-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathindex_pdf.py
190 lines (148 loc) · 5.93 KB
/
index_pdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import time
import sys
import os
import hashlib
# pdf handling libs
import PyPDF2
from pdf2image import convert_from_path
# embeddings
from lib.util import embeddings
# tokenizer for parsing things
import nltk
nltk.download('punkt')
tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
print("Tokenizer loaded...")
# import AI prompt handling functions
from lib.ai import ai
# import database methods
from lib.database import featurebase_query, create_database
# create the databases
databases = []
databases.append({"name": "doc_pages", "schema": "(_id string, filename string, title string, uuids stringset)"})
databases.append({"name": "doc_fragments", "schema": "(_id string, filename string, title string, page_num int, page_id string, fragment_num int, prev_id string, fragment string, fragment_embedding vector(768))"})
for database in databases:
create_database(database.get('name'), database.get('schema'))
# select the file
from lib.util import get_pdf_filename
filename = get_pdf_filename()
if filename:
print("Selected PDF:", filename)
# create a pdf file object
pdfFileObj = open("documents/%s" % filename, 'rb')
# create a pdf reader object
pdfReader = PyPDF2.PdfReader(pdfFileObj)
# get or set title
if pdfReader.metadata.get('title', None):
title = pdfReader.metadata.get('title')
else:
title = None
# number of pages in pdf file
num_pages = len(pdfReader.pages)
# images directory
if not os.path.exists("images"):
os.makedirs("images")
print(f"system> Directory 'images' created successfully!")
else:
print(f"system> Directory 'images' already exists.")
# convert PDF
images = convert_from_path('documents/%s' % filename)
# Path of the new directory to be created for images
new_dir_path = os.path.join('images', filename.split(".")[0])
# Create the new directory if it doesn't already exist
if not os.path.exists(new_dir_path):
os.mkdir(new_dir_path)
print(f"system> Directory {new_dir_path} created successfully.")
else:
print(f"system> Directory {new_dir_path} already exists.")
if os.path.exists(f"{new_dir_path}/page" + str(num_pages-1) + '.jpg'):
print("system> Found existing images for PDF.")
else:
print("system> Exporting images for PDF.")
for i in range(len(images)):
# Save pages as images in the pdf (add 1 to the page index to ensure we match pages)
images[i].save(f'{new_dir_path}/page'+ str(i+1) +'.jpg', 'JPEG')
#
# end operating on PDF
# extract text from images
from google.cloud import vision
import io
client = vision.ImageAnnotatorClient()
# start with last page or page 1
prev_uuid = "FIRST_BAG" # used for creating a linked list in FeatureBase
try:
sql = f"SELECT max(page_num) AS max_page, filename, title FROM doc_fragments WHERE filename = '{filename}' GROUP BY filename, title ORDER BY max_page DESC;"
results = featurebase_query({"sql": sql}).get('results')
start_page = results[0].get('max_page') - 1
title = results[0].get('title')
print(f"system> Found existing pages for '{title}'. Starting at page {start_page}.")
except Exception as ex:
start_page = 1
# stash errant characters from previous page
word_stash = ""
# loop through the pages
for page_num in range(start_page, num_pages+1):
fragment_num = 1
# open image for the page
with io.open(f'{new_dir_path}/page%s.jpg' % page_num, 'rb') as image_file:
content = image_file.read()
# extract the text using Google Vision
image = vision.Image(content=content)
response = client.text_detection(image=image)
texts = response.text_annotations
# output completion status
print("system> Reading page number %s of %s." % (page_num, num_pages))
# use the first extraction only (other entries in the list are single words)
try:
text = texts[0]
except:
print("system> Error in detection, likely due to a blank page.")
continue
# get title from the first page if we don't have it
if title is None and page_num == 1:
# create a document for the AI to operate on
document = {"text": text.description[:512]} # use the first 512 characters of the page
if not document.get('title', None):
# call the AI to get the title
title = ai("get_title", document).get('title')
if not title:
title = input("system> Couldn't find a title. Enter a title for the PDF: ")
# clean up the text on which to operate
_text = text.description.replace("'", "").replace("\n", " ")
# create a decently cleaned up string of words of a given length
words = word_stash
# loop over the tokenized text
for i, entry in enumerate(tokenizer.tokenize(_text)):
# continue if entry is empty
if entry == "":
continue
# build up the words string
words = words + " " + entry.replace("\n", " ")
# process words if the chunk is > 512 characters or we are on the last chunk
if i == len(tokenizer.tokenize(_text)) - 1 and len(words) < 20:
word_stash = words
print("system> Stashing words for next page.")
continue # exit loop over tokenized text
else:
word_stash = ""
if len(words) > 512 or i == len(tokenizer.tokenize(_text)) - 1:
# build a page_id for the page fragment
page_id = "%s_%s" % (page_num, hashlib.md5(filename.encode()).hexdigest()[:8])
# embed (goodbye to weaviate retries)
_embeddings = embeddings([words.strip()])[0]
uuid = _embeddings.get('uuid')
# update featurebase doc_pages table
sql = "INSERT INTO doc_pages VALUES('%s', '%s', '%s', ['%s']);" % (page_id, filename, title.replace("'", ""), uuid)
featurebase_query({"sql": sql})
# update featurebase doc_fragments
sql = "INSERT INTO doc_fragments VALUES('%s', '%s', '%s', %s, '%s', %s, '%s', '%s', %s);" % (uuid, filename, title.replace("'", ""), page_num, page_id, fragment_num, prev_uuid, words.replace("'", ""), _embeddings.get('embedding'))
featurebase_query({"sql": sql})
# track the previous UUID for the linked list
prev_uuid = uuid
# which fragment we are on
fragment_num = fragment_num + 1
# wipe the words
words = ""
# end loop over tokenized text
# close the file
pdfFileObj.close()
print("system> Done indexing PDF!")