forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunet.hpp
652 lines (540 loc) · 29.6 KB
/
unet.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
#ifndef __UNET_HPP__
#define __UNET_HPP__
#include "common.hpp"
#include "ggml_extend.hpp"
#include "model.h"
/*==================================================== UnetModel =====================================================*/
#define UNET_GRAPH_SIZE 10240
class SpatialVideoTransformer : public SpatialTransformer {
protected:
int64_t time_depth;
int64_t max_time_embed_period;
public:
SpatialVideoTransformer(int64_t in_channels,
int64_t n_head,
int64_t d_head,
int64_t depth,
int64_t context_dim,
int64_t time_depth = 1,
int64_t max_time_embed_period = 10000)
: SpatialTransformer(in_channels, n_head, d_head, depth, context_dim),
max_time_embed_period(max_time_embed_period) {
// We will convert unet transformer linear to conv2d 1x1 when loading the weights, so use_linear is always False
// use_spatial_context is always True
// merge_strategy is always learned_with_images
// merge_factor is loaded from weights
// time_context_dim is always None
// ff_in is always True
// disable_self_attn is always False
// disable_temporal_crossattention is always False
int64_t inner_dim = n_head * d_head;
GGML_ASSERT(depth == time_depth);
GGML_ASSERT(in_channels == inner_dim);
int64_t time_mix_d_head = d_head;
int64_t n_time_mix_heads = n_head;
int64_t time_mix_inner_dim = time_mix_d_head * n_time_mix_heads; // equal to inner_dim
int64_t time_context_dim = context_dim;
for (int i = 0; i < time_depth; i++) {
std::string name = "time_stack." + std::to_string(i);
blocks[name] = std::shared_ptr<GGMLBlock>(new BasicTransformerBlock(inner_dim,
n_time_mix_heads,
time_mix_d_head,
time_context_dim,
true));
}
int64_t time_embed_dim = in_channels * 4;
blocks["time_pos_embed.0"] = std::shared_ptr<GGMLBlock>(new Linear(in_channels, time_embed_dim));
// time_pos_embed.1 is nn.SiLU()
blocks["time_pos_embed.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, in_channels));
blocks["time_mixer"] = std::shared_ptr<GGMLBlock>(new AlphaBlender());
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* context,
int timesteps) {
// x: [N, in_channels, h, w] aka [b*t, in_channels, h, w], t == timesteps
// context: [N, max_position(aka n_context), hidden_size(aka context_dim)] aka [b*t, n_context, context_dim], t == timesteps
// t_emb: [N, in_channels] aka [b*t, in_channels]
// timesteps is num_frames
// time_context is always None
// image_only_indicator is always tensor([0.])
// transformer_options is not used
// GGML_ASSERT(ggml_n_dims(context) == 3);
auto norm = std::dynamic_pointer_cast<GroupNorm32>(blocks["norm"]);
auto proj_in = std::dynamic_pointer_cast<Conv2d>(blocks["proj_in"]);
auto proj_out = std::dynamic_pointer_cast<Conv2d>(blocks["proj_out"]);
auto time_pos_embed_0 = std::dynamic_pointer_cast<Linear>(blocks["time_pos_embed.0"]);
auto time_pos_embed_2 = std::dynamic_pointer_cast<Linear>(blocks["time_pos_embed.2"]);
auto time_mixer = std::dynamic_pointer_cast<AlphaBlender>(blocks["time_mixer"]);
auto x_in = x;
int64_t n = x->ne[3];
int64_t h = x->ne[1];
int64_t w = x->ne[0];
int64_t inner_dim = n_head * d_head;
GGML_ASSERT(n == timesteps); // We compute cond and uncond separately, so batch_size==1
auto time_context = context; // [b*t, n_context, context_dim]
auto spatial_context = context;
// time_context_first_timestep = time_context[::timesteps]
auto time_context_first_timestep = ggml_view_3d(ctx,
time_context,
time_context->ne[0],
time_context->ne[1],
1,
time_context->nb[1],
time_context->nb[2],
0); // [b, n_context, context_dim]
time_context = ggml_new_tensor_3d(ctx, GGML_TYPE_F32,
time_context_first_timestep->ne[0],
time_context_first_timestep->ne[1],
time_context_first_timestep->ne[2] * h * w);
time_context = ggml_repeat(ctx, time_context_first_timestep, time_context); // [b*h*w, n_context, context_dim]
x = norm->forward(ctx, x);
x = proj_in->forward(ctx, x); // [N, inner_dim, h, w]
x = ggml_cont(ctx, ggml_permute(ctx, x, 1, 2, 0, 3)); // [N, h, w, inner_dim]
x = ggml_reshape_3d(ctx, x, inner_dim, w * h, n); // [N, h * w, inner_dim]
auto num_frames = ggml_arange(ctx, 0, timesteps, 1);
// since b is 1, no need to do repeat
auto t_emb = ggml_nn_timestep_embedding(ctx, num_frames, in_channels, max_time_embed_period); // [N, in_channels]
auto emb = time_pos_embed_0->forward(ctx, t_emb);
emb = ggml_silu_inplace(ctx, emb);
emb = time_pos_embed_2->forward(ctx, emb); // [N, in_channels]
emb = ggml_reshape_3d(ctx, emb, emb->ne[0], 1, emb->ne[1]); // [N, 1, in_channels]
for (int i = 0; i < depth; i++) {
std::string transformer_name = "transformer_blocks." + std::to_string(i);
std::string time_stack_name = "time_stack." + std::to_string(i);
auto block = std::dynamic_pointer_cast<BasicTransformerBlock>(blocks[transformer_name]);
auto mix_block = std::dynamic_pointer_cast<BasicTransformerBlock>(blocks[time_stack_name]);
x = block->forward(ctx, x, spatial_context); // [N, h * w, inner_dim]
// in_channels == inner_dim
auto x_mix = x;
x_mix = ggml_add(ctx, x_mix, emb); // [N, h * w, inner_dim]
int64_t N = x_mix->ne[2];
int64_t T = timesteps;
int64_t B = N / T;
int64_t S = x_mix->ne[1];
int64_t C = x_mix->ne[0];
x_mix = ggml_reshape_4d(ctx, x_mix, C, S, T, B); // (b t) s c -> b t s c
x_mix = ggml_cont(ctx, ggml_permute(ctx, x_mix, 0, 2, 1, 3)); // b t s c -> b s t c
x_mix = ggml_reshape_3d(ctx, x_mix, C, T, S * B); // b s t c -> (b s) t c
x_mix = mix_block->forward(ctx, x_mix, time_context); // [B * h * w, T, inner_dim]
x_mix = ggml_reshape_4d(ctx, x_mix, C, T, S, B); // (b s) t c -> b s t c
x_mix = ggml_cont(ctx, ggml_permute(ctx, x_mix, 0, 2, 1, 3)); // b s t c -> b t s c
x_mix = ggml_reshape_3d(ctx, x_mix, C, S, T * B); // b t s c -> (b t) s c
x = time_mixer->forward(ctx, x, x_mix); // [N, h * w, inner_dim]
}
x = ggml_cont(ctx, ggml_permute(ctx, x, 1, 0, 2, 3)); // [N, inner_dim, h * w]
x = ggml_reshape_4d(ctx, x, w, h, inner_dim, n); // [N, inner_dim, h, w]
// proj_out
x = proj_out->forward(ctx, x); // [N, in_channels, h, w]
x = ggml_add(ctx, x, x_in);
return x;
}
};
// ldm.modules.diffusionmodules.openaimodel.UNetModel
class UnetModelBlock : public GGMLBlock {
protected:
SDVersion version = VERSION_SD1;
// network hparams
int in_channels = 4;
int out_channels = 4;
int num_res_blocks = 2;
std::vector<int> attention_resolutions = {4, 2, 1};
std::vector<int> channel_mult = {1, 2, 4, 4};
std::vector<int> transformer_depth = {1, 1, 1, 1};
int time_embed_dim = 1280; // model_channels*4
int num_heads = 8;
int num_head_channels = -1; // channels // num_heads
int context_dim = 768; // 1024 for VERSION_SD2, 2048 for VERSION_SDXL
public:
int model_channels = 320;
int adm_in_channels = 2816; // only for VERSION_SDXL/SVD
UnetModelBlock(SDVersion version = VERSION_SD1)
: version(version) {
if (version == VERSION_SD2) {
context_dim = 1024;
num_head_channels = 64;
num_heads = -1;
} else if (version == VERSION_SDXL) {
context_dim = 2048;
attention_resolutions = {4, 2};
channel_mult = {1, 2, 4};
transformer_depth = {1, 2, 10};
num_head_channels = 64;
num_heads = -1;
} else if (version == VERSION_SVD) {
in_channels = 8;
out_channels = 4;
context_dim = 1024;
adm_in_channels = 768;
num_head_channels = 64;
num_heads = -1;
}
// dims is always 2
// use_temporal_attention is always True for SVD
blocks["time_embed.0"] = std::shared_ptr<GGMLBlock>(new Linear(model_channels, time_embed_dim));
// time_embed_1 is nn.SiLU()
blocks["time_embed.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
if (version == VERSION_SDXL || version == VERSION_SVD) {
blocks["label_emb.0.0"] = std::shared_ptr<GGMLBlock>(new Linear(adm_in_channels, time_embed_dim));
// label_emb_1 is nn.SiLU()
blocks["label_emb.0.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
}
// input_blocks
blocks["input_blocks.0.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, model_channels, {3, 3}, {1, 1}, {1, 1}));
std::vector<int> input_block_chans;
input_block_chans.push_back(model_channels);
int ch = model_channels;
int input_block_idx = 0;
int ds = 1;
auto get_resblock = [&](int64_t channels, int64_t emb_channels, int64_t out_channels) -> ResBlock* {
if (version == VERSION_SVD) {
return new VideoResBlock(channels, emb_channels, out_channels);
} else {
return new ResBlock(channels, emb_channels, out_channels);
}
};
auto get_attention_layer = [&](int64_t in_channels,
int64_t n_head,
int64_t d_head,
int64_t depth,
int64_t context_dim) -> SpatialTransformer* {
if (version == VERSION_SVD) {
return new SpatialVideoTransformer(in_channels, n_head, d_head, depth, context_dim);
} else {
return new SpatialTransformer(in_channels, n_head, d_head, depth, context_dim);
}
};
size_t len_mults = channel_mult.size();
for (int i = 0; i < len_mults; i++) {
int mult = channel_mult[i];
for (int j = 0; j < num_res_blocks; j++) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, mult * model_channels));
ch = mult * model_channels;
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
int n_head = num_heads;
int d_head = ch / num_heads;
if (num_head_channels != -1) {
d_head = num_head_channels;
n_head = ch / d_head;
}
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
blocks[name] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[i],
context_dim));
}
input_block_chans.push_back(ch);
}
if (i != len_mults - 1) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(new DownSampleBlock(ch, ch));
input_block_chans.push_back(ch);
ds *= 2;
}
}
// middle blocks
int n_head = num_heads;
int d_head = ch / num_heads;
if (num_head_channels != -1) {
d_head = num_head_channels;
n_head = ch / d_head;
}
blocks["middle_block.0"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
blocks["middle_block.1"] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[transformer_depth.size() - 1],
context_dim));
blocks["middle_block.2"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
// output_blocks
int output_block_idx = 0;
for (int i = (int)len_mults - 1; i >= 0; i--) {
int mult = channel_mult[i];
for (int j = 0; j < num_res_blocks + 1; j++) {
int ich = input_block_chans.back();
input_block_chans.pop_back();
std::string name = "output_blocks." + std::to_string(output_block_idx) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(get_resblock(ch + ich, time_embed_dim, mult * model_channels));
ch = mult * model_channels;
int up_sample_idx = 1;
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
int n_head = num_heads;
int d_head = ch / num_heads;
if (num_head_channels != -1) {
d_head = num_head_channels;
n_head = ch / d_head;
}
std::string name = "output_blocks." + std::to_string(output_block_idx) + ".1";
blocks[name] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch, n_head, d_head, transformer_depth[i], context_dim));
up_sample_idx++;
}
if (i > 0 && j == num_res_blocks) {
std::string name = "output_blocks." + std::to_string(output_block_idx) + "." + std::to_string(up_sample_idx);
blocks[name] = std::shared_ptr<GGMLBlock>(new UpSampleBlock(ch, ch));
ds /= 2;
}
output_block_idx += 1;
}
}
// out
blocks["out.0"] = std::shared_ptr<GGMLBlock>(new GroupNorm32(ch)); // ch == model_channels
// out_1 is nn.SiLU()
blocks["out.2"] = std::shared_ptr<GGMLBlock>(new Conv2d(model_channels, out_channels, {3, 3}, {1, 1}, {1, 1}));
}
struct ggml_tensor* resblock_forward(std::string name,
struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* emb,
int num_video_frames) {
if (version == VERSION_SVD) {
auto block = std::dynamic_pointer_cast<VideoResBlock>(blocks[name]);
return block->forward(ctx, x, emb, num_video_frames);
} else {
auto block = std::dynamic_pointer_cast<ResBlock>(blocks[name]);
return block->forward(ctx, x, emb);
}
}
struct ggml_tensor* attention_layer_forward(std::string name,
struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* context,
int timesteps) {
if (version == VERSION_SVD) {
auto block = std::dynamic_pointer_cast<SpatialVideoTransformer>(blocks[name]);
return block->forward(ctx, x, context, timesteps);
} else {
auto block = std::dynamic_pointer_cast<SpatialTransformer>(blocks[name]);
return block->forward(ctx, x, context);
}
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat = NULL,
struct ggml_tensor* y = NULL,
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f) {
// x: [N, in_channels, h, w] or [N, in_channels/2, h, w]
// timesteps: [N,]
// context: [N, max_position, hidden_size] or [1, max_position, hidden_size]. for example, [N, 77, 768]
// c_concat: [N, in_channels, h, w] or [1, in_channels, h, w]
// y: [N, adm_in_channels] or [1, adm_in_channels]
// return: [N, out_channels, h, w]
if (context != NULL) {
if (context->ne[2] != x->ne[3]) {
context = ggml_repeat(ctx, context, ggml_new_tensor_3d(ctx, GGML_TYPE_F32, context->ne[0], context->ne[1], x->ne[3]));
}
}
if (c_concat != NULL) {
if (c_concat->ne[3] != x->ne[3]) {
c_concat = ggml_repeat(ctx, c_concat, x);
}
x = ggml_concat(ctx, x, c_concat, 2);
}
if (y != NULL) {
if (y->ne[1] != x->ne[3]) {
y = ggml_repeat(ctx, y, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, y->ne[0], x->ne[3]));
}
}
auto time_embed_0 = std::dynamic_pointer_cast<Linear>(blocks["time_embed.0"]);
auto time_embed_2 = std::dynamic_pointer_cast<Linear>(blocks["time_embed.2"]);
auto input_blocks_0_0 = std::dynamic_pointer_cast<Conv2d>(blocks["input_blocks.0.0"]);
auto out_0 = std::dynamic_pointer_cast<GroupNorm32>(blocks["out.0"]);
auto out_2 = std::dynamic_pointer_cast<Conv2d>(blocks["out.2"]);
auto t_emb = ggml_nn_timestep_embedding(ctx, timesteps, model_channels); // [N, model_channels]
auto emb = time_embed_0->forward(ctx, t_emb);
emb = ggml_silu_inplace(ctx, emb);
emb = time_embed_2->forward(ctx, emb); // [N, time_embed_dim]
// SDXL/SVD
if (y != NULL) {
auto label_embed_0 = std::dynamic_pointer_cast<Linear>(blocks["label_emb.0.0"]);
auto label_embed_2 = std::dynamic_pointer_cast<Linear>(blocks["label_emb.0.2"]);
auto label_emb = label_embed_0->forward(ctx, y);
label_emb = ggml_silu_inplace(ctx, label_emb);
label_emb = label_embed_2->forward(ctx, label_emb); // [N, time_embed_dim]
emb = ggml_add(ctx, emb, label_emb); // [N, time_embed_dim]
}
// input_blocks
std::vector<struct ggml_tensor*> hs;
// input block 0
auto h = input_blocks_0_0->forward(ctx, x);
ggml_set_name(h, "bench-start");
hs.push_back(h);
// input block 1-11
size_t len_mults = channel_mult.size();
int input_block_idx = 0;
int ds = 1;
for (int i = 0; i < len_mults; i++) {
int mult = channel_mult[i];
for (int j = 0; j < num_res_blocks; j++) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
h = resblock_forward(name, ctx, h, emb, num_video_frames); // [N, mult*model_channels, h, w]
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
h = attention_layer_forward(name, ctx, h, context, num_video_frames); // [N, mult*model_channels, h, w]
}
hs.push_back(h);
}
if (i != len_mults - 1) {
ds *= 2;
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
auto block = std::dynamic_pointer_cast<DownSampleBlock>(blocks[name]);
h = block->forward(ctx, h); // [N, mult*model_channels, h/(2^(i+1)), w/(2^(i+1))]
hs.push_back(h);
}
}
// [N, 4*model_channels, h/8, w/8]
// middle_block
h = resblock_forward("middle_block.0", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
h = attention_layer_forward("middle_block.1", ctx, h, context, num_video_frames); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.2", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
if (controls.size() > 0) {
auto cs = ggml_scale_inplace(ctx, controls[controls.size() - 1], control_strength);
h = ggml_add(ctx, h, cs); // middle control
}
int control_offset = controls.size() - 2;
// output_blocks
int output_block_idx = 0;
for (int i = (int)len_mults - 1; i >= 0; i--) {
for (int j = 0; j < num_res_blocks + 1; j++) {
auto h_skip = hs.back();
hs.pop_back();
if (controls.size() > 0) {
auto cs = ggml_scale_inplace(ctx, controls[control_offset], control_strength);
h_skip = ggml_add(ctx, h_skip, cs); // control net condition
control_offset--;
}
h = ggml_concat(ctx, h, h_skip, 2);
std::string name = "output_blocks." + std::to_string(output_block_idx) + ".0";
h = resblock_forward(name, ctx, h, emb, num_video_frames);
int up_sample_idx = 1;
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
std::string name = "output_blocks." + std::to_string(output_block_idx) + ".1";
h = attention_layer_forward(name, ctx, h, context, num_video_frames);
up_sample_idx++;
}
if (i > 0 && j == num_res_blocks) {
std::string name = "output_blocks." + std::to_string(output_block_idx) + "." + std::to_string(up_sample_idx);
auto block = std::dynamic_pointer_cast<UpSampleBlock>(blocks[name]);
h = block->forward(ctx, h);
ds /= 2;
}
output_block_idx += 1;
}
}
// out
h = out_0->forward(ctx, h);
h = ggml_silu_inplace(ctx, h);
h = out_2->forward(ctx, h);
ggml_set_name(h, "bench-end");
return h; // [N, out_channels, h, w]
}
};
struct UNetModelRunner : public GGMLRunner {
UnetModelBlock unet;
UNetModelRunner(ggml_backend_t backend,
ggml_type wtype,
SDVersion version = VERSION_SD1)
: GGMLRunner(backend, wtype), unet(version) {
unet.init(params_ctx, wtype);
}
std::string get_desc() {
return "unet";
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
unet.get_param_tensors(tensors, prefix);
}
struct ggml_cgraph* build_graph(struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat = NULL,
struct ggml_tensor* y = NULL,
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, UNET_GRAPH_SIZE, false);
if (num_video_frames == -1) {
num_video_frames = x->ne[3];
}
x = to_backend(x);
context = to_backend(context);
y = to_backend(y);
timesteps = to_backend(timesteps);
for (int i = 0; i < controls.size(); i++) {
controls[i] = to_backend(controls[i]);
}
struct ggml_tensor* out = unet.forward(compute_ctx,
x,
timesteps,
context,
c_concat,
y,
num_video_frames,
controls,
control_strength);
ggml_build_forward_expand(gf, out);
return gf;
}
void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL) {
// x: [N, in_channels, h, w]
// timesteps: [N, ]
// context: [N, max_position, hidden_size]([N, 77, 768]) or [1, max_position, hidden_size]
// c_concat: [N, in_channels, h, w] or [1, in_channels, h, w]
// y: [N, adm_in_channels] or [1, adm_in_channels]
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x, timesteps, context, c_concat, y, num_video_frames, controls, control_strength);
};
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
}
void test() {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10 MB
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* work_ctx = ggml_init(params);
GGML_ASSERT(work_ctx != NULL);
{
// CPU, num_video_frames = 1, x{num_video_frames, 8, 8, 8}: Pass
// CUDA, num_video_frames = 1, x{num_video_frames, 8, 8, 8}: Pass
// CPU, num_video_frames = 3, x{num_video_frames, 8, 8, 8}: Wrong result
// CUDA, num_video_frames = 3, x{num_video_frames, 8, 8, 8}: nan
int num_video_frames = 3;
auto x = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 8, 8, 8, num_video_frames);
std::vector<float> timesteps_vec(num_video_frames, 999.f);
auto timesteps = vector_to_ggml_tensor(work_ctx, timesteps_vec);
ggml_set_f32(x, 0.5f);
// print_ggml_tensor(x);
auto context = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 1024, 1, num_video_frames);
ggml_set_f32(context, 0.5f);
// print_ggml_tensor(context);
auto y = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 768, num_video_frames);
ggml_set_f32(y, 0.5f);
// print_ggml_tensor(y);
struct ggml_tensor* out = NULL;
int t0 = ggml_time_ms();
compute(8, x, timesteps, context, NULL, y, num_video_frames, {}, 0.f, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out);
LOG_DEBUG("unet test done in %dms", t1 - t0);
}
}
};
#endif // __UNET_HPP__