-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtools.py
192 lines (162 loc) · 6.56 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import face_alignment
import numpy as np
import scipy.io as io
import torchvision.transforms as transforms
from PIL import Image
import pandas as pd
import sys
import math
model_shape = io.loadmat('data/Model_Shape.mat')
kpt_index = np.reshape(model_shape['keypoints'], 68).astype(np.int32) - 1
model_exp = io.loadmat('data/Model_Expression.mat')
data = io.loadmat('data/sigma_exp.mat')
pose_mean = np.array([0,0,0,112,112,0,0]).astype(np.float32)
pose_std = np.array([math.pi/2.0,math.pi/2.0,math.pi/2.0,56,56,1,224.0 / (2 * 180000.0)]).astype(np.float32)
def angle_to_rotation(angles):
phi = angles[0]
gamma = angles[1]
theta = angles[2]
R_x = np.eye(3)
R_x[1, 1] = math.cos(phi)
R_x[1, 2] = math.sin(phi)
R_x[2, 1] = - math.sin(phi)
R_x[2, 2] = math.cos(phi)
R_y = np.eye(3)
R_y[0, 0] = math.cos(gamma)
R_y[0, 2] = - math.sin(gamma)
R_y[2, 0] = math.sin(gamma)
R_y[2, 2] = math.cos(gamma)
R_z = np.eye(3)
R_z[0, 0] = math.cos(theta)
R_z[0, 1] = math.sin(theta)
R_z[1, 0] = - math.sin(theta)
R_z[1, 1] = math.cos(theta)
return np.matmul(np.matmul(R_x, R_y), R_z)
def preds_to_pose(preds):
pose = preds * pose_std + pose_mean
R = angle_to_rotation(pose[:3])
t2d = pose[3:5]
s = pose[6]
return R, t2d, s
def preds_to_shape(preds):
# paras = torch.mul(preds[:228, :], label_std[:199+29, :])
alpha = np.reshape(preds[:199], [199,1]) * np.reshape(model_shape['sigma'], [199,1])
beta = np.reshape(preds[199:228], [29, 1]) * 1.0/(1000.0 * np.reshape(data['sigma_exp'], [29, 1]))
face_shape = np.matmul(model_shape['w'], alpha) + np.matmul(model_exp['w_exp'], beta) + model_shape['mu_shape']
face_shape = face_shape.reshape(-1, 3)
R, t, s = preds_to_pose(preds[228:228+7])
kptA = np.matmul(face_shape[kpt_index], s*R[:2].transpose()) + np.repeat(np.reshape(t,[1,2]), 68, axis=0)
kptA[:, 1] = 224 - kptA[:, 1]
R, t, s = preds_to_pose(preds[228+7:228+14])
kptB = np.matmul(face_shape[kpt_index], s*R[:2].transpose()) + np.repeat(np.reshape(t,[1,2]), 68, axis=0)
kptB[:, 1] = 224 - kptB[:, 1]
R, t, s = preds_to_pose(preds[228+14:])
kptC = np.matmul(face_shape[kpt_index], s*R[:2].transpose()) + np.repeat(np.reshape(t,[1,2]), 68, axis=0)
kptC[:, 1] = 224 - kptC[:, 1]
return [face_shape, model_shape['tri'].astype(np.int64).transpose() - 1, kptA, kptB, kptC]
def crop_image(image, res=224):
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, flip_input=False)
pts = fa.get_landmarks(np.array(image))
if len(pts) < 1:
assert "No face detected!"
pts = np.array(pts[0]).astype(np.int32)
h = image.size[1]
w = image.size[0]
# x-width-pts[0,:], y-height-pts[1,:]
x_max = np.max(pts[:68, 0])
x_min = np.min(pts[:68, 0])
y_max = np.max(pts[:68, 1])
y_min = np.min(pts[:68, 1])
bbox = [y_min, x_min, y_max, x_max]
# c (cy, cx)
c = [bbox[2] - (bbox[2] - bbox[0]) / 2, bbox[3] - (bbox[3] - bbox[1]) / 2.0]
c[0] = c[0] - (bbox[2] - bbox[0]) * 0.12
s = (max(bbox[2] - bbox[0], bbox[3] - bbox[1]) * 1.5).astype(np.int32)
old_bb = np.array([c[0] - s / 2, c[1] - s / 2, c[0] + s / 2, c[1] + s / 2]).astype(np.int32)
crop_img = Image.new('RGB', (s, s))
#crop_img = torch.zeros(image.shape[0], s, s, dtype=torch.float32)
shift_x = 0 - old_bb[1]
shift_y = 0 - old_bb[0]
old_bb = np.array([max(0, old_bb[0]), max(0, old_bb[1]),
min(h, old_bb[2]), min(w, old_bb[3])]).astype(np.int32)
hb = old_bb[2] - old_bb[0]
wb = old_bb[3] - old_bb[1]
new_bb = np.array([max(0, shift_y), max(0, shift_x), max(0, shift_y) + hb, max(0, shift_x) + wb]).astype(np.int32)
cache = image.crop((old_bb[1], old_bb[0], old_bb[3], old_bb[2]))
crop_img.paste(cache, (new_bb[1], new_bb[0], new_bb[3], new_bb[2]))
crop_img = crop_img.resize((res, res), Image.BICUBIC)
return crop_img
def write_ply(filename, points=None, mesh=None, colors=None, as_text=True):
points = pd.DataFrame(points, columns=["x", "y", "z"])
mesh = pd.DataFrame(mesh, columns=["v1", "v2", "v3"])
if colors is not None:
colors = pd.DataFrame(colors, columns=["red", "green", "blue"])
points = pd.concat([points, colors], axis=1)
"""
Parameters
----------
filename: str
The created file will be named with this
points: ndarray
mesh: ndarray
as_text: boolean
Set the write mode of the file. Default: binary
Returns
-------
boolean
True if no problems
"""
if not filename.endswith('ply'):
filename += '.ply'
# open in text mode to write the header
with open(filename, 'w') as ply:
header = ['ply']
if as_text:
header.append('format ascii 1.0')
else:
header.append('format binary_' + sys.byteorder + '_endian 1.0')
if points is not None:
header.extend(describe_element('vertex', points))
if mesh is not None:
mesh = mesh.copy()
mesh.insert(loc=0, column="n_points", value=3)
mesh["n_points"] = mesh["n_points"].astype("u1")
header.extend(describe_element('face', mesh))
header.append('end_header')
for line in header:
ply.write("%s\n" % line)
if as_text:
if points is not None:
points.to_csv(filename, sep=" ", index=False, header=False, mode='a',
encoding='ascii')
if mesh is not None:
mesh.to_csv(filename, sep=" ", index=False, header=False, mode='a',
encoding='ascii')
else:
# open in binary/append to use tofile
with open(filename, 'ab') as ply:
if points is not None:
points.to_records(index=False).tofile(ply)
if mesh is not None:
mesh.to_records(index=False).tofile(ply)
return True
def describe_element(name, df):
""" Takes the columns of the dataframe and builds a ply-like description
Parameters
----------
name: str
df: pandas DataFrame
Returns
-------
element: list[str]
"""
property_formats = {'f': 'float', 'u': 'uchar', 'i': 'int'}
element = ['element ' + name + ' ' + str(len(df))]
if name == 'face':
element.append("property list uchar int vertex_indices")
else:
for i in range(len(df.columns)):
# get first letter of dtype to infer format
f = property_formats[str(df.dtypes[i])[0]]
element.append('property ' + f + ' ' + str(df.columns.values[i]))
return element