y_true = torch.topk(tmp_label, k=1, dim=1)
_, y_pred = torch.topk(tmp_score, k=5, dim=1)
top_1_accuracy = float(torch.sum(y_true == y_pred[:, :1]).item()) / y_true.size(0)
if type(writer) == SummaryWriter:
writer.add_scalar(tag="domain_{}_accuracy_top1{}".format(domain_name, embedding_verbose),
scalar_value=top_1_accuracy,
global_step=epoch + 1)
else:
writer.log({"domain_{}_accuracy_top1{}".format(domain_name, embedding_verbose): top_1_accuracy}, step=epoch + 1)
print("Domain :{}, Top1 Accuracy{}:{}".format(domain_name, embedding_verbose, top_1_accuracy))
if top_5_accuracy:
top_5_accuracy_s = float(torch.sum(y_true == y_pred).item()) / y_true.size(0)
if type(writer) == SummaryWriter:
writer.add_scalar(tag="domain_{}_accuracy_top5{}".format(domain_name, embedding_verbose),
scalar_value=top_5_accuracy_s,
global_step=epoch + 1)
else:
writer.log({"domain_{}_accuracy_top5{}".format(domain_name, embedding_verbose): top_5_accuracy_s},
step=epoch + 1)
def gsfda_visda17_test_per_domain(domain_name, test_dloader, backbone, classifier, epoch, writer, is_src=True,
no_embedding=False):
"""Test accuracy of the dataset VisDA2017 with the method gsfda.
Use sklearn to compute confusion matrix, and calculate accuracy of each class.
Classes are in the following order:
`[plane, bcycl, bus, car, horse, knife, mcycl, person, plant, sktbrd, train, truck]`
"""
backbone.eval()
classifier.eval()
dataset_size = len(test_dloader.dataset)
all_output = torch.zeros(dataset_size, 12).cuda()
y_true = torch.zeros(dataset_size).long().cuda()
embedding_verbose = " (no_embedding)" if no_embedding is True else ""
mask_t = 0 if is_src else 1
for batch_idx, item in enumerate(test_dloader):
image = item[0]
label = item[1]
image = image.cuda()
label = label.long().cuda()
batch_size = image.size(0)
y_true[batch_size * batch_idx: batch_size * (batch_idx + 1)] = label
with torch.no_grad():
feature = backbone(image, t=mask_t, s=100, all_mask=False, no_embedding=no_embedding)[0]
output = classifier(feature)
all_output[batch_size * batch_idx: batch_size * (batch_idx + 1)] = output
_, y_pred = torch.max(all_output, 1)
matrix = confusion_matrix(y_true.cpu(), y_pred.cpu())
top_1_accuracy_list = matrix.diagonal() / matrix.sum(axis=1) * 100
avg_top_1_accuracy = top_1_accuracy_list.mean()
top_1_accuracy_str_list = [f"{accuracy_per_class:.2f}" for accuracy_per_class in top_1_accuracy_list]
if type(writer) == SummaryWriter:
writer.add_scalar(tag=f"domain_{domain_name}_accuracy_top1{embedding_verbose}",
scalar_value=avg_top_1_accuracy, global_step=epoch + 1)
else:
writer.log({f"domain_{domain_name}_accuracy_top1{embedding_verbose}": avg_top_1_accuracy}, step=epoch + 1)
print(f"Domain: {domain_name}, Top1 Accuracy: {avg_top_1_accuracy:.2f}")
print(f"Top1 Accuracy List: [{' '.join(top_1_accuracy_str_list)}]")