-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
130 lines (90 loc) · 3.63 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
from PIL import Image, ImageColor
from torchvision import transforms
from architecture.FPN import hrnet_fpn
from pathlib import Path
import argparse
import matplotlib.pyplot as plt
from utils import process_statedict_dataparallel
import numpy as np
import json
from metrics import Metrics
parser = argparse.ArgumentParser(description="Evaluate the model on the LIB-HSI dataset")
parser.add_argument("--weights", type=str, help='Path to the model weightse')
parser.add_argument("--path_dataset", type=str, help='Path to the dataset')
parser.add_argument("--save_predictions", type=bool, default=False, help='Save the predictions')
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
state_dict = torch.load(args.weights, map_location=device)
# this is neccesary if the model was trained with DataParallel
# if not, comment the next line
state_dict = process_statedict_dataparallel(state_dict)
model = hrnet_fpn().to(device)
model.load_state_dict(state_dict)
model.eval()
preprocess = transforms.Compose([
transforms.ToTensor(),
])
files = [f.stem for f in (Path(args.path_dataset) / "rgb").glob('*.png')]
info = json.load(open(Path('LIB-HSI') / 'label_info.json'))
colormap = [ImageColor.getcolor(i['color_hex_code'], 'RGB') for i in info['items']]
def inverse_process_mask(mask, colormap):
"""Convert categorical mask to RGB color mask."""
output_mask = np.zeros((*mask.shape[:2], 3), dtype=np.uint8)
for i, color in enumerate(colormap):
output_mask[mask == i] = color
return output_mask
metric_test = Metrics('test')
for file in files:
rgb_path = Path(args.path_dataset) / "rgb" / (file + ".png")
depth_path = Path(args.path_dataset) / "depth" / (file + ".png")
label = Path(args.path_dataset) / "labels" / (file + ".png")
label = np.array(Image.open(label))
rgb = np.array(Image.open(rgb_path))
depth = np.array(Image.open(depth_path))
# preprocess
rgb = torch.from_numpy(np.array(rgb)).float() / 255.0
image = rgb.permute(2, 0, 1)
depth = torch.from_numpy(depth).float() / 255.0
image = torch.cat((rgb, depth.unsqueeze(0)), dim=0)
label = torch.from_numpy(label).long().unsqueeze(0)
with torch.no_grad():
output = model(image.unsqueeze(0))
output = nn.functional.softmax( output , dim=1 )
prediction = output.argmax(1)
metric_test.update(prediction.long() , label.long())
if args.save_predictions:
prediction = prediction.squeeze().cpu().numpy()
prediction = inverse_process_mask(prediction, colormap)
im = Image.fromarray(prediction.astype(np.uint8))
im.save(f"results/{file}.png")
pixel_acc, macc, miou = metric_test.compute()
print(f"Pixel accuracy: {pixel_acc}")
print(f"Mean accuracy: {macc}")
print(f"Mean IoU: {miou}")
"""
useful code if you want to visualize the results of the last prediction
plt.figure(figsize=(12, 12))
plt.subplot(1, 3, 1)
plt.imshow(image.squeeze().permute(1, 2, 0), vmin=0, vmax=46)
plt.title("RGB Image")
plt.axis('off')
plt.subplot(1, 3, 2)
plt.imshow(label.squeeze(), vmin=0, vmax=46)
plt.title("Ground Truth")
plt.axis('off')
plt.subplot(1, 3, 3)
plt.imshow(prediction.squeeze().cpu(), vmin=0, vmax=46)
plt.title("Prediction")
plt.axis('off')
# save plot
plt.savefig(f"results/{f}.png")
"""
def infer(image_path):
image = Image.open(image_path).convert("RGB")
image = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
output = model(image)
prediction = output.squeeze().argmax(0)
return prediction