From 036199943eb4cffd7ba48ad1c2c434ef73567dc5 Mon Sep 17 00:00:00 2001 From: antarcticrainforest Date: Mon, 11 Sep 2023 22:31:02 +0200 Subject: [PATCH] Add freva futures --- talks/FrevaFutures/FuturesExample.ipynb | 1668 +++ talks/FrevaFutures/FuturesExample.md | 1305 ++ talks/FrevaFutures/index.slides.html | 16336 ++++++++++++++++++++++ talks/FrevaFutures/output_8_1.png | Bin 0 -> 70131 bytes 4 files changed, 19309 insertions(+) create mode 100644 talks/FrevaFutures/FuturesExample.ipynb create mode 100644 talks/FrevaFutures/FuturesExample.md create mode 100644 talks/FrevaFutures/index.slides.html create mode 100644 talks/FrevaFutures/output_8_1.png diff --git a/talks/FrevaFutures/FuturesExample.ipynb b/talks/FrevaFutures/FuturesExample.ipynb new file mode 100644 index 0000000..ad80f5e --- /dev/null +++ b/talks/FrevaFutures/FuturesExample.ipynb @@ -0,0 +1,1668 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b40ac9f0-a931-4b6c-af0f-4e3c6015043f", + "metadata": { + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "# Registering a dataset that will exist in the future" + ] + }, + { + "cell_type": "markdown", + "id": "d6f47b6c", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Here we use a freva plugin run that has been applied" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "0606ba9c-dc40-4cc7-bc24-b7ab7b5d1b73", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import freva\n", + "import xarray as xr\n", + "from freva._futures import Futures\n", + "hist_id = 3085 # We can get this ID using the freva.history command\n", + "_ = Futures.register_future_from_history_id(hist_id)" + ] + }, + { + "cell_type": "markdown", + "id": "fda38f35-b941-4bf4-a023-931be0171e00", + "metadata": { + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Let's search for the data" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "da20b295-f6f9-4196-99fd-3de69fc5249e", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['future:///scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5/cmip5/output1/mpi-m/mpi-esm-lr/historical/yr/atmos/1day/r1i1p1/tx90pETCCDI/tx90pETCCDI_1day_mpi-esm-lr_historical_r1i1p1_199007020000-199207011200']" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(freva.databrowser(variable=\"tx90petccdi\"))" + ] + }, + { + "cell_type": "markdown", + "id": "b0de5e6c-417f-4cf0-98e4-78ad308e2ae6", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## The data doesn't exist yet, but can be created on demand:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "5f74b885-023b-4b64-8dc7-115946b60443", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2286aa25721f441b8f22cbdcce4c6bab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (time: 3, bnds: 2, lon: 192, lat: 96)\n",
+       "Coordinates:\n",
+       "  * time         (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00\n",
+       "  * lon          (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1\n",
+       "  * lat          (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06\n",
+       "    height       float64 ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    time_bnds    (time, bnds) datetime64[ns] dask.array<chunksize=(3, 2), meta=np.ndarray>\n",
+       "    tx90pETCCDI  (time, lat, lon) float32 dask.array<chunksize=(3, 96, 192), meta=np.ndarray>\n",
+       "Attributes: (12/36)\n",
+       "    CDI:                      Climate Data Interface version 2.0.5 (https://m...\n",
+       "    Conventions:              CF-1.4\n",
+       "    source:                   MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...\n",
+       "    institution:              Max Planck Institute for Meteorology\n",
+       "    institute_id:             MPI-M\n",
+       "    experiment_id:            historical\n",
+       "    ...                       ...\n",
+       "    ETCCDI_software:          climdex.pcic\n",
+       "    ETCCDI_software_version:  1.1.11\n",
+       "    frequency:                yr\n",
+       "    creation_date:            2023-09-11T19:57:50Z\n",
+       "    title:                    ETCCDI indices computed on MPI-ESM-LR model out...\n",
+       "    CDO:                      Climate Data Operators version 2.0.5 (https://m...
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 3, bnds: 2, lon: 192, lat: 96)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00\n", + " * lon (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1\n", + " * lat (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06\n", + " height float64 ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " time_bnds (time, bnds) datetime64[ns] dask.array\n", + " tx90pETCCDI (time, lat, lon) float32 dask.array\n", + "Attributes: (12/36)\n", + " CDI: Climate Data Interface version 2.0.5 (https://m...\n", + " Conventions: CF-1.4\n", + " source: MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...\n", + " institution: Max Planck Institute for Meteorology\n", + " institute_id: MPI-M\n", + " experiment_id: historical\n", + " ... ...\n", + " ETCCDI_software: climdex.pcic\n", + " ETCCDI_software_version: 1.1.11\n", + " frequency: yr\n", + " creation_date: 2023-09-11T19:57:50Z\n", + " title: ETCCDI indices computed on MPI-ESM-LR model out...\n", + " CDO: Climate Data Operators version 2.0.5 (https://m..." + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dset = xr.open_mfdataset(\n", + " freva.databrowser(variable=\"tx90petccdi\", \n", + " execute_future=True\n", + " )\n", + ")\n", + "dset" + ] + }, + { + "cell_type": "markdown", + "id": "295e491b", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### The data has bee loaded, we can work with it (plot it)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "ce4cf720-b472-49b6-bce8-d0bc48898686", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9ebgdVZX9qjvfN+eFjBIgQBAExTRIZNBGiYRBBUVplFZkVGaMiqAygxFECASaACqCDQ6tgIg/sRFRpMUgEBwQETBAGDKQ5M3vjlW/P85ep+qc916SNyQkZK/vy1e5NZyzz1CVSu111gqiKIqgUCgUCoVCsQUg9UYHoFAoFAqFQrGxoC8+CoVCoVAothjoi49CoVAoFIotBvrio1AoFAqFYouBvvgoFAqFQqHYYqAvPgqFQqFQKLYY6IuPQqFQKBSKLQb64qNQKBQKhWKLgb74KBQKhUKh2GKgLz4KxRC48MILEQQBXn/99TEr8zOf+Qy22267EV/b1NQ0ZrG8GbHddtshCAIEQYDTTjttTMtua2vbYGUrFIqNB33xUSjeZOjr68OFF16I3/72t29YDN/5znewyy67oFAoYMaMGViwYMF6X1sul/HlL38ZU6dORbFYxKxZs3D//fev9/Xvec978P3vfx/HHHPMSEIfEjfddBO+//3vj2mZCoVi40NffBSKjYibb74ZzzzzzAato6+vDxdddNEb9uJz44034oQTTsCuu+6KBQsWYO+998YZZ5yByy+/fL2u/8xnPoOrrroKRx99NK655hqk02kccsghePjhh9fr+u233x7/+Z//iXe9612jacYAHHnkkfjP//zPMS1ToVBsfGTe6AAUii0J2Wz2jQ5hg6K/vx9f/epXceihh+InP/kJAODEE09EGIa45JJLcNJJJ2HcuHFDXv/oo4/ihz/8Ib75zW/ii1/8IgDg05/+NHbbbTecffbZ+MMf/rBR2qFQKN680C8+CsU60NHRgc985jNoa2tDa2srjj32WPT19Q0477//+7+xxx57oFgsor29HUcddRSWLl3qnDMYx2fVqlX41Kc+hZaWFrS1teGYY47Bn//8ZwRBgO9973sD6nnllVdw+OGHo6mpCRMmTMAXv/hF1Ot1AMALL7yACRMmAAAuuugiy0m58MILx6Qv1oUHH3wQq1atwimnnOLsP/XUU9Hb24tf/OIXa73+Jz/5CdLpNE466SS7r1Ao4Pjjj8cjjzwyoD/XF7/97W8RBAF+/OMf46KLLsJb3vIWNDc342Mf+xg6OztRLpdx1llnYeLEiWhqasKxxx6Lcrk8oroUCsWmDf3io1CsA0ceeSSmT5+OefPm4YknnsC3v/1tTJw40UndXHbZZTjvvPNw5JFH4oQTTsDKlSuxYMECvPe978XixYvR1tY2aNlhGOJDH/oQHn30UZx88snYeeed8bOf/WxIfkq9XsecOXMwa9YsXHnllfj1r3+Nb33rW9hhhx1w8sknY8KECbjhhhtw8skn4yMf+Qg++tGPAgDe8Y53DNm+MAyxevXq9eqL1tbWtX61Wrx4MQBgzz33dPbvscceSKVSWLx48VrTRYsXL8ZOO+2ElpYWZ/9ee+0FAHjyyScxbdq09Yp1MMybNw/FYhHnnHMOnnvuOSxYsADZbBapVApr1qzBhRdeiD/+8Y/43ve+h+nTp+P8888fcV0KhWITRaRQKAbFBRdcEAGIjjvuOGf/Rz7ykWj8+PH29wsvvBCl0+nosssuc87761//GmUyGWf/McccE2277bb2909/+tMIQDR//ny7r16vR+9///sjANEtt9ziXAsguvjii516Zs6cGe2xxx7298qVKyMA0QUXXLBe7VyyZEkEYL3+PPjgg2st69RTT43S6fSgxyZMmBAdddRRa71+1113jd7//vcP2P/UU09FAKKFCxeu9fptt902OuaYYwbsf/DBByMA0W677RZVKhW7/xOf+EQUBEF08MEHO+fvvffezjglASA69dRT1xqHQqHYdKFffBSKdeBzn/uc8/s973kP7rrrLnR1daGlpQV33nknwjDEkUce6Sx9nzx5MmbMmIEHH3wQX/nKVwYt+7777kM2m8WJJ55o96VSKZx66qn4zW9+s97xjGa10eTJk9d71dTuu+++1uP9/f3I5XKDHisUCujv71/n9fl8ftBreXw0+PSnP+18sZo1axZ+8IMf4LjjjnPOmzVrFq699lrUajVkMvqYVCjeTNA7WqFYB7bZZhvnN8m5a9asQUtLC5599llEUYQZM2YMev3aUkMvvvgipkyZgoaGBmf/jjvuOOj5hULBcniS8axZs2ad7RgKhUIBs2fPHvH1SRSLRVQqlUGPlUolFIvFdV4/GLemVCrZ46OBP5atra0AMCB91traijAM0dnZifHjx4+qToVCsWlBX3wUinUgnU4Puj+KIgCGIxMEAX75y18Oeu5Yig4OFctoUK/XsXLlyvU6t729fcgvOgAwZcoU1Ot1rFixAhMnTrT7K5UKVq1ahalTp661/ClTpuCVV14ZsP+1114DgHVevy4M1X/rGmOFQvHmgb74KBSjxA477IAoijB9+nTstNNOw7p22223xYMPPoi+vj7nq89zzz034niCIBjW+UuXLsX06dPX69wHH3wQ+++//5DH3/nOdwIAHnvsMRxyyCF2/2OPPYYwDO3xtV3/4IMP2jQisWjRIqd8hUKhGCl0ObtCMUp89KMfRTqdxkUXXTTgC0EURVi1atWQ186ZMwfVahU333yz3ReGIa6//voRx8MXqI6OjvU6nxyf9fmzLo7P+9//frS3t+OGG25w9t9www1oaGjAoYceave9/vrr+Mc//uFIA3zsYx9DvV7HTTfdZPeVy2XccsstmDVr1qhWdCkUCgWgX3wUilFjhx12wKWXXopzzz0XL7zwAg4//HA0NzdjyZIluOuuu3DSSSdZMT4fhx9+OPbaay984QtfwHPPPYedd94Z99xzj11ePtyvN4DhwbztbW/Dj370I+y0005ob2/Hbrvtht12223Q88ea43PJJZfg1FNPxcc//nHMmTMHv//97/Hf//3fuOyyy9De3m7Pve6663DRRRc5X5FmzZqFj3/84zj33HOxYsUK7Ljjjrj11lvxwgsv4Dvf+c6YxKhQKLZs6IuPQjEGOOecc7DTTjvh6quvxkUXXQTAEGYPPPBAfPjDHx7yunQ6jV/84hc488wzceuttyKVSuEjH/kILrjgAuy77752NdNw8e1vfxunn346Pv/5z6NSqeCCCy4Y8sVnrHHKKacgm83iW9/6Fu655x5MmzYNV199Nc4888z1uv62227Deeedh+9///tYs2YN3vGOd+Dee+/Fe9/73g0cuUKh2BIQRMreUyg2Odx99934yEc+gocffhj77rvvGx3OZoPtttsOe++9NxYsWIBisYjGxsYxK3v16tUIwxATJkzAqaeeiuuuu27MylYoFBsPyvFRKN5g+No09XodCxYsQEtLC/7t3/7tDYpq88UPf/hDTJgwAV/+8pfHtNztt99+gJSAQqHY/KCpLoXiDcbpp5+O/v5+7L333iiXy7jzzjvxhz/8AV//+tdHrVuzpeH222+3L5JjTYT+2c9+hmq1ukHKVigUGw+a6lIo3mDccccd+Na3voXnnnsOpVIJO+64I04++WScdtppb3RoCoVC8aaDvvgoFAqFQqHYYqAcH4VCoVAoFFsM9MVHoVAoFArFFgMlN3sIwxCvvvoqmpubRyQep1AoFIotA1EUobu7G1OnTkUqteG+I5RKpSHNf4eLXC43Yn2wNwv0xcfDq6++qis2FAqFQrHeWLp0KbbeeusNUnapVML0bZuwbEV9TMqbPHkylixZskW//OiLj4fm5mYAwNv/4zyk8mYpcbAO/nckX4b88yLvixGPJ/cPVXaUCuRc78BQH6GiIY6vz0eriHW61wyoG+t5nMVKeQFjW1s3Bus4x6/Lj3l9y1lLWesNr45gqOvXIwa/DwOvXZF3/oBiIvc8e9ogddtzvbL4e0DXcb9fFtsdDh7T+mDIOcE6w8GPD2jDEGM56Jh4nTRk3w+xH97WP39tdQZhJNu1xzBkLPZ891kz1O/kPj+Wdc1/xug/D/zrU7XBrx/smiHHbYi6hyzPw2DzYKgybHuGmFM+wrR7fOBYAPVKCX/98SX2340NgUqlgmUr6ljy+LZoaR7dV6Wu7hDT93gRlUpFX3wUMZjeSucKSOXMxNAXn8HLXFds+uIzSPmDPDydojfnF5+h5uAgGOrFRl98hohlU3zxGeJFYrBrNscXn2A9XnzsuRuBFtHSnBr1i4/CQF98FAqFQqHYxFGPQtRHKT5Tj0bxmfZNBH3xGQLpCpDiq77/v1AB/wcRpuV/c0N9hbDnD/yKw/+hhRwJ/m9iHV8yorR3uD74dQP+V5psw/p+PfL+l+pfP9T/vuvZIcpPxBWuawYOUSfby9gG9EfkHnfAryl+H6/rf/Le+K4rXTMo/GvW9b9vf055MYYcA2/+DPq/8HWlqNb1xcarm+X4KQFb/trmmjfPh/rfOPx2c9z9+Ry6MThj6/eJ38cYfL897s8lxjzUF89EOXac0oEb74DK3UuDIcbC9lfglSfBJE8PODmGun+99qakb9nH9suPfx2fe5l1nAcgxX+ph/qyM1T77NackKoN/owddN4M8SwYqu85f9f1BdefB6kIQHXwczcEQkQIh/15emAZCl3OrlAoFAqFYguCfvFRKBQKhWITR4hw0A/Ywy1DoS8+CoVCoVBs8qhHEeqjdJga7fVvFuiLz1AII5vzDr2cccztkR1DrNCweeiM+zuZZh2Ky8OyI6+O+EI5jzwaPybyUDzph2R9Q67i8vgTPtdlAIdjKA6UvwoiUfdQPJqhVsgMxSPyV6D4XJ+1rjjhz1HKYzAGW47fT4NxZry+4tJgxh95Y2J5Fx7XJcV+E65B5PEuknN3XavrON99eklQc6+PfE7EUOM+CPxzU74mm8+78OeHF5tfbjgIf2vACjHv3hhyhZgPf27xsiFWfSXLHDAXhprf/L2eJIQwJ8V6nLdkmYG3QtC/t/y5Yh9T5G7585pzr+YWNFifD8U99BHPe7cjeF09zxvCLd/Wl+hQn09l2z0EZ9OPjXPSnu5z+4S3lKoBUVVfJDZH6IuPQqFQKBSbOJTcPHbQFx+FQqFQKDZxhIhQ1xefMYGu6lIoFAqFQrHFQL/4DIFaMQUIf2aAAnPo5oqpNeFr8fh6GEOq1Q5yjc1tSw6f3I3Q5wv5uhc+H2mImAaLi2Wkqu7Wh+UjeHoetly3ewbovJidss/nIg3BF7I0DL/v1qFRUi+6v4G4j9i+dMmra4iFD5br4tUxgCPij/8gfR7vGBifc57XH7avfb4Nt16MGdoKYCBXbW36K06ducFjJAbMuSG4MEDch5b3RhVgzrUh+GWWr+LZJPi2CRn/XkvWvbb7b5CYhlIstuczdo8D45Tva/74fDdfl8Yb3wG6TbxHub/sHk/WPSCuoeCrLNvnlmjn2LknOmQyvvWc/1yM/27ved5rwouxfcZxYxF87nnPt6FUpAc8/8JELL62lb1XPJ6Qz/UT4u8AqwoWQ/5ZPiWxRahXNrxiM/FGpLoeeughfPOb38Tjjz+O1157DXfddRcOP/zwQc/93Oc+hxtvvBFXX301zjrrLLt/9erVOP300/Hzn/8cqVQKRxxxBK655ho0NTWNoiWjg37xUSgUCoViEwdXdY32z3DQ29uL3XffHddff/1az7vrrrvwxz/+EVOnTh1w7Oijj8ZTTz2F+++/H/feey8eeughnHTSScOKY6yhX3wUCoVCodjEEWJwIfrhljEcHHzwwTj44IPXes4rr7yC008/Hb/61a9w6KGHOseefvpp3HffffjTn/6EPffcEwCwYMECHHLIIbjyyisHfVHaGNAXnyFQLwARl1AO+JrpfjK1Uu/esl9+Kg6zrlVFMl0TDbW0lp/uJQ3jL3O213O/9ymYdhH+8cHqtu3wl9gOYelglwNLe9NDLAdnWiY1WDrK+6xu009eWWHebOt5d7+ftvDTMkN+Uh/kWp7DWNKynJXLWvnJnH1ql56n3N9DWXzUmG5LtMMfLz8tapd1Z93jft08Hg2Vdkw86WycnvUC4acw6955TAFwTAakgIb6PUg8fsqW+1O1wc9nKozpCT8F4qd6kunFtLdkfigzYc7nlHecddV5H3uSAdbCQNI5TAk58cA91++btE1ZMSXEJdmDL8Hmku04SAyATRMydWP7WFJY3r1nLXWYVk+5y8JDL0U8wD4iKZ1g5ReYPnKtJwbKdrjtZfuHer4NsLoZJJU9lB0I/H6x957bXl/mwk+zh+nAzoktFWEY4lOf+hS+9KUvYddddx1w/JFHHkFbW5t96QGA2bNnI5VKYdGiRfjIRz6yMcO12GxSXfV6Heeddx6mT5+OYrGIHXbYAZdccgmixEMqiiKcf/75mDJlCorFImbPno1nn332DYxaoVAoFIrRoy6rukb7BwC6urqcP+VyeUQxXX755chkMjjjjDMGPb5s2TJMnDjR2ZfJZNDe3o5ly5aNqM6xwGbz4nP55ZfjhhtuwHXXXYenn34al19+Oa644gosWLDAnnPFFVfg2muvxcKFC7Fo0SI0NjZizpw5KJVKaylZoVAoFIpNG/VobP4AwLRp09Da2mr/zJs3b9jxPP7447jmmmvwve99D4HPFN/Esdmkuv7whz/gsMMOsznE7bbbDj/4wQ/w6KOPAjBfe+bPn4+vfe1rOOywwwAAt912GyZNmoS7774bRx111BsWu0KhUCgUmwqWLl2KlpYW+zufz6/l7MHx+9//HitWrMA222xj99XrdXzhC1/A/Pnz8cILL2Dy5MlYsWKFc12tVsPq1asxefLkkTdglNhsXnz22Wcf3HTTTfjnP/+JnXbaCX/+85/x8MMP46qrrgIALFmyBMuWLcPs2bPtNa2trZg1axYeeeSRYb/4VBuBVMH83XIEPE7PAA6DXVpptmFu8Lfgwawb/GWvdr+3JNouLYZ7vr8s1l9KbXPlgyw1Hkpe3r/GX3IekX9CvgVnk1eePZ6o2+cPkTcyVO6efBufA+RzXdL9cl518POSIH+K5/p8Ap9f43NF4mW9ch75G14fJ2PxOSy+/YO/XNde63NYpC5yQ8gjSg0xhgBQzbv7fO5HmBV+hb+kOuUuRfYR1IW/UTbbTJ/ElvjQ6ksn2OXZ/tyyFgVuOwJ/ubPXX2nvS32S2+S30/adva95IHDq9G1j0hXhq4QuF4ZwuD0efJuHdNldKu5ztzinBiw1l21aYuZ1qUGsE/x4bJ9n3eOhN+csV9HnG3p1DOBODcac5UB5sgSsK23tIdyywzT5kW6s/n1R9+Z08hxbV8Y9x7fgwFCSH16XWgujxLjX1yLdMNYYS3JzS0uL8+IzEnzqU59y/r0FgDlz5uBTn/oUjj32WADA3nvvjY6ODjz++OPYY489AAC/+c1vEIYhZs2aNar6R4PN5sXnnHPOQVdXF3beeWek02nU63VcdtllOProowHA5gsnTZrkXDdp0qS15hLL5bKT3+zq6toA0SsUCoVCMXKECFBfp6HcussYDnp6evDcc8/Z30uWLMGTTz6J9vZ2bLPNNhg/frxzfjabxeTJk/HWt74VALDLLrvgoIMOwoknnoiFCxeiWq3itNNOw1FHHfWGregCNiOOz49//GPcfvvtuOOOO/DEE0/g1ltvxZVXXolbb711VOXOmzfPyXVOmzZtjCJWKBQKhWLzxWOPPYaZM2di5syZAIC5c+di5syZOP/889e7jNtvvx0777wzDjjgABxyyCHYb7/9cNNNN22okNcLm80Xny996Us455xzbMrq7W9/O1588UXMmzcPxxxzjM0XLl++HFOmTLHXLV++HO985zuHLPfcc8/F3Llz7e+uri59+VEoFArFJoUwMn9GW8ZwsP/++zsrp9eFF154YcC+9vZ23HHHHcOreANjs3nx6evrQyrlfqBKp9MIQ5O1nD59OiZPnowHHnjAvuh0dXVh0aJFOPnkk4csN5/PD0rsqudjufVag+z08uyBp2dB+PoevsVB8mtj6PFKIo9XMkAG39d3GWJOWs2NITR2gEE0gXwZeF8e3tdQoa4L67L5ejk+BB8j+XffsmAojpKvYxN4+fZMjxz3+h5e+U4cXlwDbDL8cfX4M5bD4rWFsJpCCR6A1cLxdJYG2JtQI8nTcRqgpSTXZT19HM5Zp27Wabk8rkR/VDCFBbIfZZHml62vmZMSuf5st9mSX2U5UQneDflU4RB8C8ZQHme29bzEKDGz0qAWOFvW4dtqJPlFuW732JBaQbXI229+1wrUlJE6K+aCTH/knMd7Lant4ls1xHw6j9Mi19TFDoF8ItpC2HvNFu1yXga11fDnt9TJ+5Tx29Ot/Y1wf7x/HWwsvg3HIFUH3r+wAbWDqIlEXhyfFVafx63b6hXxuM9xHETfzGp++dpH1BXzrh1gA+RznnxLn8QzaGNyfOpjkOoa7fVvFmw2Lz4f+tCHcNlll2GbbbbBrrvuisWLF+Oqq67CcccdBwAIggBnnXUWLr30UsyYMQPTp0/Heeedh6lTpw7pLaJQKBQKhWLLwmbz4rNgwQKcd955OOWUU7BixQpMnToVn/3sZ51c49lnn43e3l6cdNJJ6OjowH777Yf77rsPhULhDYxcoVAoFIrRQb/4jB02mxef5uZmzJ8/H/Pnzx/ynCAIcPHFF+Piiy/eeIEpFAqFQrGBEUYBwqE0JYZRhmIzevHZ2Kg3RAgbvTy15d24k8d61/h8FI+/YLkRCe6Dr2uSIhdCuA11+VhldT4GcAUYk7s/7f0eoAeDgfl1P+dtNTQ8PpHPK/C1gogB+jjJg5F3zLuWeXobN/vD5xV4HKa65101mD+aP07UEhnK2yj2HXJ/kyvhcwLYf7bOBHeIvma2XZZXIVvu9uZQQP4U/d/IfZDravQTox4S+yHRX3Y++vyQjAmQXJ6gL3Di97k96V6zI0teFeemx5VIaicxnmqzG6fPw6jnhBND3phoA1EraMBYeHwdjiW1hIC4r8m3GaC/ZWMY/Lidx0JW872qUhX3glwpnpS+p9YAv6ec6aQ6t+IPWC0O7gsW+wEKB8hqTg38B82/N9jQwHs2ZHvNX8grCqrsZLfMeoED6/J1Yn/A+HzGY30KsxgU/tzis7JWdH2zBnCZvHsrGWmm1y2T9wDnhB0CTzPJevKRR+TxLznuYY43QoBwtMI6w4B+8Rk7bDbL2RUKhUKhUChGC/3io1AoFArFJo46UqiP8lvFWhb5blHQFx+FQqFQKDZxRGPA8YmU4wNAX3yGRD0fISV6J+QXWK6GeBelS+JRRA4B+QaeJ1DK44r4OiJAIh/NKobwaEp7HlTkNNjzA2/LGOpsy8A6a8IrCDxPMp/zQ/gaMT43ZoDXF3PpicV1PlepXnS5HbauZu63JkVygNoxrvjGwDo9/6kEyB9Je55dvh6Rzfl7Hl7kuJBXFHNJ2Ei3nOS1drw4Fxj3EDo39GLi3Akb5XLpU44JuTNsN9toLpKy2JUVHvM6fQh9I6st5PliDfBL8vWfEmVGlj8m85E8mapoAvV695TUZbk9jFj2+zyrlKcX48RPjg89uayXk/ubPlpp6fNsT91pD3VueJ315Au834l91AKyejRpd76S02Iv4xzy+HOhlRxzeVqD+eH5HDWrO8Q5J1ydWDtHYuDzgLybDMeE95LLR/K1qRx4fCKfYmLvU0+/x/a1/K42uuUN8E9MPFMH6PL4vCDPD87q/Hh8I3j8S2pLWV5eLkI4gDCm2BygLz4KhUKhUGziUHLz2EFffBQKhUKh2MRRj1KoR6Pk+OgHKgC6qkuhUCgUCsUWBP3iMwTChjqCnEny2pfkqnlPtJ48ltsiefy0+zpteWTWL8rlLyQxpB5P2d1Prxqbl+Zh6n14nADyVwbLsdfIRaAWDHPevi/WEL5X5ASRA2Nj8blBHgfIXONyPGLChcvJoZ+UHYScJVqZOqScSrsr2kFuC/s8TBjtBWJ4NJRnE/s49PrDb0+lVaokN0DKs/wU6r8k7jJ/nCOX+mF5EtQc4W9yQNiH7PN6kcf5O3RiyiTIjFbHxPP5spwkj5tGf62YT+P5LQlvpe5pT/l+SknYuUPTKZ8HZX2zBt8/wGcNjNHliCV5aZbrEnDchf/kcZeIWpH3uegbedwg63klej2hcF5C8dmqFeL/T1qNGOEF2Xsl6w78AN2pIXhz4RDeUL7GVPLvMd9N7gXv/h7oWRV4WzmfHJ+Ux0cK6UeW5DZ57fF4g+TFDdCxGmp8h/DFC8lxS1Tta4OFHq8szHvPHl7nPa8tr9DPDpFPlYsQrs0McYwRIkA4ym8Vykky0BcfhUKhUCg2cSjHZ+ygqS6FQqFQKBRbDPSLzxAIUgDy/KYpO+VbKLUQIkmz2GWOgbf8nWXxN1MfidfNlJcesWkl39LBXwbKz7ccQX6OZlqC6Tgub867S7eTx6IhlqMyfcLjXL7N1Ie/zJnNYhbDfjpnrMmlttInvl1E4DU0SpmLag3SIVXq47tpurAgKZ602abKrFxiLsXlsm8KK932+P3hS9n7y7VZNs/j4ap8fh8gNYBEWoXNKHhlw42l5qU6BqQMvCW5yXYCrnVDul/2MX3KlBVtLtheX6ZgHf89slL/tFfhXE6kkOJl6+41tgyOI1N4XsrXt3bh0uM4XemmsZIpHz9dxHPt8u7QTWVR+oHztdqcdo7HUzTtnF9tNBVUmgZ2mJ1bXmrHb49d7p5zz/MlBgakgmSuJe9hpn8ogRHxPvVS9NZixU9Z2TGT/si5+4l4jOIDXALvS0IMsFThvB8qteX1l02jht42MZ/8ZyJTW/UGeUbk3Oc6KQ2B6DwEfI6zPN6Evj1FbeN+NxgbcrOmugB98VEoFAqFYpOH4fiMLlU12uvfLNAXH4VCoVAoNnGEY2BZoeRmA+X4KBQKhUKh2GKgX3zWBj+fnvJsFbjc0VpaePwUb3l7rXHot21yM7glj2CoJdf+knOfjxFR4t9rA60NgMQSWC5f7nfPTfKBgAQfx7Ok4LLgyIuVdgJccp3kfJDrYZfr+/F7nJdMn2sHQP5Fndwf2oj0mgPkIw2QzEfMLyhNMNv8Gh5wj1vbCJ+XQ9sAbzhpE0H+0oAluoj73186b/vcs4OILSvc80tbmQvYLw2vmf1sdzy2iSCt3D+5aa6dQqXFHC+PY3vkfJkX6YIrx5DtNeXkyGUSC4xqk1SXXNbu8b5su62Fg1zDJ5K3PJu8LGth4ck7VCy3ReZHguvCZfmcj4yh1iDxUgqAlipDZAMG8FJ4us/9SP4md81bWm55UL6sQegeZ7+w/dYuxvsv62B2ESyDdCc+jqw1A/uU969nG2Fj8Jbe25hqjGlgn/ucJLukfh0cH2vJwntsKBmDtbQ/5qrJPBf+HxpM4Rnh9OTypoEpeXaE8vyuCaenLvIlgfAGo7o78EEuRFD3B3/DQTk+Ywd98VEoFAqFYhNHiJTq+IwRNNWlUCgUCoVii4F+8VEoFAqFYhNHPQpQ93VNRlCGQl98hkRUD2LujmjHBGX3A1kkOeGoYJLlgeSUQ7kuoI4Ey6E+RHXghzZKQtQaRYeG+WVqwLAIEeewXABK+0u+3nJEWDd/epwgIOY82LKsfgnrGFza3WoMedojBDkBVt9mEP0iW6QnxT/AooBVhM7piDw7iezrGee35R/5+khI8AhoscAYqFvkcSDIOyHnKbJjRXsNsTAok9vj2WcMYlFi9ZtkDHw9o2qz2ea6uHXl8/OrRYumJNwm4e3wN60/qMECAGEu5bVPrukXntAK0TMh54PtLPICKSftcjp8TRp/DMzJUhY5ZixLyqAWVqrm8qMIlhnwete5JD4+COUirsMr09fKYllsv2+34HG2fK0sn4+XjDPg/LZ8GvnN8R9kngJAxrv/ybcawDNi+5P36hD2H377rE6VryHk/evg97HPx3N4dEPEF2sDSXt63PN8rhJ5V4HHv+PWxjKIlUfk6fnw+ZzOmmDqddFdKgunp+QV4k8Abvn8rqSA/iE8RDYA6mOwqquuqS4AmupSKBQKhUKxBUG/+CgUCoVCsYkjjFIIR7mqK9RVXQD0xUehUCgUik0emuoaO+iLzxDIrcog6DeJZHq9kLthX7qzwonwvV+YOydPh3Ot7nIlzD7Z+j5fNj/v8kSoKePrfZAjQo4PuSPMfZMDkpz3dp+A3kWx9gi9jFiXcICy1PtwuUCVlrRzHmOgzkcS1h/MS5HXGuX4EPd3yve/Ctz+sfsjtsmtz6mTvBOpkxweRuvzJsgrYJmWy5RxvYDS/SZ4yyVK3GVWW0V4FJajQM6C1EmPLY5rrei2M111+Vc8Xmley4PRe+alLMdHttTl6TKVVJsyEqsps16g7o3wcDiGnn+S1YNKwHrGMRRysCrc4XqvEWHW087y9FysLs5g/Bqv6CB0+9D6P2U5wNKujLt/qLJD6w8m5Q9ynq/T43PXLL+GHZNyz7N3DuezxzMLvX5JJTzKfPDZYGPxuD2+xlDs4eWW43O54GkUAQOfUxy/who4CD3dJhujx93yOT3WA4zP5qRXF5/HDSQ2uh5ctYoJJqLeVlV+s100OSPfLOc9m+3zPIgN0RSbFfTFR6FQKBSKTRwhRr8qa+PJLW7a0BcfhUKhUCg2cYyNgKGuZwL0xUehUCgUik0eY2NZoS8+gL74DIlMb5wvr8rnRfIwrPeL5JJTGXq5CPelItwefle0AhlmQw4IkOCRMN+cpv6K+0mTZWV7JT7hgMQ6PuQfufwLy7epub/dfRJ/2s1h23x6zfV2yvSHsvU4Qn1uOTy/Ijn0apLrI/ocPk/E5+gQtaJ7Xuz1EznH6XVG/y2fMwAAWesx5Nbha6T42iHWy8nzMqPHUd3TFuJ16QTnhT5WVrcncn9brRnPy4rjzthKjUHysK2z7vVPkp/Bsunnlba6QyxbOD1F6v0Ip6eR/CGp0xubmFfmzkFHN4cclT43PnoyUa+Ic9JygvKuZhD90OJ5I3Mu63rcJWPkvRWUWabHZRvAu3GPc875+kQRPZzEoyyg3leiPN9bz3KVPE6P5fp488HnF/mcuJTHpXHg86EYt+cfZk/zdLksh8fzDbTnRe422ecp7x6gr5sNjfy6ojsHMUR/2fuD84acR88XDwBq8oP6XOT6hFVOGi9dRH4l+1bGP+Iz2Ht+s85UOUBQVo7P5gh98VEoFAqFYhNHiMAS6kdThkJffBQKhUKh2OShqa6xw2bVC6+88gr+8z//E+PHj0exWMTb3/52PPbYY/Z4FEU4//zzMWXKFBSLRcyePRvPPvvsGxixQqFQKBSKTQmbzRefNWvWYN9998X73vc+/PKXv8SECRPw7LPPYty4cfacK664Atdeey1uvfVWTJ8+Heeddx7mzJmDv//97ygUCmspfSDKW0VICZ/A6kLwK2HKzVeHFS93zMPMlZMDIJoPmZ74c6PVZbH6HB63x9OQsboXlvthYquJxor126LGCHPtlhsQl0/9HdZpdXtYp3BX+Hbsczji3L7LiSDnhecxRvJvgJg3Qm0Yco9ifoyrEUR/KPJsyOmxvCRBcSWctoS5gbwUyzvoFu8e6rpQvoN6NeKXFXrcCGrPkK+S7zAHqFdkuS0etwKINaHSnBOUGinD+R16Gis1cqI8TkhoNWfMlvNoMI4INWB8HhXHORS+VLlVOBJenxMDuC4SI8cy9DhSAJDxNGTSnW6ZHM8Bvm9DPaHkvEyPbwpFranErpp7LCZGeXUMOB45McdkGPd+trEWBxJt7Dnk93m8Ksub8bhJtk/pA0adKl8zx+PXJPvc6vOkB7/GzkvLK3Kfa1kvNs4T/1+N2Dcwvp51pa1Okxs/uWjxHHSvs2WS21Nwt2xv2vK24ngyvdLH4r0V9ooOVbtLmAqyrsdiWriadeqvkXcoXK66GCqSK1TvzmxUJeSxETDcrL51bDBsNi8+l19+OaZNm4ZbbrnF7ps+fbr9exRFmD9/Pr72ta/hsMMOAwDcdtttmDRpEu6++24cddRRGz1mhUKhUCjGAmEUIBytjo+6swPYjFJd99xzD/bcc098/OMfx8SJEzFz5kzcfPPN9viSJUuwbNkyzJ492+5rbW3FrFmz8Mgjj7wRISsUCoVCodjEsNm8+PzrX//CDTfcgBkzZuBXv/oVTj75ZJxxxhm49dZbAQDLli0DAEyaNMm5btKkSfbYYCiXy+jq6nL+KBQKhUKxKSGUVNdo/qiAocFmk+oKwxB77rknvv71rwMAZs6cib/97W9YuHAhjjnmmBGXO2/ePFx00UUD9qen9iJFvR7J+UY2aW42uYaqsz8Sjg89YSri9YWSeDeVqYMT15PvkCpEU8ZyUZgTl9w+r2FOO1Py+DnMladdHZ+6EBMyZXJlEo3Mu3wDq3kDLxbv66jlmYhPVtp6c4VODFn5bbWFMnFB5JvUhYOT6zb59lRZNDdyabeutKuRQu5OqU00gpoklrLrL2a5A4l2W20VaokUggHnmLKkDBkbjoHvVcRpkeuQ863GkPxOlEtuDzkt1TaZK21SRqe0w/O7ouaQ1cyReUH9m2AQvyQTc8xB8NvN+KivRE2VWH9K6vJ838g3sho0Q/BTkrGQy8JxJ8j/4smWy0HtHM9ijvpWkZTnc0jo3ZbpievwOS7kWcWkLZfbFuv0uDwsC8v1chtOfS5nrnk6O77HHry55HOzBmjvwL0uZXXAMAApT9trAKeJZVh9HpdX53OCLIfHm/c2hiTFydP84ZY+b/494vePbabnH5Zif/B6T2onWWa9UZ5H1GUqy/jIb3I4J7Z3AwAyadMQPs+rdVNQuWa2NfldF8/FbFsf6n1lbCyMjTu7vvgAm9EXnylTpuBtb3ubs2+XXXbBSy+9BACYPHkyAGD58uXOOcuXL7fHBsO5556Lzs5O+2fp0qVjHLlCoVAoFIpNBZvNi8++++6LZ555xtn3z3/+E9tuuy0AQ3SePHkyHnjgAXu8q6sLixYtwt577z1kufl8Hi0tLc4fhUKhUCg2JdQRjMkfxWaU6vr85z+PffbZB1//+tdx5JFH4tFHH8VNN92Em266CQAQBAHOOussXHrppZgxY4Zdzj516lQcfvjhw65vQksP+uS7ai1r3g+rVdNdNVm+Xukz31tTlDinLH/OfDLNN5rv1hX5lB6VzZpLpncAoGea2TIdQjsBpsByXeba4mpTZqbHfENOl8y2XhSbgbx8lpXUj//pmOmMVOKTONNCA5bf22vFqkKWlqeYsuKq1n5+SpZUnqzZTZdd6wouLU+X48p5DZf71sQmIWwx7cl216Q/2E75zCxjkZa6i0yz1c115RZJs/VFzja5LJrLcv3UlgVTmd1u+618vqSh/BSQD6ob1JvjfdVmKVM+w6fbzKdy2p1UI5Pr8a1H/DGy1hVbma21MJEv7/lBqGrsC1qUhNKXTHXYlNwQlgUcx5Skfmm/YdMO8M5Ppi2YZpFz474LBj1u06w157BNs9jYPLkHP7WUvNhatHg2B7TFsAg5p9zdNi3DcqQNTF/a85L/nWTdlK3od8/xLSdsGtKTThgwJkMtTXfide/XoVLXft8xJU2JCStPYVNbbjrZXzafrItp5Dgmr07PFsbKNsj9apezS2q40iL3c4NcWGDeLVEHKQdVl2Jg02F5eXY0mMK7S+a5HHpWFqmU+1yXLCraGs0gNubKqKXKeBobB5rqGjtsNi8+73rXu3DXXXfh3HPPxcUXX4zp06dj/vz5OProo+05Z599Nnp7e3HSSSeho6MD++23H+67775ha/goFAqFQrEpoQ6M+ovNIFSwLRKb1evfBz/4Qfz1r39FqVTC008/jRNPPNE5HgQBLr74YixbtgylUgm//vWvsdNOO71B0SoUCoVCsfnioYcewoc+9CFMnToVQRDg7rvvtseq1Sq+/OUv4+1vfzsaGxsxdepUfPrTn8arr77qlLF69WocffTRaGlpQVtbG44//nj09PTgjcRm9eKjUCgUCsWWCKa6RvtnOOjt7cXuu++O66+/fsCxvr4+PPHEEzjvvPPwxBNP4M4778QzzzyDD3/4w855Rx99NJ566incf//9uPfee/HQQw/hpJNOGlVfjBabTaprYyObqqOlaNbeMgdcLpk1tlGXcHvKJAmYTYbL1XvNb+bzG+U3v1JauXYkrAaEm1HoMAnlhtcqUpbZBsKPCWomER90G1JHWvgIaDRJ8PQkQyipNZuC7RJe8jk8WXpzjvBsCu6yZt8+g5L2sa2C8Gl6zY56gQl8rn+V8vJc9h7fdDa3L5dYPgFtE9rN1OyblJVrXT5SYJfQurYC5C1ZKwfyNwb7Qlx35QkYA+0y2Hdcgl1tNNsK+e9eV0aefQTbFibGu7BS+myJOZiSdeoV4cvUpI6qcBlya9wl1aUJEmObcL3WmEpTYpthl3cLaMeRjCtKydJxjkvZHVc7Tz1uUyDjmZMl6JkSeWOu1QX7KWmX4S+3Zt/2jx98fPzl3vY6v0+HklxIPtm81evwlvNH5HJYWxjhpJXY99JPJbctgbfk3HJ+Ekv2k2MPDOS2EP5va6NCCwdPrsDe155cQ7KffbsPf9l54P92lQXi+8DjmYWB29msJ2kLE7juEAPOsXIF5CDKPVUr8mbkhVI17y3aguRl6bmMTao3JhilQkpCyNL5HMdXyhbZgb5u81wPZPxDWbbOZe/ImrpSUhctLfpl2XtjbuMtZQfeGJPSgw8+GAcffPCgx1pbW3H//fc7+6677jrstddeeOmll7DNNtvg6aefxn333Yc//elP2HPPPQEACxYswCGHHIIrr7wSU6dOHVlDRgn94qNQKBQKxRYEX7S3XB6bl7jOzk4EQYC2tjYAwCOPPIK2tjb70gMAs2fPRiqVwqJFi8akzpFAX3wUCoVCodjEESFAOMo/kXwanTZtGlpbW+2fefPmjTq+UqmEL3/5y/jEJz5hZWGWLVuGiRMnOudlMhm0t7ev1VFhQ0NTXQqFQqFQbOIYy1TX0qVLHc26fD4/1CXrhWq1iiOPPBJRFOGGG24YVVkbA/riMwQq9QxqVZOQz1kpc3MsVRHJ8m7hPHSY/flO0Y7pNVvq3GT6RLOl5CW+EfNorBy8IKiJhQOvqQrHp0+IQ71mG5HzUzEEg5xclx5nSCPVNslj11zeDZDgcFi+gG9ZEDn7Q8v1kMNpys+TryLl0gpjEOsCgnwh8kuqTWm3Do+7wRjStOqwmjMuT4UxWf0QcoISHApfsn8A38LTVmGs1i5B2kMbCfJy6t6zgzHmOuN91GkqrBEOj1h11Aou7ybmW0kMwhtJC48sXCFzs4v73bGy/KS+uHGZPpI6XO2kesEnyMjW4/rw+zD7g/O72ijleLybMDHugTcXyHWx1/gcLJ/LxZg87ou9LnLPqw9iUZJK8J2SvwNazlAzxrPL4F/Ytyny0wpuObTboL4RkOBccS4xftoq+Bo7jD/rxhrK3GLdLI9jYu+95HVWp0i2spuaT4HHTfKtTKzOkfQHOULW4sKfNonxjry5YMfdcvrkt5xHPmSm1+V8sS9TwpOs93Ng0855SW6Ttd7hMdEKS8mzoS5WFWGv8CDzLgHNtwehLlA6bTqoXDHXlfJZ1Grew2MzwViK9fKl58UXX8RvfvMbp9zJkydjxYoVzvm1Wg2rV69eq6PChoamuhQKhUKh2MQRRsGY/BlL8KXn2Wefxa9//WuMHz/eOb733nujo6MDjz/+uN33m9/8BmEYYtasWWMay3CgX3wUCoVCodjEQYf10ZYxHPT09OC5556zv5csWYInn3wS7e3tmDJlCj72sY/hiSeewL333ot6vW55O+3t7cjlcthll11w0EEH4cQTT8TChQtRrVZx2mmn4aijjnrDVnQB+uKjUCgUCoViEDz22GN43/veZ3/PnTsXAHDMMcfgwgsvxD333AMAeOc73+lc9+CDD2L//fcHANx+++047bTTcMABByCVSuGII47Atddeu1HiHwr64jMEXnthK6SKkrRnjlhSwdku87vwuvldXOXyNegjle0yyeZUH7V4BuH45MRbi7nikiSoSaTpFy5P1STFI+rWVFzBliAjQykcoHRGyhWeTmmCIYuQSwLEGjjckn8Q0E9IimSO39cQiXP6gXsePa3oxyRnkSORBH3LqB1EPoLlRtD/TLg9YZOrV2M1WIS7RD5KzFOSCEnQAmLCiecxFMl+n+NDzhaJGOWWVPInAvowsU4pNyf9SD4PEPcxuQ4l8Vbj3GIf2q30B3lJGWpDLZG5Jr5o6YpojojeE3lXtcaY7BLm6V0k54r+TlQlV8uNn1yOdMrln4XkSshYlNvEZ0y4ToPyL6mzJFylOueWcJgij/vBMng+2235WR63xx/LTEJLJ/agkjp4i9FPakAMnpdXwdWYIqfLauswptCbe4kyfP4M44u888jRsfwjOZ7ydXzYFq/cVJLLxmvlXiGfxo6zxydie1I+583jH1kOTDj48eSxAc8M1pn3yuCW9x7ve3J7fD4V74tBdJH89tr4PP0iS3pig4S7GfCCsvAOhYhFa8NQ9r/yehFhf2KibWCMRapquNfvv//+iKJoyONrO0a0t7fjjjvuGFa9Gxr64qNQKBQKxSaOECmEo0x1jfb6Nwv0xUehUCgUik0c9ShAfZRffEZ7/ZsF+vqnUCgUCoVii4F+8RkChVfTCJqFJ+Plq3NrzJZ6GOmSmxS3+fqi6EQI3ybdY8gFQW+cFw66hXAg3J766g4pxJQZ5Eyi2nJ4eF026+7PZd0teSzCHcr2VCWm+F3XaghVpS7f06juchasHkrN5dX42jvkhvj+PNZvCwkNoYx7LlHzNHHoG2T1SqwHUuBeT66HbLN9rgYLMNCjyPIEarzG7Q+WaT3HKq6nV0aGMGV5R27s1ca47swq4deAPmZmf2m868mV6xbeVUXq6Hd1jzjnMn0m6Ei82PonmgK7thOOT0McBzlphY7QKTMQrk+W7Uq7fcp2VZs8LzfPw8l6WXnaLeYaKaNZyvS8uPz/iLIsn9NhuU/k5ZALJGNATkjK8ywDgEj6lvywMOufMMRv4e7QJ4pcn5igEzh1pipxY2y7OM/lp2X7Be6W/COrFUT+GcfC8zyDvSflvESfp8gvIq/Mu3dSvkaSoO5xvXw/QfscYHvL7vlAPKcsN0vKoD6V/4zg/Ah8jhP1fyTmSqvwrBo46URjq5zkLnpcPa/PqIUViNhT1Cc6VI0yvnkps9fsT/fw4WK2WfEACyKgXtp4/4S+ERyfNyv0xUehUCgUik0c0Qjc1QcrQ6GpLoVCoVAoFFsQ9IuPQqFQKBSbOOoIUB/g7TL8MhT64jMkak1ASvQ7mLMn7yCynBbhSHieT+RbWJkI649liAqZcsI0qMeQEsIOY+gU1cyxVC4HB2nhG2WZ7JePdUVJjueFT5RyP+JFedGJER5P4fWY/FBup9CF661lq7QaMYN7epHkEAQuJ8RqdqSTZ7kIPZ0ay0XxNEEsH0N207vH5wRZzyrybKRu8lEG0xghyJuhXk+uRzg+lsskJ7aKroe0n+dbfyyPr8G2Jfkm1C0irH6R9Eeu22zJvynKeFFjiLyibK8hMGQ6KLrEWIxPTnGlaPYk+A351eLrRj2SHPlDoVN2YNvhcryyPfRVk+ulofkO1g2n/GRbreaNjIs9t+5ufQ4LuSGRx3Uh2Lfkn8QHEn8ln0T2VVq8mDzfL1sXY83JPK+6c8nX6Ak8LyvnmM/FSXiJJdth4c1/v598HSP7TErMbZ9rZTl4HsfN1yPifl9rh3N0wD3W4MWGWKeIvLC6P47es8bnAlG3x3K75Flcb5FK8hJUn9yT+bjhlTbR46G+VoX3DvlA8jyXOcP7ICpJR8k4c7wjb65afaAw5o1tDITR6Dk64bpld7YIaKpLoVAoFArFFgP94qNQKBQKxSaOcAzIzaO9/s0CffFRKBQKhWITR4jAppdHU4ZCX3yGRJSOENRdbg+3hdWiUSH+UdS1SZdMwpecHusfladIh5STjRP81ONJtRriQSDeL6Ho+kRV0f6pCj9DdHpSTWIYlDaFhg0uXycsuCIlQZ0aJAM1RsgzsVwlq/fheVp5XAjq2vh8Bavv43F+kropVkOH+XOpk9pIlqvg8y48Dy9fa8dqz3g6IUmOT8rT9yAfgb/ZrpTUme01B7I94knVJH0u3J5ctwk21+Um/PsnZJxygZg/FHNyTCXU+unfSmLqpzaM6P5UTCHVFjPOHMcoI1yeLkOSKD5nxHoyfW0AgEpb3OnWk43zNDDxVUWvKky7D8WYnyLzvUJPN5fzRVgPJ3pgFeLy8p1w4i63uHOEPJHIGy877p5ej43R574IkjwbxkUeCe9jqy1juWtyXi8Ll/P7Xa5HzNlzY2UMToweV8fqT3naVz4XiO2lno3VtQldXpnlm3gcKic8ti/tnuvfO4yVfZfy+taW7fGV/HvVtNN9prBPqOXFZ6KdMz5Xxj6bZCv3RzkwQdTFVwtZqbw2CJ+M45t1Hxb2uZRxPdhiYzTZNst9Qj2zCjWI4t9hZuORZlS5eeyg370UCoVCoVBsMdAvPgqFQqFQbOJQjs/YQV98hkBQD6xsfFY+fWd7zDbfKZL/sgw608M1qpL64qf+BtO9EZd/8xN4csl5wazXjNpkjbCkqtJdptKo21RaXyO5Ai4lrZhv34GUFWW5rNPUGUoKhEvu67LcvdISfwtnKsJ+Xmd4Ns9gNlzmzE/ETIlwqam/rJd2C/zkzDROcgm6TRt46RFbR2LJaLIOa3EhzbDL3eU3+77upQCSqQ8uXy+uMgcz/WYbVPkNn+2Tz+o5U3lN7D4qkuqKl5ybscj/4zUTY7/kVGbtCADomRqnm9r+YcY19boZz8yMSdJeE3B6pSmzealpWOZ1c37A8a6anFDfNDNfmDpKM7Up7a82ydxLfNlOVSnPIDYmUU36Q1J3HOe8/E5zftDKwpST7ndTuki7aQsrdxDElTNl4WsbMH3CdKM/bv7csikvb/mzb68Q9MR15ER2gPcrY+D8ZztytGTw5iLrrnGJtbSFzwOmcTjvkyk+206mrvio8KQP/NSWXXouv5lW96U0WIBNmVXiDo4lENyybF02NRc57fTtL2g/wfSUPxb+cwIA0jX3GRCnvFyaAFPcTIFlu8yOWiNTwKaSvoluejkcHyWrtjYVyZ2sm1YU9uEg6alMo0hFyGCkM3JfZMyFoZRZrYr9S9lMCKbZ0lFm4y5nxxhYVijHB4CmuhQKhUKhUGxB0C8+CoVCoVBs4ojGYFVXpF98AOiLj0KhUCgUmzzUnX3soC8+Q6DWXI+XvXpLRO3yTeE+1BrMCWnhTgRl4Y70mXx1KBwRLimvteTjwuTv1VZZpizJx/zrYm+xwgxRWq7l8vWg2XA8auPNtjLOXF9tdIMlJ6baILnx5JJlm8M3W3JWfFsFe6/YXL6UKSvqycfhMmC7fF9gJe4Ts63C5cvesl7LBSF9pOTth3t+Wcqxy37JGRDeRYq8jYSUv89hqGe5NJYdYjal8eRLSfukf7h8neeRG1Tf2qxFT3WZoLPC/cqU4oYHfdIZNeEV1V1bDHIYuL86Uca5KHyjgjmxd7L5ne0zvxuWC+9I5hwlFshfMn0h87LDaAaEwvtKCx+s3iC2J2JVUi+kndjIfeI8j6ylhXCALBcq416XgM91IQbYnbBvPdkDuySddgOkNnm2AvmumOvC8UqXRBqgZrblVnNRabxpZ3mc1CHz2C739pak+zYS6ZLLgUr+2xJ5S8j9JeGc36m6yw/ifCb3hcfJR4m5Ty6XhueZOFxCFecW5wb7lrwbWtSQq5O2nCh5LnAOZt1xJ/eN88IpWzhHOeHuWB6dgFY6Vp4hRRsVc5wcH8pccIwisRHJjaePUFxmpU8eSH3eg1uWvqdywlGTvmwomgGd2Gz8YjJC7swJCWpN2Tx8ylUzX7r6DdmrnMsh7Pe9RhSbA/TFR6FQKBSKTRy6qmvssNn2wje+8Q0EQYCzzjrL7iuVSjj11FMxfvx4NDU14YgjjsDy5cvfuCAVCoVCoRgDMNU12j+KzfTF509/+hNuvPFGvOMd73D2f/7zn8fPf/5z/M///A9+97vf4dVXX8VHP/rRNyhKhUKhUCgUmxo2u1RXT08Pjj76aNx888249NJL7f7Ozk585zvfwR133IH3v//9AIBbbrkFu+yyC/74xz/i3e9+97DqSbVUUM2bXG621+SKqYNCrgARSc67mjPdmWGeuodaO5K/Fg5JrRDnnqsNwq/Iu/n3dEmsKYTEkiLHJyv8iaLJY9eaXH2evgksT9rh8VlC18nCFCl6JOQAkIdQp/4HtThCd38odVgZfk+TJyc8C3JBUol0OHP2vKYuGimRp53ixx0WXP2PVNX9H4zVCvJ4SdRiMmWTmyWFF906OQZsF8eG2iOF14WvQB5Oqwlu5fZF2W94OY3LTYENy6u27kjmSH3aBABA13RTSaXZHC+sMtuKlEk7Ef8/aoyluMLEkl8m+kBlU1e20/AVonLsnxA0CCGqyWyr7SZecnOs3hRh9VtSTr9YnRSQK8IxIa9IeBtJvSorWGM2VZGtsuMqW/Jn2B9W58fyx9zzsr0u74pzNdlfjC/bLeNACw65H7M9aScGf77bcrz9dg561g203wAS9wYYL+MX7k7V5dvkO0Lnd+RpJCFNTpjLw7GcqShBdvGQsVwkc222py5lkNOV8mJydZ9odULweL048J8ROxf6TJ+n+qvSDto9kIxHOx/R6SnI/ZEyg5HrlBilv7L95rzS62bMerZtlNjjdmfkHPLAOIcqE6RdRVN3c5PhB7UVDKGoLW9+56Qza0LaasyayZaSB1t7g3l4vZppRT3reahsQKhX19hhs/vic+qpp+LQQw/F7Nmznf2PP/44qtWqs3/nnXfGNttsg0ceeWRjh6lQKBQKxZhBU11jh83qi88Pf/hDPPHEE/jTn/404NiyZcuQy+XQ1tbm7J80aRKWLVs2ZJnlchnlxP+Ku7q6xixehUKhUCjGArqcfeywXi8+//Zv/zasQoMgwD333IO3vOUtIwpqMCxduhRnnnkm7r//fhQKhTErd968ebjooovGrDyFQqFQKBSbLtbrxefJJ5/EF77wBTQ1Na3z3CiK8I1vfMP5ijIWePzxx7FixQrnJaxer+Ohhx7Cddddh1/96leoVCro6OhwvvosX74ckydPHrLcc889F3PnzrW/u7q6MG3aNMNFaDD5ZfJnMn3i6SOcgFynq01BfyxqU4Ti9cT91aa0lBdnGK1+CXkw8rvSIhoyaUMYyDSJl1NJ6hQtEnraVJrpt2SuJ8/AehcNkvonb4KaIeRPMAHK3Lh/acrnPnj6PjXR98l1e9fFVBfkmX+Xuqo1twzyLBhTmCe3QfL09CES352AXl3C+anlyZUihyCumzpF3LLObB85EB5PyvpGCZerWcZV+Ank4ZBTYH2IhCND7ysg5tWU27NOmYXVUlfN1YSxmkGhOwqZXtNhueXSybYDSWrKSAwJXobUFTaKPxw91wquD5KNu8H18LLcqAINtdgvjF1C4DxIeFZZHgznCueWbC3PzB9/PqE8fR9ywuycCjim8jMxRyPqDAmnh/cQNY4al1OHRjRjSh6XyXp1Bc7Wcp4ITrXEPCcvaAC3zppMBYMet/5Zddf/L93l+qTF9x75eck+d3W5LHdHyvSv9TlNnN+h6PeQC5SqmhhSwvlJC4+HfoGmTHkWim5V0N0vdVLgRzSiGsxcDIX7Rg00lpRZY3g3tVZzXrpZ7hu54YMlck82xe2O/b8kFplD2W7zl/I4s+1sMJOoI9UKAHghww7hJPO8yUQ7CA2x4VrYv/HYIvrFZ+yw3qmuL33pS5g4ceJ6nfutb31rxAENhQMOOAB//etfnX3HHnssdt55Z3z5y1/GtGnTkM1m8cADD+CII44AADzzzDN46aWXsPfeew9Zbj6fRz6fH/K4QqFQKBRvNPTFZ+ywXi8+S5YswYQJE9a70L///e+YOnXqiIMaDM3Nzdhtt92cfY2NjRg/frzdf/zxx2Pu3Llob29HS0sLTj/9dOy9997DXtGlUCgUCoXizYn1evHZdttth1XotGnTRhTMaHH11VcjlUrhiCOOQLlcxpw5c/Bf//Vfb0gsCoVCoVCMFSKMfjn60GIHWxZGtKqro6MDjz76KFasWIEwdBPDn/70p8cksPXBb3/7W+d3oVDA9ddfj+uvv370hb9eAITbU2s2eedSRbg+vdT/EH2XLpNMZl66Ti0K8fCqNJnz+yYJ1yeh81FtMVtyVcgjynbTF8lck+sSzy7JW9ckO9c/kTwTKcfTDak3MEEt/KQ1iVw4uSsyC8irqPj8INHcCajTU3OvrwunJ/A4EfQHo29S0vOM59apR1J191tPI69Ocn3CduEOyAX1Xpo2mU262xRAP7GkhhB1eazmD2k0Wer1mN/UiPG1kKw3keg58bzCGuEhpV1OTJDggsR8GvM710PfKzh15YU/llspnS/3WSj8mkB4FvU2M1g18dlK95vr0uRWVGKTsyiTcrbkemT66k5s8LgfRE36LfB4Y1bfybNGSnJdyJeyWknkvnC8U+42oPea9TCT/XKd1QESXlLo8VjSifHO1nmOS15L95pK8lavxlRC7z2fb5Wq856MksXYrd9fQDyufvx2jlgtIHeukQdYbXR5JoXVfD4I14e8LE6xBBfMeu5xnOr05HK1gMg95A1ufdI87h6fTZl+2XaaGyUoJQZakBKdMepW2Z4hF022UauZv5V2M0GyXRx4iSXjxgavDWlqiSX0vHw+o/VYK7vbKHDnuz+ffX6W5ZfJ/Kg2AaGn6bYhoamuscOwX3x+/vOf4+ijj0ZPTw9aWlosyRQwhNON+eKjUCgUCoVCMRwMm5L+hS98Accddxx6enrQ0dGBNWvW2D+rV6/eEDEqFAqFQrFFQwUMxw7D/uLzyiuv4IwzzkBDQ8O6T1YoFAqFQjFqaKpr7DDsF585c+bgsccew/bbb78h4tlkENRjIhi1YXydklK7yfXW864uCv23SuMD2Zrzy5OFt9FesvVMajU6LF39RlOiv2Ry4z0lyY130LPL06MhR6aJuX6Xy5PqJ59DPG46hNeRSEnTN4i8IPImaqKRwlx4yuP0WE5Dxj3Pz43zt/XZSVAByP+Jik7YsbeRx+0gn4oH6mnqHJFHI7yDbmqOwEE9prqgRt0Zto82aL3cmh2+ngsR81FcfgW5Q5UmVycoVY8LoDYK96U8blOG/kn9JBhwXIWXkRNPtmkNTmzZXuHpiG+S5X6EsVRDqiy8CmpGCU8oTKWdusn1oW4L+9zycxhzSD4N9X3c68KE9xf5MdxneW6eFpD1cGOX9cOB5dWwaG4lNvKzkp5Vlpsl3AxK3YQ5enS5eka+R1WUd3lZNmZyYmT/YBpC5JZZHhSHgzwaGWbqTVVahEdUGrzM3snSx23emHgcISDBk6N3HuOmno/sJ2fN90tjH6asHg55SXJ9v5zYb4KNxjXbuivjzQCTcxZOaTPnZKiR5RLC7P0gHl70eau1mg6oF1y9sqpoZ1kOVOIepT6ZHUdy9Oj7xjnFuRMxBvnpcZzYx+UWV3MpCGHnnWLzwnq9+Nxzzz3274ceeii+9KUv4e9//zve/va3I5t1lbc+/OEPj22ECoVCoVBs4dAvPmOH9XrxOfzwwwfsu/jiiwfsC4IA9aRSrEKhUCgUilEjigJEo3xxGe31bxas14uPv2R9S0CUAdJ9ImHfz9SAOVZt5lY+28oy2VqTLK0uyifWCeab6sRxJp21fesq8zsfezmMk2/7a8Rj4l89WwEAVvSZvFNHk8nRVGSpbSRy6qm0GZOGnPmOW+ozn4TDuqS4cjJm/e4n5UxP/PfiKndce6cwv2Q2dhkoP9fLJ2PfLoDLmFPe+QNSZAkqvV22Lvchl+PbtBGtC7i61S5JlbREr0gGcDmrLHOn9QHTWLTPSN7vNiUn25xcU1htAs1wqaws8+YyaBsrU5njvHSDfK5nyqtKiYHEMmfbntCdU1yeW22UMmumA3KSbqjIJ/+k/QUQL0VPi30A0621BtM/+VVxWpVL4CNZ+s50Q6XVnJvh0lxaVmSZluAyZqa2xLqAFgZy/sAUQZx/yHW76TCmcMKau+TaLme3KRxupR+apd94nPOiylRJ5LYlWSZTO2LzwuXdts+KtJyRWNvce8emzGjFwfnAOSjpu1QizZrjPcB7iiksWrEwleUtneYS+uJqN93KdA1tUig9URnnzqdkXbwnAmmAb4PCuZfy/s/Kdsb9Z373T+JX/nEAgPxLZlFL0BPPtTznWl7Old9BTe4xLnfnqmBJgVXE0sUusffA9hX7TRsaV/CBEc+1ZGoZiO/f0KboB7cc4X6msCmRwNQ/txznWjFCOJgX0AZCiGDUOj6jvf7NgmGv6rrtttsG9eGqVCq47bbbxiQohUKhUCgUig2BYb/4HHvssejs7Bywv7u7G8cee+yYBKVQKBQKhSKGLmcfOwx7VVcURY5oIfHyyy+jtbV1TIJSKBQKhUIRQzk+Y4f1fvGZOXMmgiBAEAQ44IADkMnEl9brdSxZsgQHHXTQBgnyjQKXqZYnmUR90CB2ADmTp85mzfYtbeYL2NSGLgDADo0rAQBb50zuOyUJ+rQk+tvSXLMLpIRQs7hvO3MsZ3hBFUlIb9diymjOmPTipLypY2XFcICe7TLmsa9G5qWzXJLl78IBqnE1dFpk+BN5fPIFmOPPdQpPJqYgAYiXddtlnWlaNkgbyFMRvgWXi/Ie45JTckTMQbPJ9ZAQ4i4VjaSseCmyXEe+gcdHSFVcuX22jecll/naEGR8uYw/U3LJIJQlIOejLpyHstgJlOU9nyvG42XRMt7CDXOW1pPjwyXhPq+CdhrjMxKba59AxPYDsuQ6zfaLpUGPaXCqN668MsmQ08rjTCeTT1TokGXsEn8o7Wbfs/12yTQtG8gBEkkBciTICeIydwCo5tyl32y/rcNbjh2RLiLjSYkALne3FhjSf7kusQ/hkvxizBFhHfUMORuB227pO/LKqlze7S0lj7y5Z+cWq+L9kLDLsJIP5PZQKkLO4byuTJLjUmfhdTnOvuQSdM4X2kmwH8iFSsw1y5uTY7wvyU0jeP9bbpY3J618g7VVEa7PRNNh2S5DpEutSjw4esxABd3UW6Bnh3DY5LRQLCuq40xDSu08jzG7cy8QTluu03RgSnhFQTlxg4vNRZQVuYIGWRJfJC+QS+MpRyJz03tmcOwsR0/6gWOZyQSol/RFYnPEer/4cGXXk08+iTlz5qCpqckey+Vy2G677XDEEUeMeYAKhUKhUGzp0OXsY4f1fvG54IILUK/Xsd122+HAAw/ElClTNmRcCoVCoVAoBG9Equuhhx7CN7/5TTz++ON47bXXcNdddznyNlEU4YILLsDNN9+Mjo4O7LvvvrjhhhswY8YMe87q1atx+umn4+c//zlSqRSOOOIIXHPNNc7Hk42NYZGb0+k0PvvZz6JUKq37ZIVCoVAoFJstent7sfvuu+P6668f9PgVV1yBa6+9FgsXLsSiRYvQ2NiIOXPmOO8IRx99NJ566incf//9uPfee/HQQw/hpJNO2lhNGBTDJjfvtttu+Ne//oXp06dviHg2GYTNNTS+xfBp3jZhOQBgQsHksFtEFz8ryeApuQ4AwM75VwEAk9NGOKNByAF9kiTPDqL5sFrICrsUXwEATM+vABDzgLbLGo5PQcr6a9mQAe4rvwMA8PKaNgBA+TWTZ6f0PfPTGfndsMz8blwW65tk+4QfIq+/2V5Xh4YgH4H/WSisET5FH+0HXF0My2mhDQW1SRJ6NtQSYZld25kEe3mGyN+LHhHKJBjAiTUQCwRaeVBzqSA+uWx/1ZPtd8ryjlGSnvFa3ozVTjHbSov8bhS9lyb6JQgfQexCcmtc+wEg5mSQkZC18vpmmxeuSn6NIcEEtXi8ACBVNb/TK83cBAVDA5Jl6McgsYlVAABU2kzDSu3SV2vcMRigf5Jx+SWWP+X9d4njSjuBWsMg/6v0rBUGyIl4uk6+nQDnFPlYvhYTby2rKVSO+426Pb6eDzlN1BsKQnKU4GytNg55J+Qn0QJBxjeirhVtVxBzbnztK/Kmcl2u/k653d32TZPx7nPvA8aS8jhjDp/MWnOYLbV/yGEhf4bWKvH96v4mV8v/WJBlXZyjfTF3EWmKe0ncFQkwS0sVsfkR2xDaYBRWCZ+SHLaScNXI4aHdCvlEFZKlkl4dMp4N5oYNJIaoyeW28Tlnn1u9nAfufUB9p0C8bvomQ66PEEYDn+kbCtEYpLqG+8Xn4IMPxsEHHzxEWRHmz5+Pr33tazjssMMAGLmbSZMm4e6778ZRRx2Fp59+Gvfddx/+9Kc/Yc899wQALFiwAIcccgiuvPJKTJ06dVTtGSmGvZz90ksvxRe/+EXce++9eO2119DV1eX8USgUCoVCMbaIYN7pRvVHyvL/3R5Mm29dWLJkCZYtW4bZs2fbfa2trZg1axYeeeQRAMAjjzyCtrY2+9IDALNnz0YqlcKiRYtG0x2jwrC/+BxyyCEAjCdXclk7l7mrZYVCoVAoFJsupk2b5vy+4IILcOGFFw6rjGXLTBph0qRJzv5JkybZY8uWLcPEiROd45lMBu3t7facNwLDfvF58MEHN0QcCoVCoVAohkCIAMEYWVYsXboULS0tdn8+nx9VuZsbhv3i8+///u8bIo5NDs3je7HTVoars22jIY5Myxuvraok9wuByVs3p4xARl1IBCvrjc7xgghpcLtdptnWM0Gu3T5r3n57xRctJ1/TOoR38Lu+HQAAN/3rPQCA158xnl651eZ4o8eryYm4dsNK4eN012Qbm/lE4o9TbTTTICt1U6eDHA/mzMn1oO4Hc9/kFfm5cebQw0aPXIGYF9Q/3hzr31riE20keuCEoq2TKrl+O+nxpsH1ktlRfM0QGfId5C2Y8zLCQ6IWkTlGLx5pntUnkTDpq0TtFEsXcTkg9GwLWkyfpjLmxHqV5BAMAHVbUtQIkRgaDLUL2W7xMuo23IWgIpyHEo3iJMhQvqzWJbiKiLS0GXGhytbmodYzrWDrtj5XUgTHL1dzv9KSJ8Mt5wG31SYTfLrkjXeOXB/zO0raLVn/NzcGG0vG5ZVYfzfPssnyi+iTRd5VE+ei8DkywZDXWA2cnMt54Thn++hJJuMtY0QNrHi++P0zMOa6xFeVcScHJ1XlPePGSA2gynhzIBQPurBF5kO3qSS3RniDQnWJ/dHiutMyJdKk1/TSx2xwXkqZ3oMyfcntY39lrF8e+UnCv+k0RLUoybPpp1GYiTdo4MQnp8d0ZkrmdSDzmJw2O+/7pMN6hAyXcm+qiCmaetzwoNVMwKiVAl3yDCmL/lqvzJUKdak8zznhyVVaTOzU7SqZR6697+stdYTZjZfhGMtVXS0tLc6Lz0gwebIhOy1fvtxZ5b18+XK8853vtOesWLHCua5Wq2H16tX2+jcCw37xAYCOjg585zvfwdNPPw0A2HXXXXHcccepcrNCoVAoFBsAYRRYo9jRlDFWmD59OiZPnowHHnjAvuh0dXVh0aJFOPnkkwEAe++9Nzo6OvD4449jjz32AAD85je/QRiGmDVr1pjFMlwMm9z82GOPYYcddsDVV1+N1atXY/Xq1bjqqquwww474IknntgQMSoUCoVCodjI6OnpwZNPPoknn3wSgCE0P/nkk3jppZcQBAHOOussXHrppbjnnnvw17/+FZ/+9KcxdepUq/Wzyy674KCDDsKJJ56IRx99FP/3f/+H0047DUcdddQbtqILGMEXn89//vP48Ic/jJtvvtnaVtRqNZxwwgk466yz8NBDD415kAqFQqFQbMngyqzRljEcPPbYY3jf+95nf8+dOxcAcMwxx+B73/sezj77bPT29uKkk05CR0cH9ttvP9x3330oFOIU++23347TTjsNBxxwgBUwvPbaa0fXkFEiiKLhdUWxWMTixYux8847O/v//ve/Y88990RfUsthM0RXVxdaW1vxqQc/gWntJk89TsRW0pLsbhBxjs66yVv3CVFjq4xJuFcj932S50/OGuJNNohz4d1CAvhXRTy3SuMAAKuFFLCszySUn19qmPOFJaaugrEDs5wB5quLq8XLZpU5kBavpnqTSdyHuYSHEb2Vsi4vgpwF6tjQP4u5ffJQrIdPmlokkbO/LL475PEkNUbIA+l7i3ByGly9GqRkWlbNtflVoqUhuyst7rRteE24Tq8J/6DH1ahhjEDMRaJnEf2tyOnJ9LneRdT3KbULL2mStHOqmR/FRkN+6OsxfRy8brbFZYHTH+YgnH3kdBQMfQyt/zKdlF1tCBop4ThQ74T6KGHRDEqtQQZHyiP/hlospfFx5ewLzpW8eLNRG8iOnzcPyJ/xdXDIaSFPh55s5TapL8F14ZTnrWH1d4R/Qh8pn7vpawb52kuMhVyXXK9wYwYZb+rY+L5tMdfD9Y0jSm1uEJbDRK2oZuew5deZus2WfWLrpN8TNYBS7vnkgvVNM/daUKWPmtzfy82450W3Kt9htsVVAzkn1Fmiblfh1R7neLXNPIOod0Q9psjzMCPYf63Pm0FLP7XEnF+Kb/BQ9HVSBXMvpIR7BtHWoUeX7euIc0/4OH3CafI5PnXvOSG+gWiOVYCrU9sAAKXx5llJ3Z44frnP+2WuZN3jfN7x+VAeJ78nmvOL25rJtn37KlR7K/jVwTehs7Nz1JyZocB/k972w7ORbhgdCbneV8bfj7pig8a7OWDYqa6Wlha89NJLA/YvXboUzc3Ng1yhUCgUCoVCsWlg2C8+//Ef/4Hjjz8eP/rRj7B06VIsXboUP/zhD3HCCSfgE5/4xIaIUaFQKBSKLRpc1TXaP4oRcHyuvPJKBEGAT3/606jVuAQ5i5NPPhnf+MY3xjxAhUKhUCi2dGxqq7o2Zwz7xSeXy+Gaa67BvHnz8PzzzwMAdthhBzRQp+FNgkxQRzkyyd4X+7dyjvVLErgqojKry6btubRoUwgBISUEhIIIafTUTH62Uo/JD8t7TXqwo8fkvssdhhRGvyeisFq4LpLTpxZHrovaHPT0cXP85Ukm9838fT3hl5XtkXipR5Ie/KYIPE6E9T6iF5BwQTLijxRYro/LcSm1x2WQ25LpFT2Tmikz7SmnW80UehJJLMUSvbqkLb2DXxdrt0QDjvleVeT4kD9CfY9QSPzUJaqKNlB5jRnPnn7Rtek1baBHF3kng4H8kJzwbFr/Jf5vS1e7J2ZkrlDvhbysgimgNN7MRfJYUp7+DXk7QKzLktxnLnYFbjie1PmxfCRP74b6N7WCzwWTkBMcn4g8kcjdpj0fLBuS1GG1cbwYCM4Las+EJddfLVk45w7vAcvtqQ5eZ7nVbb+953pkHjRKG6S95TbhhtUT/CJvPOpF1xcs3eGex2/w1CdKd4t+VUGuy7j6Ppl+U47v8QYA6V7z97DITpT2Cn8myptB4ZzK9vBGl/kuOkdZ8qjkeVF4xmiORatN8BH9sgYDlfyFmxblPMIQfb7I7ek2nRl43l4QrhCycj01g4rmeVmdEHN8eqfKffkW8Y6TvuT8pIZSvoPaT1KkjCefU5V2eT60mljeMnkNAGBig3gxZiqoVtfSdsUmixHp+ABAQ0MD3v72t49lLAqFQqFQKAbBG7Gq682KYb/49Pb24hvf+AYeeOABrFixAmHosuz/9a9/jVlwCoVCoVAo+OIzWuXmMQpmM8ewX3xOOOEE/O53v8OnPvUpTJkyxTEqVSgUCoVCodiUMewXn1/+8pf4xS9+gX333XdDxLPJ4A+vbo8G4Wz4hLBQ8vO1uuSQhZ9SqwpPRfLw1RINmYR3UB/4kpiSOlLiC5QvCx+Bvjiib0Kdk4yv/8EqLPdD/LeaTZ67nheOAPVTEm/8zO2n+kUrhN5MzWmnzMDjZfC/DXFZ0j7yccjfEN5R8XVXDwYAMqIJlClTbwYSr1Th6bWQR1Fc6XJZiFy3qSsjHCdq09Rzov+T+DCZqrgXR6IFYv2x5CsmNUXSwvUJxLSpYYWJodJCbyNDHqDeCccm3+lpjiChIdIreiydps70KtFWqVLYRjqA/mH8zb4XTk9BOB3kI9UL4oVUpzBMQscn5c4/y9Fi0XauuLpMnIv5zppzPJ5brmcbZAyDRDenPA6Wz+nx+UG+Pxa4ZZd6OkjZfvpruTwtIL5H+L/lbC8JUy4XrV4kV8nVdSLXpTxO7vuCG7PlAAnfptKaqNzXJUqzT9nHcpqMZ7WJfBupQ+qOpOxxfzQd07Wdy1uy925Sk6aJAULqlOeS8GHCvPD+8uQyueOeFs5eYakIE60xW+r1RHKfBDS4TPhopTLiwZWTgaTeDqdlWRpOvlinDDznf5PhTfIeDITLA/rKCdcn1rOK/ymjXlNdLuF48JkSewtK97S551FTjB58uaLp5I4+QxbqKeekSRHqfR4pcQNiLL26tnQMezn7uHHj0N7evu4Txxjz5s3Du971LjQ3N2PixIk4/PDD8cwzzzjnlEolnHrqqRg/fjyamppwxBFHYPny5Rs9VoVCoVAoxhLRGP1RjODF55JLLsH555+/0RWaf/e73+HUU0/FH//4R9x///2oVqs48MAD0dsb/1fy85//PH7+85/jf/7nf/C73/0Or776Kj760Y9u1DgVCoVCoRhrqI7P2GHYqa5vfetbeP755zFp0iRst912yGbd5Ykbyqj0vvvuc35/73vfw8SJE/H444/jve99Lzo7O/Gd73wHd9xxB97//vcDAG655Rbssssu+OMf/4h3v/vdw6qv9FIzKkWxeWDaJecuf7bLVvn5nV/Z6/xUzrSV92k18brJT/VMG6XlfZKfsJniKnTIZ2r5jFtq45JaBsMYZNkov3Iz/cSVqonsS77LBFJYlUpeaj/18/N5pt+VeCcoBc9Py3yPLo3zlgtL3c2vxuviQ7vcmukiSdHJqtQoIxYcYvvQ9ry79D4tsQSSrsh0cq22dEfVnJ+VbfIzPC0qAi61lXYG/IzOZfhc7ivXFleaOphOYsrE2mJkuXyf426OZ7vjJcaZDjOgVoqfy3b5iT8vqYHA+z9JT58TcwZGR7/eYM5n2pIpk3KrpDFycREcV6biOD58GHK5dn6NGadUjcv5aTkiYyDtCyWNyPGlJcKg/62081DShE0cb8oZwLmWZdq+zbhbpsSY4uJY2Hss8Xyvp91ULNO+XN7P5fg2vcZl7zmmaM3vqij8V5tpbWE2mR4u/5d0U1Mix5eVgCrShz1yf3J5u2SJcpLa4v3OZ0TDa2bb8qKkXVaZwWt9ytRRbZe12rSPSXIuZS7Ui5RjkPu1wU1lUwqD8zXTK3YTpZpTZiBL0n2bCbtN1J0qSlxDzWcB799InrXROLOmPJR7j8ftPSrzP5JY+qeKDEhrrF/A51Fgn6GD/2NfmuCOYyjPHMg2qskcFcpCucw8vNmkezIIS6VBy1Zs2hj2iw9dV99odHaafDPTbo8//jiq1Spmz55tz9l5552xzTbb4JFHHhnyxadcLqNcjvO0XV1dGzBqhUKhUChGgLHIVW1Gua71zdbceeedwy572C8+F1xwwXqd94Mf/AAf/vCH0djYOOyg1oUwDHHWWWdh3333xW677QYAWLZsGXK5HNra2pxzJ02ahGXLlg1Z1rx583DRRReNeYwKhUKhUIwZxiJVtRmlulpbWzdY2SMWMFwXPvvZz2LWrFnYfvvtx7zsU089FX/729/w8MMPj7qsc889F3PnzrW/u7q6MG3atFGXq1AoFAqFYmS45ZZbNljZG+zFJ9pASkmnnXYa7r33Xjz00EPYeuut7f7JkyejUqmgo6PD+eqzfPlyTJ48ecjy8vk88lyOmUDhtQCpBlmuK3yZepG/3SWz5OekyoPJ5cdLVolMYgUk5dKZ22e+mflpchjIQ2D+mjLs1WaJrcHrb4aY5TJX2RHGb/zVTtOevolmm+seKia2y7WgqDS5nBZaOpBnwpjJHakV4jw/l4hn+8gfMvtzsnKWsvINy5nbF87PS4YMwWWsqYrwUUSGH3VZ1t0qy2FzGYk9rptLX8lhscvYe0rSHjlX+EFpKZvjy2Xt1pJDyg6lY7hcPtNXdWMDEFCin3wIscOwXIg+dkTgtMcuBxYukB0LcnuEO8Ol5JbzlfgPHm0NfAuSVJ28KWlvmTwKGb8+Em5IbhDphVVmIuc63OXQgcQc5uIbIRR+SanN5bhYjpt3z5Crk+QomQvd68h5C0KXQ1JL3NLVZpeLlxUeHZfbxxYegVNmaYLZ6yxPB5DtcTlBNjRKRjTEHRzIwyHsd61HyGWzy/fl3mFs5MDx/rD2KcIvC1tN5bmV5oLSZPNlnfwdAKgJt6ewuu4cC7Pu//ppVZGW+VqeUHRiKKw0Qaa5tJxL1JuL0m6Z96+sjAvNeFYT1rLC/SeHPVtvEo5PmpIC7nj6djqcT/3twsNpjI/7NiccZy5vrxc4iYTLYymKsl94h0GFxClpUpn3g3AYy0C9vPG+oGzJys1RFGHVqlUIggDjx48fdXnDXtX1RiGKIpx22mm466678Jvf/AbTp093ju+xxx7IZrN44IEH7L5nnnkGL730Evbee++NHa5CoVAoFGOGLXFV17Jly/DpT38a48aNw6RJkzBx4kSMGzcOxx133KikajbYF5+xxqmnnoo77rgDP/vZz9Dc3Gx5O62trSgWi2htbcXxxx+PuXPnor29HS0tLTj99NOx9957D3tFl0KhUCgUijcOXV1d2GeffdDT04Njjz0WO++8M6Iowt///nf84Ac/wMMPP4wnnngCTU1N6y7Mw2bz4nPDDTcAAPbff39n/y233ILPfOYzAICrr74aqVQKRxxxBMrlMubMmYP/+q//2siRKhQKhUIxxoiC0ZOTN6MvPtdccw3S6TSeeuopTJgwwTn2ta99Dfvuuy+uvfZafOUrXxl22ZvNi8/6cIYKhQKuv/56XH/99aOuLwhjngH5J8zHp2quLgh5FAPmFBOJTClXef3g9SW3cW5fODAh2y98CmsrILF1eDnwjBsreQpBwjaDOfDY9kKusRojwp+QvqfuB9vD47UGt33kr9Buo9Qe58SJmvCn4LWb/BNuaw0kPYkVQ2je7i0voVcK7ac4jViA9IusPjk++VhvynJWpE/DvJyTaZC6JRga8DI24ROlU9Q9crkj1A4CuRAV1hPrH1mdlSL1TaSP+4W00iD8iqaiW5ZI/AfCnUj1V532UeckLW3L9IuUf4JXVW5xLQlyPdRZoqQ/+WPsazhI95uyyeEhtyklWkTsN8v5qMQFhGLrUqjTmkHq8O5rctjIs6FlhS2Jc1P4GuSj0UaC9w01hoB4nlO3h+dYPh2ldoSz1jdF9svw5VeR2yHlsctlCMvjJEbh0aVScZsC+fv47dYAAFY/3+6UWffsLxhLg1izFF7nQ8Ns+icaLgzvn3KbuTDXSe2luG6OL20vsr2unYuNkRo5Mn85Z7i/2mIaWhMLjIKcR62d9BoRIaKtBGC5PWGjbGWecrzreY6/Ob3axIePcHwy/tYcjvmFokkki4aTfCvL7SHP0VpVSBVVcrSk7DxtZHhfu89KPsdSvtZUFYhi+t4Gx5bG8fnFL36Br3zlKwNeegBg4sSJOPfcc3HzzTeP6MVng3F8tt122wHihgqFQqFQKBTrwj//+U/ss88+Qx7fZ599BthWrS+G/cVn6dKlCILArqh69NFHcccdd+Btb3sbTjrpJHve3/72txEFpFAoFAqFwsMWJmDY1dU1QJcviba2thELDg/7i88nP/lJPPjggwAM4/oDH/gAHn30UXz1q1/FxRdfPKIgFAqFQqFQDI0tbVVXFEVIpYZ+RQmCYMSyOcP+4vO3v/0Ne+21FwDgxz/+MXbbbTf83//9H/73f/8Xn/vc53D++eePKJBNDZkSkCYVgFQPT2skJE1Dcr++vxA5BOS2MNecnHu2bKa4hdNgeQlVV8eDfllF4QgwH19tcP3AbO5c9udXB06MyTpiryXhiZSp/WP218jlKQ6uU0QCBs+33CFK0eQZS3wJ+RaVdomXXA5PG6XSxvNNYf3tpqO2+pto0pBHU5WtcH2CsmjzZITzk7xBUl4DaFmSNWWH44wpE7WCoixz/yRkeN5E9KEqCTeCnJ6saJekEilf3sfk9kj8kegOWT4QeUTClwlzpm5GXm8qyH7G5nK/OFaVxIKHmBdD7haca8nRyvaQw0FuFiel95AJyFMhf0N216PBz0es8ZTrIpnL5ctRj4daSlVqCQk/g/cJ51RFxF3JZSPvLNOXqFu0q3K95G6Y3bw3+idQO0ba380y5Xo2x+PCcdypf1XnEFbjh3WhyczDXFq0kbLkYkld5A3JwLa8IDwy8c/i3KuITk25lVpivP+ppWWCop8cAGS6zLwmv4b8GepYUQsnVTZ1pekXJlyg8jgTVLVR9IBWyVyld5voXoUtwksrxjdvIFpWVndIOD11T5+n1ujeiz7Hi3OKfU79sjq3fAYnaEscX+up1Q8XfO5RQ6rb9fYaOCfd89MJrmZ9I3J8TFAbub43EFEUYaeddkKQ9J/zjo8Uw37xqVarVvDv17/+NT784Q8DML5Yr7322ogDUSgUCoVCoQA2MeXmXXfdFQsXLsShhx6K+++/H5dccgkA4NVXXx0TRUWFQqFQKBQuxiJVtTmluo455pgNVvawOT6XX345brzxRuy///74xCc+gd133x0AcM8999gUmEKhUCgUijFENEZ/NhOsWbMGCxYsGJTA3NnZOeSx9cGwv/jsv//+eP3119HV1YVx48bZ/SeddBIaGhrWcuXmhUx/ZCkczL8z18tcv80RczK5lj8DPLp4fboazz7qugShOyOZ07YcnRo1YyKnrIxwAciNYDnUv4j1gVxdICDW/CCnh/yQ0Or4kKMiZXieN/zPA7U0bLnSbqbd2U9RYraxfZle71jg7iesVhClcnq9zqV/ELVE6HFVIwEr8T8dcnmEmxAI+YhaOqmSbPuEIyE+QrWWglOW1a2h9kiO+jXSpgJJXYk+r5DMVEcS1nsr7xtAeRo7ba4/UqUlI1uXK1FqG8jpqtEuSqqw//mz89edg+lS3Y2Z8Lzb7I0Ssj/Mz1QpJl6kvAcu532tiRw1s6W2Sj07MH5Tlxs7eTlsU2G1qSjbG1dYoZ+dnEPfJ97XlqMjZdH/zpZNDy7vPrd+Yp7VX6oj5nSVO83fX2uhFxXjM8cbVgh3T3g22c6qtMcE1zNJuDF58pGkDumX4go4bak2xzdZSrhZLIv6TNQA4rzNkpMl7emfaMpI+l8BQMj7JmeIVeQb8tmS6YnvSfLcwqzp9JB6VFJVpVnaZTlKZj/Hn8+Dmnc7VFtkPyWDPB4OkNBLky3rpB5b4PEo/TllOT0ed5PPToeHWdmM3iQ2M1x33XX4y1/+gtNPP33AsdbWVvz+979HV1cXvvrVrw677BHp+ERRhMcffxw33ngjurvNUyOXy72pXnwUCoVCodh0EIzRn80DP/3pT/G5z31uyOOf/exn8ZOf/GREZQ/7i8+LL76Igw46CC+99BLK5TI+8IEPoLm5GZdffjnK5TIWLlw4okAUCoVCoVAMgS1Mx+f555/HjBkzhjw+Y8YMPP/88yMqe9hffM4880zsueeeWLNmDYrFot3/kY98xHFGVygUCoVCoRgJ0uk0Xn311SGPv/rqq2vV+Vkbhv3F5/e//z3+8Ic/IJdzk6/bbbcdXnnllREFsanD5o/5lVByvJbLQv2ajLt/wPXRwOOWo1N3fXWsZ5Xkz6nXY32VaHWVdjVIEIjGhpSbitxynLg8z63Yq0l8cEiXoacNdUxIXSGXQ9pjOSOe/xZfr5N5eJ83FNBzjJZbwpOhbgfz7FaDRfyDrKZIb8X5Td+hyniTfq02xxwY+vxUWlx+AVFcZTpm3P+9bOrulzrEB6wunkVh1vWbIufH6vhE5P7EddcZH8+t+uNvzqPuCfeTy8OxYV+SA1Zpdj9hU/cm+T888l5ibRTyaMyOhmVlqdP14iIXJKCmlGgkpXrkvIIJul50HyfsJwCoC/8pLXpU1G9hDOmKyzerNpLzAxdZ+iuZn+XxFNkxm/wamcP5uD/IweEcCr2nnu0rzy+L99SA68gFqbvbbDcFrBLhCveS87VeNAebXjMXFVaaPk8JnyrdbYgolSmGzMK+75ss5TSLDlIn9Y2EX9Mv/def4FWVzE1FjlZQF5+3WsbZT52mnh1Nnf3jRUtH+DQZ6vsIR6ae580rHCHxzUv1sCNhdahqTe44Wy9CidPyj/KeJxc10OQ5wHmQol+i592V9AHkeHBf2tfa4XNYxjXjebexzxlDqu7eN/Z5sbHJwlvYF5+ZM2fi7rvvxrvf/e5Bj991112YOXPmiMoe9otPGIao1+sD9r/88stobm4eURAKhUKhUCjWgi3Mnf20007DUUcdha233honn3xy/B/Peh3/9V//hauvvhp33HHHiMoe9neiAw88EPPnz7e/gyBAT08PLrjgAhxyyCEjCkKhUCgUCoWCOOKII3D22WfjjDPOQHt7O2bOnImZM2eivb0dZ511FubOnYuPfexjIyp72F98vvWtb2HOnDl429vehlKphE9+8pN49tlnsdVWW+EHP/jBiIJQKBQKhUIxNKJoUBeYYZexOeGyyy7DYYcdhttvvx3PPfccoijCv//7v+OTn/zkqHQDh/3is/XWW+PPf/4zfvjDH+Ivf/kLenp6cPzxx+Poo492yM6bPYKETxa5PF6On/nSXLc7myxnhpo0JVd7JxiYKbT5Y8uXIYeHuhaSd/a1NYbiLdSbyalwxYXI1wFi7Q9bp+clxnaEvv6L/52QlJacd54XWzIP78P2CfVZvNj4m3o+a2YYAkauR3yiRFyIfc2xKa4wlSZ1gfrbhT9DvQ6Pq9XfLn09exoAoHmp+C2tNmWl+8wFtWZpKLke1HXxvKuSsN5awuGxPIuS611l+9TTyrFaUqSTsJ8oD8TfwtuhHg4QewxxDpDDVWozheU7zMWZbuGEkBsifKnAe2qSp4SycEmEv2T5VwntpP6tTJ9k+1xOE+fYAO6B1dByeVgDPJsahGeUMQV0b2tOaEi453DecTysd55Xlq/nQnB+0PMpRT0uzmeP+1FLPAat/1kf4zeFF143cyqzRg7I+IaNhpBUbssOKAsAsuIrVVhpfmekPy1fqxpzfOgDV6eXVpaCZBIvPejkGstpkZjzq8y2uNrVALPcQPIRRR8oNS6WM6k1Svx5eou519BrLPL4f7HfG2MR7pLl/pnrqL1EJHWbyBPzuZmcjywz9DiZnA8BeZTeM5V9HP+Oy94o2MI4PsRee+015uLIw37xAYBMJoP//M//HNNAFAqFQqFQDIEtjOPz7LPP4vzzz8eNN96IlpYW51hnZydOPvlkXHrppdh+++2HXfaI1oJ9//vfx3777YepU6fixRdfBABcffXV+NnPfjaS4hQKhUKhUCgsvvnNb2LatGkDXnoAo9w8bdo0fPOb3xxR2cP+4nPDDTfg/PPPx1lnnYVLL73UrvAaN24c5s+fj8MOO2xEgWxqyPRFyOTkk6h8bk95Uuf25dl6W7hLcq20Py0N4tW9AxDUveWcQ6ShQpv6MJu6l36K4pXTAIBa0f2knExT2Xg8qw2WwWXA9hqvjKHSLtbKosE9L9n+WAbeKToOJeUe51JalsEUQLWJn6/Nb34Kb3tO0i/y2RqlOL9YXGX+Trl8jhdTPrUG19KgexvTydnxZnDanuoEAORXm/xZdYqR8C+3y3myvLci9gG5jli/ILvGfLOvN4qUv6S+6qms1Ml5QPkC03lpK3vgjmeqJkvzm8xvP3WU7Yu/bce2ALJDTqWlQ5e0M13JOecVOsRWQdIqjCnTbQYnkOXQlVZzQbWJFgnxZGMfJ/cBcWrOX57PJcSDzVvTTrmuKueX3WX+yf/Y0mLFLnOmpYhX5gBrCmYfOVe9lKZNx3jWL/nOZJmUiJA4pe7eqdKAqa7fRblFxtNMKZQmuDIH+VWcs27sHHfaVJiLGC/z6O7vKiUFvGcK77V8lymAY2JlDaTciqTdA4k5ObZ+mtzeU6zKSzPb+9Tex+4zlDFbWoGlEcj9kVjGny67XIJqoxlYWvL46Sm2v+4dt2lESQkyRWZtZFKBlXjYGAiiwdPnwy1jc8Hvfvc7/Pd///eQx4888kh88pOfHFHZw/7is2DBAtx888346le/ikwmfm/ac8898de//nVEQSgUCoVCoVgLojH6s5ngpZdewsSJE4c8vtVWW2Hp0qUjKnvYLz5LliwZVDQon8+jt7d3kCsUCoVCoVAo1h+tra1rtaR47rnnBk2DrQ+G/eIzffp0PPnkkwP233fffdhll11GFIRCoVAoFIq1gOTm0f7ZTPDe974XCxYsGPL4tddei/e85z0jKnvYHJ+5c+fi1FNPRalUQhRFePTRR/GDH/wA8+bNw7e//e0RBbEpIsoEdumlz2kh/KXk5F8wR0wZdvJRrB3BWrg+1hbCO8eXS/eXvVtuj/cp08/pJsuNr/WWd0q7eI9Y7k7GXc7KEwKPh2Sl/EPyVUg4ieuus4xG2UosmV6XC5Fiu+wSe2kH+9JbKh90sDwuC5e25eOpXhFOAvkHaVkCTy5LSQhG5GewDlpddL7NEDAalol1Q8Xl4ZD7wmXvScsKLgFPd8nSeOHy0GqD/IF6Q1ba65K24mXd7tzMWF6ZbEjrqMcTINNDnoSUkXUlDiyPTMaJy9/LrbJMvdHl0dSEE9T8ctWrU+pL2ieQB1NhHbKEvk/4VnnaY7j/F8t1u8vfrayDyDVUyDuRe6/xZbf9QIL/JFymgizTzkp/kCcWevdQtt/9bdtCXkqV/UmLj8Bpq4nXbCmNQQ5P30Q+VOQ8TlfaZkgf0pqC5WRpHyHjne0xJzY/a4hFQW9sGxG2GpJdqt8EnJXl7WHRjFupXXhl7NMG9x9Fxlpl/3ncMM6jrPBuklIZfPZxSbj/763/PCPfDh5v0FpykF9W4VJzc35F5kHUkrCFyYmljGe1w+dwzI+TWDwpDXK6cj3Cp6rwPJd3VM8GqKe9hm1IbGHL2c8991zsvffe+NjHPoazzz4bb33rWwEA//jHP3DFFVfgV7/6Ff7whz+MqOxhv/iccMIJKBaL+NrXvoa+vj588pOfxNSpU3HNNdfgqKOOGlEQCoVCoVAoFMTMmTPxk5/8BMcddxzuuusu59j48ePx4x//GP/2b/82orKHleqq1Wq47bbbMHv2bDz77LPo6enBsmXL8PLLL+P4448fUQAKhUKhUCjWgY1Mbq7X6zjvvPMwffp0FItF7LDDDrjkkksQJYRMoyjC+eefjylTpqBYLNp3g7HAxRdfjPe///148cUX8ZOf/ATf+MY3MG/ePPz0pz/FCy+8gA9/+MMjLntYX3wymQw+97nP4emnnwYANDQ0oKGhYR1XKRQKhUKhGBU2cqrr8ssvxw033IBbb70Vu+66Kx577DEce+yxaG1txRlnnAEAuOKKK3Dttdfi1ltvxfTp03Heeedhzpw5+Pvf/45CoTCqUC+66CJ87nOfw8SJE/GRj3xkVGX5GHaqa6+99sLixYux7bbbjmkgmxr6xwdIk/tg9Xrcc6xFQc7d73MlQurhWOn05LmuxobN9eepi++eZ3Pj/G11XeR3hQVJBRnmxOV4JsG7kL9ncibJnU2b3/W6yz8IpQ5PrmgAItGUqdfc620syUQ/96VcEaG6yN8HNeqSuJ2eLvM84RXkpX3CV2l/OpLrTFvKE0znr9kxnup1yfUXl7vxk6NQbpX2cmhsjt9sy7QDKZkBzotOD/Vrsh3CDegyfIugGJObwhxJSZxbcm6POTcsUENH+rLg8pHIxyAnws49iZWcCPKRaoW4/8qiDUO9GTvXvHnOMiJv/KwGC1xQ/4d8IuokFdbE+kX1Aglg5ur8GsNxCjy9nvxq4WVYSw8Zx3GmD7unCbenheWa61v/aa5rWWoIGrRKAIAwLeMl4RRXe/o0ElqGPDHaf5CfQn6NuEvQHoHt5RjlxOojaW3gc7J8axmCz5IC7SHII6J2mBRJfRvq12T6xU6kS1bUJiRGwoLps5RnPZIWm4yM6E5ZG401rv5N97SM1ClFC32IWjoVq6Hl8suAhK2FZ/NgNZDII/S0pcjDyZRc/SOfl1f37XES/Wq5PNRC8+7fmKMoW09Lio8kti+203C5YFEaqJf9u+HNgz/84Q847LDDcOihhwIAtttuO/zgBz/Ao48+CsB87Zk/fz6+9rWvWf2+2267DZMmTcLdd989aupLtAGNxYb94nPKKafgC1/4Al5++WXsscceaGxsdI6/4x3vGLPgFAqFQqFQYGxWZcn1XV1dzu58Po983hXT3GeffXDTTTfhn//8J3baaSf8+c9/xsMPP4yrrroKgJG2WbZsGWbPnm2vaW1txaxZs/DII4+MCec3CDbMi+WwX3zYGH7qAkxwURQhCAKr5KxQKBQKhWJsMJbKzdOmTXP2X3DBBbjwwgudfeeccw66urqw8847I51Oo16v47LLLsPRRx8NAFi2bBkAYNKkSc51kyZNssdGi5122mmdLz+rV68edrnDfvFZsmTJsCtRKBQKhUIxCowhx2fp0qWO+J//tQcAfvzjH+P222/HHXfcgV133RVPPvkkzjrrLEydOhXHHHPMKANZP1x00UVobW0d83KH/eKzOXB7rr/+enzzm9/EsmXLsPvuu2PBggXDtrWvtACpIXjbfp4+8DgQ5NPY3zkmvGVH0i+LGjdpclVcsaAgKzn/lOhYyPFM1nxZK+YNGaCQMUnzTNrsj6TySs0kpKuhqwcDACkJvCacnmxGuD4pN4ZqmBp0P9FXEc0ZOY+p2ZrUTc5QOsEvCqTutJTJl/pK0XRutWS2oZwXVaUscphIgeozv5teNAXkukw/kDtQbk3L/kTAoj/S9Kpwc8SzqGsb0S2R+ywjminsOep+ZPrdp09N+Cv0J+qbZiZOfo3pl3RPzHWJRL/GcljEV6jebIiA1Pzpn5CV2FwtKMuJkN/lccLdIj9BPKsq42RHcj6RDyb8sYD8snLKOc6HY35V2ukHgl5OnMeMje0v8D9gqfh/arlO0TwSTZm+bZrlWpkbwl3JdYrmTGdZ2kv/NPNg7tzVDELDeMNTqfeKP1ij6T9ym5Jj1LjMtJccnPK4tJRNDSA47aa/mdVvCT3Ok0xW1pEWHziri5VL8Is8HRvqTWWt7xnrMFtyd4Kqx+ER/aeUaENFWZlzTWae1Ka0m/NXdMZ1y1xaszNN88ymuCp0YqL+ULXJXeQb63Fxh9n0j5f297GNrtaQaQf/5s1PuRXIPQs9bSD2B7WDUuRdeY+eagvrxoC6Q+H98RlBrmWKvm5V91rrG8jYPM4m54XVbcvGddbXosm2KaOlpWWdqsdf+tKXcM4559gsz9vf/na8+OKLmDdvHo455hhMnjwZALB8+XJMmTLFXrd8+XK8853vHJM4jzrqqLXaVowUw37xueeeewbdHwQBCoUCdtxxR0yfPn3UgY0UP/rRjzB37lwsXLgQs2bNwvz58zFnzhw888wzG6QDFQqFQqF4s6Gvrw8pT1A0nU4jDM0b5fTp0zF58mQ88MAD9kWnq6sLixYtwsknnzzq+jcUvwcYwYvP4Ycfbjk9SSR5Pvvttx/uvvtujBs3bswCXV9cddVVOPHEE3HssccCABYuXIhf/OIX+O53v4tzzjlno8ejUCgUCsVoEWAMOD7DOPdDH/oQLrvsMmyzzTbYddddsXjxYlx11VU47rjjTFlBgLPOOguXXnopZsyYYZezT506FYcffvjoAsWGXdU1bK+u+++/H+9617tw//33o7OzE52dnbj//vsxa9Ys3HvvvXjooYewatUqfPGLX9wQ8a4VlUoFjz/+uMMyT6VSmD17Nh555JFBrymXy+jq6nL+KBQKhUKxJWPBggX42Mc+hlNOOQW77LILvvjFL+Kzn/0sLrnkEnvO2WefjdNPPx0nnXQS3vWud6Gnpwf33XffqDV8ACAMw7VmaaIowooVK0ZU9rC/+Jx55pm46aabsM8++9h9BxxwAAqFAk466SQ89dRTmD9/vn0r3Jh4/fXXUa/XB2WZ/+Mf/xj0mnnz5uGiiy4asD9dBgI/f8tcr+eTxfxzzPFxc95R1eUS2Bx08pycSxQKRFuHnJ5AxCXSorWT8jgyoVxXzJjgMtyfc9/xU4n/MtSEk1Oz3JzAKZPn9tdMR2SkoTUJur8qOiFWi0f0UYTbw/0pESNh7AAQio9XRvaRZ0TuT65o2lGXskLpvEh4QhG5Pv2uf1RpvJnS5BDQpynfFbe7Ybkpi7o71JJpes1se1Lu+NGTiPo21G8pjZO65UTLERDtkVKb4aWMeyZud7rbkB/Sve64hEX6C0lZNXIjqNtjzquKekStRcZ3nHBiCoaAkBaeVrP0a2O+Yutg35Zrpo/KVbPt6zZxpqj1JONfbpLzumWcZR6HWZeXFsj+tGiv9E0010UJjk/Qwn2GENQz1fR931RznHpM2R7T0PanRM9IxrFjhvCH2g3B6N1bvwAAeGqV4RZ05c11VqMo4aGUFi0gzg1qwHDcyf8iZ4fjS+81gt5m9ItKCw/HcoXI0+mLV7amK944Z9xzWYd/n/J4SC834ZGREkiuVEAeXaP071vir+y5l9cAAIqtEwAAndtzDOSeyrrtZt/1b0VelTneu51w/9aY64r8t0ZCJg8tybOJuUsyrqJ9ZM/1NZJEG6jWwD6Gcx75RNY30Hp8mW2Y4OVYzzRS6ygzxK3ElvZ0m3yPQuvd5fGLeD1SQFDGxsMYLmdfHzQ3N2P+/PmYP3/+kOcEQYCLL74YF1988ejiGgQNDQ148cUXMWGCmb+HHnoovv3tb1s+0YoVKzB16tQRrSQf9hef559/flBSVEtLC/71r38BAGbMmIHXX3992MG8ETj33HPtl6vOzk4sXbr0jQ5JoVAoFAoXI7Wo8P9sJqAROvHQQw+hv7/fOWek6bBhv/jsscce+NKXvoSVK1fafStXrsTZZ5+Nd73rXQCAZ599doBOwMbAVltthXQ6jeXLXUne5cuXWwa6j3w+bxnu68N0VygUCoVC8cZjpAToYb/4fOc738GSJUuw9dZbY8cdd8SOO+6IrbfeGi+88AK+/e1vAwB6enrwta99bUQBjQa5XA577LEHHnjgAbsvDEM88MAD2HvvvTd6PAqFQqFQjAm2sC8+GxLD5vi89a1vxd///nf87//+L/75z3/afR/4wAfs0rexYHSPFHPnzsUxxxyDPffcE3vttRfmz5+P3t5eu8prfZHtSXj3kMOT8rbUnhgixUidCCuhQ2+khH9NmCdvgt5Mrv+PZc9QM6Uguh7C/aF2Dnk5nX2FZFVoLLpJ6HSC48OvhMWcSYaTJ0SOjq8BRF5OIVtzziNXhBwh6gHVrcfXwLuN/B9yfBokht5yzqmbfJMMPXqqooNDHhX1f+RDHTkCNn/Ptib4Jhw/8mioP0POR+F14dWIphd5CtzSq6smfBtyBKzui6f3sWrXWBCqeWnWqTvTa9qd7jUXk1bG8WfZdfGesrwy+UutKlyYrGgpTTANTzWY8tIJ7SWOL/lUpX5zrdVI6nU1klLCowqqbCf5GcKjaRDNJCm/Jh5nfd2m3HxnYp7L/O7aRvhPE4VX0i/eXatk3KQPeye7PBPqErXIPFnWbwY8K7pVtSZ3LNMxtQnVRimLnnlpV4eHmjqZXuHVVd3xtlyPHuEAVTgo8rtkKqO2Dj2ygFhLh+3n6mDyiNjX7FuC88JqCKXJJ5PYKqbvsy+LR1coMeV8ERqg8UFjKp3rnAEAWLOTy4ciF4a/2ee8txpfEH6RZBn8+c3fuZ74Pq8Kz63aLOM9TuZeI+sy24ZlkZQl95znb2g1dzy+JWNhOdXEh3qfD+RLmGXJ2fM1grzHFJ/fvk6b87uCjYaxVG7eHBAEgfNFx/89Ggz7xQcwK6UOOugg7L///sjn8xt0vf1w8R//8R9YuXIlzj//fCxbtgzvfOc7cd999w0gPCsUCoVCodg0EUWRY1nR09ODmTNn2g8so1nuPuwXnzAMcdlll2HhwoVYvnw5/vnPf2L77bfHeeedh+222w7HH3/8iIMZK5x22mk47bTT3ugwFAqFQqEYG4xFqmoz+uJzyy23bLCyh/3ic+mll+LWW2/FFVdcgRNPPNHu32233TB//vxN4sVnLJDpj5CTT+EDLCnIjLJ5FPnpSbvzEys/udpJl/xAxi/eGaa8uHxZPg3LZ2e7bFPSEUw31NZIasiuc5Wt/C5lCs7+ILGknJYFtL/gcnOmrGg1waX09Zr53ReYOsM6c36yCWmJMPgXQKbKknVWJf/gW20wRZMRewXGwlRXWpZvh1lZkr2LWCK8bmLL9nCJNZwYAaB7a3MNl6dTXp/LnNnn1oohR3l92cp42hSXXJ/vNrEyZVBuNbGW2+J2r5wpFgPyyT9Mm0obXzU7tvqz+Yaf6zDf+Ctby1JzLsFlusHWTbsBmS+BOb9Ptr1Bc9xw2ld41hQp6dNsp2fhIOCS4qqkk9Bm+rq5xTScqTPapxSnmO2aerygoPVfpu7ml+Fso4BjYLYdM0xZ3TMkiALXGstyaEmBrug1OgX9ZUnxSYqYlhUNKxONCJgm5FJyN5XF+5rpxfiG543NJdYiLVF377V6zkyUep5prcT8D2g5wrLNJmMtK9xt6FmaWKuKCuUcZD9jYwq3z+RtwuXxatpUk5lTgWxzf3sRADC+ahae9E0xz4b8ajet1pqmFISkrsXCo+UfZt1/ZYK5QWoNTL+Z+mrsP8T3CGkAFUl5ZcX+pLBK7hG5N5iqjpenyxjVRKZjhVsel7tzmXy2z1aNkFIGHFdJm9l0mfd4svIEUiZTXEyjDVD94/RIAUFlI75JbGEvPhvSD2zYLz633XYbbrrpJhxwwAH43Oc+Z/fvvvvuQ2rlKBQKhUKhGDm2NI6Pj8ceewxPP234arvssgv23HPPEZc17BefV155BTvuuOOA/WEYolqtDnKFQqFQKBQKxfDx8ssv4xOf+AT+7//+D21tbQCAjo4O7LPPPvjhD3+IrbfeethlDns5+9ve9jb8/ve/H7D/Jz/5CWbOnDnsABQKhUKhUKwDVG4e7Z/NDCeccAKq1SqefvpprF69GqtXr8bTTz+NMAxxwgknjKjMYX/xOf/883HMMcfglVdeQRiGuPPOO/HMM8/gtttuw7333juiIDZFpMsRMpHLBUjmds0B4Xxw2SNpBczj13m97CafJ7G8kktro5S7rBMio8/lnVyma5fSp12+iR8LQSn3enFg3bTOqGRdzoJ9HU657Q4qLqeHsFLw5AaxbbSsENl+Ll02lcumKLl+2y7GLSc0uTryQTeXzkudwhtKrTQNLb4WOO3l0tV04mMkx4ncHvYJrSbI7bHLdeX8qnB/8p2m8pzYYGRlGTStEapNrm1GKlF3QTg6FdnnW1F07mB2NC4z7fb5ZeQyRBI7+6uwir+FCyXjnpwPaRk/ch44l8g34jJgzl/2Q61R5ma7CbqhyZAfClnh9DSa7YSiWVqdkgny2qTYZ6dhmbvMnJwk9m1ZlsLXaPHDhnNiyHzo6zRBVRvcecC29EuV9WI80XMyXumqy+nhPcRYOA8YY6bftZMI6iTtuWurKU2QtMkgfPsDjleqxrqzXkxubP6zhfyxnMyxbI9YlXQJF6whlk5AmmvnhTfUbDo3s6wDANDcKVy9RpJgzKbhNfOXovCHuLSe3J560eX2UC4gXYofDA0rTMB8nmX6acVijue6zPGWJWZHXSw5uraVmHKupATHxFphyJb8o+QziVYiljfp2WMQvC/t8yt0H2zkhPlL6eMxDYCNmeTYwjg+xO9+9zv84Q9/wFvf+la7761vfSsWLFiA97znPSMqc9hffA477DD8/Oc/x69//Ws0Njbi/PPPx9NPP42f//zn+MAHPjCiIBQKhUKhUCh8TJs2bVAaTb1ex9SpU0dU5oh0fN7znvfg/vvvH1GFCoVCoVAohoctldz8zW9+E6effjquv/56S2h+7LHHcOaZZ+LKK68cUZkjevFRKBQKhUKxEbGFpro+85nPoK+vD7NmzUImIzSCWg2ZTAbHHXccjjvuOHvu6tWr16vM9XrxGTdu3HqrM69vxZs6ct0hcqFJJGd6zGe2VFm0Y0SS3lpP2Fywy4Gh1kY9Jzn2rJfwx0BNIPKBrJYEJdHlVd3mrWW3zVUylJq7tbYZomwfJUbc5rDJYYglftx21N3Y/N+2Da7Cv/M3v3yrcdTt6hVxG4gVR00k/4MMNVSEN1N2OSI+l6ewRuwnVpvrKi1xVpf6JPkO4UuUzDmFDnO8v10sO0R7hGXmO8x5uU5TaX41SULSlixtJky5zcIZyHbGn2kz3a6FSLXdcFbKre6tGGVcflC64nEZqBVlz6OYitmQVxUk1U0p8USuFTkaMsd8/aJag8vtoXYSLUkIWmF0VYRnInP1re98yZ7z6vPbmbpFv4XjFnlaV9ROSfWKjUazWLT0ZqSdwo3po86NtF/mRf+OpjGlrrg/W/9pxiXT5+pykS/D+7JGHh3tUaxNiOznPSbjG3qcHmtDkUC5RTguMlVy3cKraxY7GFqsVFw+oNUWylIbSwok/4p8I3L75BmTSXv+DABq4wy3p9ps+qS6U7MTPy07istN59M+pd4kmlBbNzqxkNOULsv90E19qCTRRjg6EhfPsXYgtPsQPk62w3RQ8RljMB22mxhLk03dvB9qeZdflOnjRIqrzpTExqQxIzG442TvJbk/M/2iKSa8KY47Y8yVXG4YkaqEqNV0JfOGxvz588e8zPV68UlWvGrVKlx66aWYM2eONf585JFH8Ktf/QrnnXfemAeoUCgUCsUWjzFIdW2OX3w2hJDher34JCs+4ogjcPHFFzuWEGeccQauu+46/PrXv8bnP//5MQ9SoVAoFIotGltoqmvZsmVYtGgRli1bBgCYPHkyZs2ahcmTJ6/jyqExbI7Pr371K1x++eUD9h900EE455xzRhyIQqFQKBQKBQD09vbis5/9LH74wx8iCAK0t7cDMHSaKIrwiU98AjfeeCMakhIO64lhv/iMHz8eP/vZz/CFL3zB2f+zn/0M48ePH3YAmzJ8XYcwZ7orvcYInlDnJ8wL56dBfJhEmyNMuTlxy5FJcF3oPRNrTkju23szp+6H9QliwpkpZloB1bxGWD6D/EwIGPDvvoeNjZP+UBVumRN3g2Oun/n7WoPLX2COvdo0sG4/hnqj+IU1CrfDEjKkr9tMg8N+U0eqJNyGfpeHQdDzrLA65qVQz6ZGfkXV7duG1+vOefSRKqw0nZjpMGI8gfgjRQ1CwBDeUVq4QFlDV0BQSfAAqKki16T7TCfnhKtR2srMMav5RC2hcPAt+RkcK+s/xbmX4F3UrYea+F6JblGmz9WI4jiFMgaZoom/VpL5LZorWzUa4lhGfNX6a+Z4qSrnhfFks3o9Le4AkU9ELhO39FoLQpezQk4Pgw2L0v6tzFi0NBmuSFcYTzZqG7HPOCes/xk92+RpSK5PvejOKZtmqHFeu22gplTyHrNcJmomsc/73Xup2uheazl6npZUaRzPkzlcJH9J+iMTV15tSss1Li+G3B7GXRpnzqsVDBcoXRExpch9blEHKd3v6laR25i893jP22cfJcLkmmynGSd6kSGUbb/sf3YNAKChZxIAoLx1m7TPnT/k/liuD2C5O4HUnam5zyve59xGcu+lS7y54FxPDqfV+xFeUq0xjVp1IKdqg2EL++Jz5pln4tFHH8UvfvELzJ49G2nhr9XrdTzwwAM4/fTTceaZZ+Lmm28edtnDfvG56KKLcMIJJ+C3v/0tZs2aBQBYtGgR7rvvvhEFoFAoFAqFYu3Y0paz//SnP8UvfvEL7LPPPs7+dDqNAw88EN/97nfxwQ9+cOO8+HzmM5/BLrvsgmuvvRZ33nknAGMY9vDDD9sXIYVCoVAoFIqRIgxD5HK5IY/ncjmEYTjk8bVhRDo+s2bNwu233z6iChUKhUKhUCjWhg9+8IM46aST8J3vfGeAD+jixYtx8skn40Mf+tCIyl6vF5+uri60tLSsd6Hd3d1obm4eUUCbEmKdG+GTVEQfYiujLWHz0zxf8uvUpmCu2f6m5kY2zsOzjnqByf3AuTayehi81tWWsXl4pqPpAUVNEtEPGdwnzGzJOyC/wHKQIm8L7zc9ycTTKFUWTkiv8Fak32qNsu2N8/P9401llVY3PqtjIh5NET27hD8RCAcKeeEXCBmqUjN1WG4IuRXUPSkkuA8Nro6N1RQSzRGrT9Jjtmlpn+X2rBHRIBnPICu+UcIBs3yrXiFW9ffbulEUYgUMx6deyEg/CH+sRM6HKaTU7ukV9bmDYbk8kcvtIdcnySfL9orf1QTT4P6tXK0g8kmstxh1a6SPm9sMt60uY9FdNlyQ/oprZkQPr+7egt2XF/5htkfqkq6yvmGUpZF4U8Iry1VcbR3yUuLKTMcUiuaCSc1mbLo6YsJjwwrXu6kkh6jnxHG088Hj1VgeHmOM3NhtP3k8JSDm1lkOm+UFDe4jFdKbSnzTstTfkrqzPdTQiZzrSu3mL32T4huc8ZVb3Rio5ZUuuTH2C2+osDpyjwsvJyOedKkqhbxkrqUZU8yzKbzShyTqrabTqYUWVEhK4/hK3JMMTzTokoanyL8x5+fXeL5o5G3l4/ubnB56jPG5HOuSyX3dJ8fJuyvKfewZOZHrQ60k6iGFGaC+nvp2Y4ItjONz3XXX4ZOf/CT22GMPjBs3DhMnGiO+FStWoKOjA3PmzMF11103orLXW8DwtddesxWvC295y1vw5JNPYvvttx9RUAqFQqFQKGJsaRyfcePG4Ze//CWefvpp/PGPf3SWs++9997YeeedR1z2er34RFGEb3/722hqalr3ycCghmIKhUKhUCgUw8Euu+yCXXbZZUzLXK8Xn2222WZYzOnJkycjm82u+0SFQqFQKBTrh83oi81Y4Te/+Q0efvhhvPbaa0ilUth+++3x4Q9/GDNmzBhxmev14vPCCy+MuILNFdWmFCIR9og9qtxZl+syOe1Q8su51SZZHngciXSP6L1IrjmoxHl4eilluyBlSf5YeEDWN0YSzympk/l06yOU8nLN5AxILpw+UknfGqsBIvoVvl6J9eSir4716JLfnn8UuUzMv/N3xqb743bTJ4v6ROQjBHXJo7dIXl00dqIcjaXkvEYKvphNPWuO94uGTNMr4rPTabgB5O0AQHGFp+vh6X7UxeOnIrn8rLQjLBiCRqqNQjdslscVITgm+cTKBCnDjrvomdREc4VaIvQWI1/Ecrio70I/KfI2WLcNIXCOO/C0nepCxaFXV71AEospo9Kbc8rOZ00Qa7rNBdU+U0mQFq5Xm+icLIsJOfx/kNWpkbmU6/ZCk+NWO0pipE4RY+yZJhcI/6iQMyd09Bed2E2Z5u/lVvHzMtIwmPxvrzl1v/akUYKlH5jtB6vrIts6eSnkwrgcoXpiuKuNcsjjB3Fccx1uO61WjnB4qCFlNWfYPx7HJ5AK+raK210SWTV7L42rOO2p1oRHJ+3JdFLPh9pXcqKNkbw64TzKMyjbIc+9Eo0FgaBHeG0F8W8Tbk+1RW70lNlmXzfnpRLXAkDUIh5dwr/JrDAPyFC4QlFWNF2EI5dKaPVkekxZQVk0v+Sei4RzWG02k9FyMsXbixpIvmch71Xq91h6UcYjA21obGEcnxUrVuBDH/oQHnvsMaRSKYRhiJkzZ+LOO+/El7/8ZcydOxdXXHHFiMreyCOnUCgUCoVCsXacccYZmDp1KtasWYOenh6ccsop2HXXXfHaa6/hf//3f/Hd734X11xzzYjK1hcfhUKhUCg2cZDcPNo/mwt++ctf4tJLL0VLSwvy+Ty+8Y1v4Ac/+AG6urrw/ve/H/Pnz8cNN9wworJHpOOjUCgUCoViI2ILS3Xl83kECfpAKpVCvV5HrWbSpvvss8+IaTj64jMEMn0hgkZ3X5hzfXYqLZLrFr4Cc8fZLpNbTvdK3lpyxKluw+eIsnG3M39Mj5qU5MSZl85IHplaQtSgSPVXnbJB/5kaRUcoiEI9nLRs47rpMcacf5g35zB3TR0McldqjdS5cHV/mCsvS+yxn5jZZOhHVY2T56ma6NZU6DFk9jesMNtys5QpOjal8cJTyAu3QXRQcg0SY9HUUcmYOlYIh2DSn9JODMn4mLOvtuWRBDlK1EyqtJl+yltukykronZI5D5NyMcCxzkXE23ITai2iS8StY+SXkMAMn0uh8NqxEjs5GpVmslHkQs57NLceiylM8AfjbyTetHtW9sO4V9RU6lcNYVV8p6PmvBsIiGJ9ZfM3M11xB+UyeHiNiu8L+oW+R5k1hfO47hY3lzF9G0nTF0dWcP92HriGicmAOiZInFNkX1vMbwS8sEYd73JVF5vEG2gprLTH2EYDPq7Kn5NlT7hm/TEXDb6oJHDk7K+d/Jbhj3fJdpR5KQJ78R6r8k9NpR+jZ0fCa8+n6uSKZiDW7UajRzqMa3uMg+6uugy8Z6L9YjkHpX53LzE9F9adKroWYdM3O6o2YxHvcmUWW0Vno1MCWp9DUBV9st9YnMS1AwSDSH2R3aNaGv1JzhC1LQSviSvoU4P+9bet9Kl2S7hYrIueYbynrX6a/2cB1n7DFGMPfbbbz+cf/75uPXWW5HL5fCVr3wF22+/vTUrXblyJcaNGzeisvXFR6FQKBSKTRxbmo7PlVdeiQMPPBBtbW0IggCNjY34n//5H3v86aefxmc+85kRlT2iF5/f//73uPHGG/H888/jJz/5Cd7ylrfg+9//PqZPn4799ttvRIEoFAqFQqEYAltYqmv77bfHX/7yFzz88MOoVCp497vfja222soeH+lLDzCCF5+f/vSn+NSnPoWjjz4aixcvRrlsPg92dnbi61//Ov7f//t/Iw5mU0Kus4p0xXzrLUuqo552l8Xyc3xV0g6pBqaEaJ9grsv0mHJSOaaK4hRAUJdP2kxByefVQPKYQafp3xTTUvwU3GM+V0dlfjuXT+EhU19SLtNPsp44aIiXGNNygymvQD4fp6VuLkG1S0pD99NwrclcV2swx7kMNtvnWj1EaX6Oj9M5XPqfKku6wbPLyHWbHY0rJJ0gFg60uujd2nw6rxblerGwQFb6b3vTPy9PMOdN+L+43W3Pms/jmaWrTZw95rN8bZzZliZ4qS9mF3JMO9KiQlKd/MxO+X35NF5rNZ/568VEejFHnQHTl7UGdzku02v8XVgtYySf2auN0h8NrgyAXYrO1cKeDYWJz01pBZQKkKyC3S9SAVGNgyJlShoxkhRJFEq6oWjOD2gf0m36vG15sm6zoUWJTW2uNNviapmvVffJzNQepRHqko5lujkrNijlVabhr70wFQDQtAYDUC/IHCmbMlatFFsdtkfsUYqS4tphq9ed67urpo5qXcZXpBd6SmY/06xRf5xfTInlRkGKyonlBOOP5Rbc9AuXWNsUNSUXpNxqk6RxpH+yPZKeSzzRed8xdVObJJYUGTNe2bSbXl0ly9pDmUTVZspdmOM2HUmrHnlW1ccbeYd6QzzZmC7ns8H2R5VzUPpwnPQVvTo8SQim9nlP2VSupPqDkkz03oRFBp+dzSauqMlN0deKpChISizLZeyRU7ZNeUWmvGyn7KdcR6WAWq2EjYYt7MUHABoaGnDggQcOebyvrw8NDQ1DHh8Kw17Vdemll2LhwoW4+eabHZHCfffdF0888cSwA1AoFAqFQqEYDAcccABeeeWVAfsXLVqEd77znSMqc9gvPs888wze+973Dtjf2tqKjo6OEQWhUCgUCoViaGxpy9mJQqGAd7zjHfjRj34EAAjDEBdeeCHe85734JBDDhlRmcN+8Zk8eTKee+65AfsffvjhDWZK+sILL+D444/H9OnTUSwWscMOO+CCCy5ApeKqff7lL3/Be97zHhQKBUybNm3Eqo4KhUKhUGxSiMboz2aGX/ziF7j44otx3HHH4ZOf/CT2228/3Hzzzbj33nsxf/78EZU5bI7PiSeeiDPPPBPf/e53EQQBXn31VTzyyCP44he/iPPOO29EQawL//jHPxCGIW688UbsuOOO+Nvf/oYTTzwRvb29uPLKKwEAXV1dOPDAAzF79mwsXLgQf/3rX3Hcccehra0NJ5100rDrzHaWkZZli8yjczl3tehyH+zS4zQGhc1nN5rUYJiJ89hpLodk/pxLLJlvbjbcFC6hDvppeyG5beH4BGmpnDHQJoHL2UsmF03uEAAEQYv5C3kydhm3yMELN8VylCrkYci2Ti6P8C6KQ0wnj78jlZtreqvOqYwhLalz1pmXpan5ThNrYQ3l9YX70sStua5/uimndUIPAOD1vVpsHYUOwyfIrDLLeIM+w/kJJxnOB8eHEv0ZcpUk5jp5OeSdNIoNhZ0nwgmT2MptCYsSchSE65DvEP4Al9KmyCNipwkvoUHGhLyimrtMmsvWrcWD1JOck/y7tSbhVqgetCxAl/Azmt2lulbOYY07zvWUaW/qLVyj7nLBAKBhufRVzh0ncpbyHdIe3ge0B6CdgFyXEn5JcVVdyjOxNCwzx5teNf1Zz8aV0/6jMk76sCT2LcL5YV9igum8unB3lvWa+cDl7ly+3y+8tJpwfeq0fhCuUDAxXgZfkvswkqXekXDWaHeTW2n6LCVLwsnpCYtmjsZ8EuGueRwgPlt4L5KnAgBlWUJebZZrUuacUs3E31sxx1d3msEIpd2cF1lz66BhBa1npM+F21eXeV5tMWPAexGIOXuUXbB2N5SSkHHm+HMOWmsPy/WTMaKVh1i60OIn3S3WGElJCT4L5b5OiWl2TiwsUm2GExIWZPzytLIQSxrKeshY0JIjCtwl+EGlZjmaig2LU089FS+//DIuv/xyZDIZ/Pa3v8U+++wz4vKG/eJzzjnnIAxDHHDAAejr68N73/te5PN5fPGLX8Tpp58+4kDWhoMOOggHHXSQ/b399tvjmWeewQ033GBffG6//XZUKhV897vfRS6Xw6677oonn3wSV1111YhefBQKhUKh2GSwBZKbAWDNmjU44YQT8MADD+DGG2/E7373Oxx44IG44oorcMopp4yozGGnuoIgwFe/+lWsXr0af/vb3/DHP/4RK1euxCWXXDKiAEaKzs5OK2QEAI888gje+973IpeLHQLnzJmDZ555BmvWDLLEQ1Aul9HV1eX8USgUCoViU8KWyvHZbbfdsHz5cixevBgnnngi/vu//xvf+c53cN555+HQQw8dUZkj9urK5XJ429vehr322gtNTU0jLWZEeO6557BgwQJ89rOftfuWLVuGSZMmOefx97Jly4Ysa968eWhtbbV/pk2bNuS5CoVCoVAoNh4+97nP4aGHHsL06dPtvv/4j//A4sWLUa1W13Ll0FivVNdHP/rR9S7wzjvvXO9zzznnHFx++eVrPefpp5/GzjvvbH+/8sorOOigg/Dxj38cJ5544nrXNRTOPfdczJ071/7u6uoyLz9RZPUcsiXR2miUvPtkw7upFcnH8Cwc0pQ8N7/TTENnqasR11+XfDT3ZfpdTgMT7pVx8ZcsAAjqhrOS7ZG8M3Pc3hs9ZeUh3Igo+arLXHjg8ghYBnP3iEwuPy3aHClyn0R7JGV5K558O6XjqVuUihtOTgL1aQLRraHNh9XAES2StIxBbhVz/O47O20lyM/p7jC/O/dskHLj82si6WPtPaQfaqL3URH9klhbSHgU0rx8l/BsyuRdwDmf3J5SG3kpcZzkaJDbY/lTfabd9WYh66TIt3I5P5xb2V5aObh6PjZmiSmf+NhJnaVqk8xXGd5MH9spJwpXJSvttNygAXMVTt3VZdKxzaZfe7aJJ2PLi2LJ0EV+jXst9YvSwuWwfZr25yY5cGbT9Jq0c2U/kgjz8aMt22v+3j+enBTyy6Q9tFHYRsZA9InWdBgOWFiVOSg6P/Uqb3Tpxwp1YMzuVCmea6mI2jGi+dXkEqwsR4S6W3L/swT7zJBtSu6PtNjf+HYp2XRcd6ndiL2F480c++hb/woAeL7H7P/Ly0bzqCb9E2SpayNaO5TOoWqJzMkKnwuBqykVJnhVvLaepxaOhMt57ZVNXSfOi5x8eC+3UrfJ/C6I3lOUNicWX+82BxL6ZOT2QHiQkWjNWbufIjlKGTdGmfchrWiEL1UdJ5xA8utEOyio1m2ZGwVbaKrrwgsvxGc/+1lMnDjR2d/Y2IgHHnhgRGWu14tPa2ur/XsURbjrrrvQ2tqKPffcEwDw+OOPo6OjY1gvSADwhS98YZ3qi8mVYq+++ire9773YZ999sFNN93knDd58mQsX77c2cffkydPHrL8fD6PfD4/5HGFQqFQKN5obGmWFUQUDR50T08PisXioMfWhfV68bnlllvs37/85S/jyCOPxMKFC5GW/wHW63WccsopaGlpGaqIQTFhwgRMmDBhvc595ZVX8L73vQ977LEHbrnlFqRS7v/49957b3z1q19FtVq1wor3338/3vrWt47YyEyhUCgUii0Vr7zyCr785S/jl7/8Jfr6+rDjjjvilltusR89oijCBRdcgJtvvhkdHR3Yd999ccMNN2DGjBmjrpuZmCAIcP755zsKzfV6HYsWLcLuu+8+orKHzfH57ne/iy9+8Yv2pQcA0uk05s6di+9+97sjCmJdeOWVV7D//vtjm222wZVXXomVK1di2bJlDnfnk5/8JHK5HI4//ng89dRT+NGPfoRrrrnGSWMpFAqFQrFZYiPr+KxZswb77rsvstksfvnLX+Lvf/87vvWtbzkfEq644gpce+21WLhwIRYtWoTGxkbMmTMHpdLorTwWL16MxYsXI4oi/PWvf7W/Fy9ejH/84x/Yfffd8b3vfW9EZQ97OXutVsM//vEPvPWtb3X2U2tnQ+D+++/Hc889h+eeew5bb721c4yfwVpbW/G///u/OPXUU7HHHntgq622wvnnnz/ipez1xhzStcGFeSyvRrqvknFz/tSq6NuK3BDhCAzCw0qXyYMxv+lJRW5DXXLg1MOo88se+UNVw/2pSW6cfI2ccEDynSaNRz4KdVDMNfLFTjgpyRw9EOe+I9GhSVdMe7O9Jqhst3h6VekvJjyFmsvHSNWk4QkfHsvhkRgy3ZKPz5JHIueShiQ6RlbPSPLsUTEnsRrNlUDa0LDSbHuXm+PpUlw39UiiPD23ClKnxEYfrBz7wWxD+V3qMUE1vezyUtjH5BllSq5mCRD7mJHTZMe5qSB1uNoiVsdGeBWlNvIpTHn05KKfEnV86PGVRKndjDP5E5wz7BnKlGRFl4rt8PlDJflIW2uUumXOVUN2ILWYEpwuSvvInEiX3blWaRYuT5XzXtpPfo30A7k+6X7OPdkvHCnOveSdmxGtn+ZxJmXfK7o75JVUxbKrb2WjExPbQdRpB2U7TMZXzkuVpX874+uoN8P2c7xqReHLTDALQ3KvyzXSP2GDzOsG8s5EO0q4bLk1wrsTzk+qU4Lrj//BaXnOCPGsekm+xMt/jtty5lyrOyT9kWowZYXyNT3bKwVJ7PYZ5G05F/m8AGIOz1CIOVyyzbq/6enGe6ciTag0mRPyXfSuMwtYWp5aFRdu/1MuXJwMB1r4dCs6AMTzgr5ikTvcdpzr5PzI8z5FvlU1RL2GjYeNzPG5/PLLMW3aNCfjkyQYR1GE+fPn42tf+xoOO+wwAMBtt92GSZMm4e6778ZRRx01qlAffPBBAMCxxx6La665ZtgZpbVh2C8+xx57LI4//ng8//zz2GuvvQAYz4xvfOMbOPbYY8cssCQ+85nPrJcT6zve8Q78/ve/3yAxKBQKhULxRiGAowk64jIADJBtGYzres8992DOnDn4+Mc/jt/97nd4y1veglNOOcUuKlqyZAmWLVuG2bNn22taW1sxa9YsPPLII6N+8SGSL15jhWG/+Fx55ZWYPHkyvvWtb+G118ySiilTpuBLX/oSvvCFL4x5gAqFQqFQKMYOvmzLBRdcgAsvvNDZ969//Qs33HAD5s6di6985Sv405/+hDPOOAO5XA7HHHOMpZoMJiOzNgmZTQHDfvFJpVI4++yzcfbZZ9u3xrH8BKVQKBQKhcLDGKa6li5d6vy7PdjK5jAMseeee+LrX/86AGDmzJn429/+hoULF+KYY44ZZSBvLIb94pPEm/mFJwgjhMIfoZYKdV7INyDnIdfj+hARKeH6kL9gqS/O90pX84c5bmq/UHNmoO4JfwsnICc8k4opr7BKeBZ9Gae8dGwjhJTwTMjtYR2W6yJ1U++F3IVsr8Q8XrxshBOS66w5bYl9eRhj3D/We0l4MRH5JNmc8zukJpJwgizHI3B1W6qS+6dnF7kwRVE4qMULApDrdhPzoc31e5yOnHstOT7sn+5tTF3UGMn0kztCvoppN/sHANL9LkfF9omMQabbDFBW9Erqoh1FPgrHnV5X5Ndk+/jb1Qly2iRh+HwazgOr/dPJ+ezOTavnEpiYu3YwBypT5H6ou5otyYc0tZFalhgeSfc2OScWqx0l40fumw09JRoqwsfI9Im2Vq/L7QF1VRIeStRayXUIH8jj2VS7hRe2XHRdcoxFti2uZhIRit5NvUH6q9XEVEks/IhEV4d6SvSssvcY522zeZbae0fGpNboaifxmVIVvyzq4mSEl5N69XVbd+r1TgDAtN+YBv1k/LsAANvsJDcFeUd9MgfLZq6lK5wXcpocpm4Z4Y9z8rnGe4XPlIzwhfj8sdpJ5IdxGhTc6zhW1nOO55EbJ1y4TF9MuG34h1wknK6owbQrWNUpDZG5s9z8zstA15okaGti5zTXPnvs/V2qIrURST5juZy9paVlnf9+T5kyBW9729ucfbvssgt++tOfAohlYpYvX44pU6bYc5YvX453vvOdowt0A2PYLz7Tp09HEARDHv/Xv/41qoAUCoVCoVC8sdh3333xzDPPOPv++c9/YttttwVg3gUmT56MBx54wL7odHV1YdGiRTj55JM3drjDwrBffM466yznd7VaxeLFi3HffffhS1/60ljFpVAoFAqFgtjIq7o+//nPY5999sHXv/51HHnkkXj00Udx0003WfHgIAhw1lln4dJLL8WMGTMwffp0nHfeeZg6dSoOP/zwUQa6YTHsF58zzzxz0P3XX389HnvssVEHpFAoFAqFYhBsROXld73rXbjrrrtw7rnn4uKLL8b06dMxf/58HH300facs88+G729vTjppJPQ0dGB/fbbD/fddx8KhcLGC3QEGBXHJ4mDDz4Y55577gZZevZGIKiFgPBmag2up0+tSP8YT7dFNEWqze75VgdD+Dn15JzwfJ6Y0w5o4UOOj1xbaxS+TEH0YJrFTywnei91U1Bvs+EAZMRvKdNLz6NE1RnqDrHNZpsWKRDm+KkIY3VfQjfVSf+hei4r11GrheItbluBWPvGchjI5anTJ4g6PvQ6Ek0k4cRUm4z4CjkONvcvW/JqqnK8uCKuuy6crXqL6dxyO7WA3HZZ7Rn2D7ku5P54UjnkxFg+BnVSEufVJ8m4tAg/qle8x0THCORFVV1NJFsG+9D6wrn72fflNvKW4rorLdJuagDVeQ2cuDmf0xXXs4lcpqZXXE5btYV+a+Z4tZkaRXHdPVPMOeSeNawQ77Vus79/PDWvZO54Xl1V8RlLkYYh52VWS7/RlykvHLGGmKwZiL5YfnVJ2ivaVqLTVVxBzh69zMz+vkmuvlXgjbftW44z+29cLNhVLpB7JnUtIwdPTrDPBnqYyRyyzwPhz3XTo060aEQ7K1UhaUgKysYDXn/FrKzJibbPTrcaTsZr+xqPrnB7mVsZ6Uvxs0tbzlrkbDmeNS9Gq0+WIKBw3OD1GcEyLV/Gu8dYFp9/fH5xjsY+elJNLqERNrnN/CVF7TPhh7WI51aHNDBgO4Q31ht7cCURZeiXZ/qW/nphLoOwtjGFfDY+PvjBD+KDH/zgkMeDIMDFF1+Miy++eCNGNXqM2YvPT37yE7S3t49VcQqFQqFQKARbqlfXhsCwX3xmzpzpkJujKMKyZcuwcuVK/Nd//deYBqdQKBQKhQJbrDv7hsCwX3wOO+ww58UnlUphwoQJ2H///bHzzjuPaXAKhUKhUCgUY4lhv/j46o5vVoT5jHVwpTdXTXxzyENhfj3TSz0cyRWLzk9WPJ3K4nVFLZN6QiuKuWryRuxWRqZecDVWwqIktYviVZQxv5sbTR4/LUnvjrQRn6mKU30ouf/A8x8CYj0Xamqw4b52DPlB5HqQGxK4KfGYG+Lp4iR1MayOR9nVEuI7daZfdGyEI5Eue5wXcoFEx4NcIL9u8k5yPfF/dcgrqrTSCEz2510egdXt4V1CHk2CJwUkuFBSHMe3Ipyovklxw4srzTbbnZY6XL5EQK0oaoZkSeYxG3pypTzOD8eA2jQ8j1wYAMh1C3+mJPwQ8siy7DuXT5QWjSWr3xK4+kSF1XKe9Ae5YfU1wstKaCeR18aycl2m0+ibRs4XY/F5YryH2J4U50NZOl90e4KqaEnV4kkZCperXhQOmvBj6CVGDh/nYK9we/pFkLbaQj6N6Fh1uXpFmT7RnKpzAsSPVfal1UySsMgfsn1YZnvhgH2d6fW8ynpMZ0eiGZQq07QtrjvVZLzHaisNoSjdZ27ct/Qajs+ameMBAB0zhNvUynuLvCuzP2csv+yYBZzo3teDbPLvvZ6vV548KZf3lxWuD/uFN18Fng+Y3Is5efZwzsX3XEJjSLg91Mii7x+1j0pbCdfH09TivID4xNEXkNyeetFsqy1xS2s17+G3AaGprrHDsN3Z0+k0VqxYMWD/qlWrHMd2hUKhUCgUY4RojP4ohv/Fh27oPsrlMnK53KgDUigUCoVC4UK/+Iwd1vvF59prrwVglq99+9vfRlNTkz1Wr9fx0EMPvak4PtXmrF3uGtol1O4XrWyPfL7trTr7Q8rq97oWDly6nC7H5ZTGyed2u5TYjSPKUBZfUgJFd/lkQ9F8882l5VO/zOxiwewPZaltXbZRJfGRj/L4kmepNbjL223dkm5L93FZJ9sv2245P802SOqkPLiVRxI2JRW6dySXFqdqbsqHJaVKps8zsk338fM0P2ObM3ummg7tmRKnmyjJz7QC0yo2lSXtp8w+U192eTslB/ylulZO32zrxYFa/tVGNpDnptz2Vt3Un79815c7YIfQyiDtpeGSaUiOR6ZPtly+yyXBtAnJuUuwaw3uMvjIS+n5Fic2vZOIhXOmY3szHuOeM79zHeakrNiIpDODz5WG5ea8lKSRM0tek0po+cG8LBsTz6eUpIUCSVXUC2Zr04ue9YKVjmgOnfOY0orlGZimZB6aOgaJwK19i1u2TR9XzclFpu4oZ+Av529203GRtUUJnTal+uJnS9Bv8otpSQOGfSaXnXrZWFa01/g82goA0CUWLJVWaX8TY3fvTabdrJQE60ucRskLm0YvueeyT9k+pouZRudY1OR+oX0I06f2fEmvsl+cMqVP+fxhipuoSJ9mmGYnhaHKtCOfd5z/LpWhnk/HuXnFZoX1fvG5+uqrAZgvPgsXLnTSWrlcDttttx0WLlw49hEqFAqFQrGlQ1d1jRnW+8VnyZIlAID3ve99uPPOOzFu3Lh1XKFQKBQKhWJMoC8+Y4Zhc3wefPDBDRGHQqFQKBQKxQbHer34zJ07F5dccgkaGxsxd+7ctZ571VVXjUlgbzTCbICacB3IAeHSWy6tDblMXewHyM+xy1z7ZQmulztOLq0moi6zrQrPxvIouri0VvgXZXIaTBndsvQ0O97ERq5PPRROjPAP6hmuUU4QU/qF60DqggSeIuGoxiXhwhMquNL1zPFbi4aql8cX/oq/3B2IeTR2OWoD8+eSX6+SX2HKLLcKh0H6MiN5d/JWrIWBWD/U83k5Lsuhx8WxUQafy69z3YFzbuCp0Fu+hdU3kP3CYalRnsDj4RRWuEuYnTIkHMv5oIq+DA/5NFyezhi43/KNeL4sG6atSGhX3MbtzndI3/aTeMIlw+7yXy7vLrdSfkGWcfcxCNbtcpg4L8i/SPKNShJXaYLE96KddLKDvArXgoGcnlTJFBYIpwtFGcRQ5vtE8wU64j1bjgcxzIt9R9aVL6BkQsil9G3kADnNQrrMZezyu+q2k/1jrTpS8f0deMuyy+PkHP4Wsfuq8E+Kq8jVcnlnNpgCJxAfNu49l8nFFITsGkO+C2TRiZ16rWL3kjdBFFcIT7BTuIzNpuxSm8u3snwicvbS7tgFtbjdua4EDwZxH8XSCLLhs9GTa7AnkAskza01RLJ1JThSlUSfe14y/v1r5yldYigpIc8r3nOpqqk03yXPmCrlHdimFGrVYS+MHjGU3Dx2WK8Xn8WLF6NaNbPkiSeecAQMFQqFQqFQbGBoqmvMsF4vPsn01m9/+9sNFYtCoVAoFArFBsWwv9Mdd9xx6O7uHrC/t7cXxx133JgEpVAoFAqFIkYQRWPyRzECcvOtt96Kb3zjG2hubnb29/f347bbbsN3v/vdMQvujUSlJY2q6H5kxZIisDwE4QTQ4kBy3ZUmV4vF6uGkPH2chJyE5QmQutMXOddYafcuphddLQpaUazpNPn6oN2I04SiQQThGUXC8UkVEoSTJpO+jKiRURGuUqfktldRY4exCl9BZo3lcEjs5CvURe+EOj/kRLDfkrC2CfK7VhC+RGPOqZt9H0qHVMj5qUXONtMjdiGiC1PZweVtAHFuP/Iytsztk3dDmfyU6P2Enj4neRvsj6zo/uSEC2L5Sol2Z0VDh5o5tCDgHCIHghyGmq/74nGjyH3gcfIYao2RcxwASt3sO+F2vJ6ReE2h1SZaFZhtyTgaIL/GbBtWhvK7KnUIF2Sc6P40UHTIbNIJ3kVBOjsQ0XdrC0LNqz5TJjV3yF2JxC6AnJ+oaAYhbJBtlhotpk28J8NM7AvDPmOdtCqglYG1PxGuB20kqAXl9z21edLCy7I6Pz2cUPHEsnMkx/GQrfzmPOibYs7juJN31vovM485nwdo59RJuBKeWlfC8yJHvwfRCBJuT9hmxHF6tzE3Pu+txuc7AAB5sb2ovd0I+lQbhUfY7fKyasI34n2S1LWyFiq+NljK3fLZwPG1Fiyy5T0Fqw1FPpr5zXss152wKMmTc2kq6Ztk+qFvK3Ntvkvau1x4SMJxK41zdYw4jr1TOEfN3uLrcUND/yGyIaGprjHDer/4dHV1IYoiRFGE7u5uFArxvyT1eh3/7//9P0ycOHGDBKlQKBQKhUIxFljvF5+2tjYEQYAgCLDTTjsNOB4EAS666KIxDU6hUCgUCoWu6hpLrPeLz4MPPogoivD+978fP/3pT9He3m6P5XI5bLvttpg6deoGCVKhUCgUii0amuoaM6z3i8+///u/AzAKztOmTUMqtfH0C94IVBsDpLPUryFnxZs1nr+W1VQRnkEfNXl8r6cEzYZ8E1/XhXot1Wb32rTnZUOeTa1H8u2ri875MT9FtCcKVuAF9QZyHaQOciDoQUaPsQ63fayb/AV7nnB6yLdhDFXhznCbvCZTdnkwoeebY8/3+VFSVDVHryvzOy16QLkeU0Gui35jCd6FjFfKtViLeTOUGrFeZhKr5Phz3S4/w/dXY+z0xEryD8inSHmSENmVhttSaxbyggi99E4VbRXJLNc418j1kdOpb0I/KWovJZ907LuKzKlQ+CK9k1weVKVFLhBxFXrSkbNDXlJagggnkOPD66T8cqKNEkZxFXWXzO96XrSeQmpKmfmbqrriT/UWs7+8lblByCtiObludy4nvZtYOc+lz1Ut5/Ll0iVzQrFKnplseR+zXRxvaVOuwykmoaEU/91q/Ujf8lai/x31aziu1JKyvlH0A5QY6g0kHrlcMautA8T+ZTkz4PUmM8CcY7wn6I9FXZ9Inu28X8vtnCem7+mfRf4YY00n6EXWt83T0KGvn69DZXlV8hzgttws/CKJMSv3oH32SH+RhwQApfEmsO5pEvd21IKSufYCn2+iw9YsHB/htFkdp7TLk0v3kSMnY9YP1Msb799B/eIzdhg2uXnbbbcFAPT19eGll15CpeK6Ir7jHe8Ym8gUCoVCoVAoxhjDfvFZuXIljj32WPzyl78c9Hi9Xh90v0KhUCgUihFCU11jhmF/pzvrrLPQ0dGBRYsWoVgs4r777sOtt96KGTNm4J577tkQMSoUCoVCsUWDqa7R/lGM4IvPb37zG/zsZz/DnnvuiVQqhW233RYf+MAH0NLSgnnz5uHQQw/dEHFudNSzQIrWPuRTZN1zrCYFNUfI05EccbVp8OtSiewg8+LkmyS1MICEbovlLphtRvQtqKFBrofNu0sdzImnV0mBCQoANVDqXnyWT1Tx9ksun/n32HtMNILENyuScsmBCZoHqYeSL+RNZF0eReTbolg/MPHqEf5BzMtx+TYBvcosVwIDYLV9PG0R8qwsd0l4CcXVwnnpFc8ielxZPR9yJoSnIHoxSQ8jCohVxBfK+l2B3mJmwBuWGdJHticr5wsfQbgM5OmQb2HnmMSc7+b+gTojbBevYRmc59ROSdGjimVlyPkwk426P1bPSvq+0iblFuN2U3+lKnMh12n254Sblu2lr1vGqYvcDev1JGNW9zzJCqvpizeguVYbi31NzSRqx1C/Z6D3HGN05xznS1X6rUo+XpPrwwUk+C/9gbPNdcpcYV97/mbUDmMsvKesBxnbwns4zxsh8S8bn0tp14uKvCpqZtXy5NU1ytbl2VTqcp48z+g3FjZJZ1MbrJb4f3SJ8Qofpld4NOLVVmuiF58p6/+3d+ZhVhTn/v/22WefgRlmUAYQNSzK7pVMNGoUGQx6MZJEDWHJQ/RKRkExCvw0CCgOgoJJLkQ0BjTRaLwRE42yCYjiSAyKiiKuLFEGIsvMMDBnrd8fXW+drjrnsJ7ZmPfzPDyH3qqrqqubpt9vfd9DNXb9A//RvXaUzo7qJLVQ/hr9Qtd3iOu1DnaS5+oo/YtCpHuTVSuU7Win37/q/s+QdcuzD7BkfsNYtX2PUk7CqA+I8otEq+S4v/jU19crv56CggL85z//AQD07t0b77zzTnprl4RgMIh+/frBsixs2rRJ2/b+++/ju9/9LgKBAEpLSzFnzpxGrw/DMAzDNDoiTX+Y43/x6d69O7Zu3QoA6Nu3LxYtWoSvvvoKjzzyCDp27Jj2CprceeedSafN19bWYsiQIejSpQs2btyIuXPnYvr06Xj00UcbvU4MwzAM09hwmCs9HHeoa+LEidi1axcA4J577sHQoUPx1FNPwefzYcmSJemun8Yrr7yCFStW4K9//WuCuPqpp55CKBTCH/7wB/h8PpxzzjnYtGkT5s2bhxtvvLFR68UwDMMwTOvguF98fvrTn6q/Dxw4ENu3b8fHH3+Mzp07o7CwMK2Vc7J7927ccMMNeOGFF5CZmZmwvaqqChdddBF8vnhCpfLycjzwwAPYv38/CgoKkpYbDAYRDMYNKGpr7URLkUyotFgUfyfdAcXhKU+MK2LHgMlzglA6BAq/e2VcPju+D3mkUD4k9SmSvGQi2qLSBymfHqlDoIi30jjI7aSJkJIXuJLk06H2kM+Lu0FvX/wA2p80LOQdQ0IkeU66BELfz5kcy4yrU54z0ixRDh9fbUxrL+0X12XobSE9QzBX+ptESY8Ub4bSEclzkVcSoeog+4V0VuQ1RFom6iflPUTeJORjFCU/o3g/Uv4g1Z5c6YFD+ZAO2cvuw3RS0oRIvUKE2qBrmCi3E+lOlBeJc0iS/5L0WIlKDU4sQB4wsn0yR5XnIHUuFWDXzSf1JzS26JxBeYuF8yg3VLzTIzIZXSSH/KTsX9JZ0E2idGWyruR7o/Kmyfaavk61XeWyl/yg4n3ukfoh0mbQPURlkT+TyklHljmUc4/8euRYpHFA6ym/WjBP+ryQDxLkc8R5TsoTJ+tNejK6TmYeuXA25dqTGrAGryzP7gDPQV28ZkUceaT8Ui/lM3RA5Ncl72/y6zlcKHNcyTEXNfLEkWZR9eM+mS9P6bKcFZH3fj15odmrQ0V2fX25dodEw+QZJL2kMu3f8D6pL1MaKLl8SNcTusLymhTENT7Uhzmf2Os88vEezLd/SdNG+eyifvlclloly0uGT7Kj9tmDz3dAPv9lecIFwOFd1OgIoWu4TrQM5vhDXSaZmZkYMGBAo770CCEwduxY3HTTTTjvvPOS7lNdXY3i4mJtHS1XV1enLLuyshJ5eXnqT2lpafoqzjAMwzBpgGd1pY9j+uIzadKkYy5w3rx5x7zvlClT8MADDxxxny1btmDFihWoq6vD1KlTj7nsY2Xq1Kla+2pra/nlh2EYhmFOUY7pxefdd989psIscwryUbj99tsxduzYI+7TrVs3rF69GlVVVfD7/dq28847DyNHjsQTTzyBkpIS7N69W9tOyyUlJSnL9/v9CeUCAET8czRNJVehjMN6KCNKYRfZm/Tpn9JFUHaPWFifPgk4Qj1Gagoqg2zTVdoEGRpzURkqzQTtL89lTHOn/YJZ8XOrT/sqlGf/0qdcrwyfKDv9GLVbDyfFPBS30qcLCz0jgEplASSG11Q6AZdlHCP/QodSCICmYFPqC2lpb4ZEhLx4zlCXmvJO4RJ5+VWIQ01B1vejKdWUmkO1xfjsTu2nkEEkYHQE4ikGAt/IqfEyXEIhL5qeS31G4TYVpjOKNEN+fmlfQNcOiPcNhaQs+Sk/TNdL7hfzyGnM7ezCQoX2csNBGTqo16d9Uzgi+9+y/DoZxmqIf1CmKcIuGdqgulAZFDZUyxTCO0B1sn+pH0x7gnjIiOZ/x8eRCvfRL0VeZR9SqFOFo2h8+HWLBArxUMqSzN12JT31dqX8++X1zoi3OyTD3+FsfTq+GVaj6+Q5pIeHKVRL6TRo/EdkSIh+3RTyOeyY5i3vRwp/0ZAhGwv/PjldO9cj62qEuIxnBz2EqD8pPQpdOxoHQHzsU9+G82XaCL/9G5VT32M0BV6GsmKZ9vagfGjG5NR7Gs809T4o7SCoXxvaxa+3CvN6qL16Oyi0FfPJgSBDW5ZP3r9yjFoNeohU2T/I8l3RxPuwUUnHrCz+4gPgGF981qxZ0ygnLyoqQlFR0VH3+81vfoP77rtPLX/99dcoLy/Hs88+i0GDBgEAysrKcNdddyEcDsPrtUfoypUr0b1795T6HoZhGIZpDVixRJ+3EymDOQFxc3PQuXNnbTk721bZnXnmmejUqRMA4Cc/+QlmzJiBcePGYfLkydi8eTN+/etfY/78+U1eX4ZhGIZJK/zFJ220ihefYyEvLw8rVqxARUUFBg4ciMLCQkybNo2nsjMMwzAMo2iVLz5du3aFSDItr0+fPnj99dfTcg7/AcAlp6LGjF5SdvqZMm4v9SaH5cQ2igWbOgSl0zkcX2dqWGjKKE3LtcK6zoam3lIcOyqnJlsyLh+wjbTh/Ubvn3CWPpXXWYaaWp5iii0tu0O6ToHaR9N4CVWOobcJ7HNMMSYrAFlGPPWEvny4vT5tm6YKh/KQ9HgzRYVqA6WngENPRNotwwJA9ZGRgqRBTltvyLc7LLDfLohSIrgipF+ROoQ8Pd0CEJ+OHtgflfXTp+fTWPOSxiNCGg9d60Vj8GBHqQnqpOsWXA16agS7DP2X+sYrvQ7ouqlfmU6Apr1Hc6Q+o53UQkitV0iO1YZv7H7xynN6a+PndoWoUFmHkF4XlbJFXgs1zn36L1klUNYJl7G/0nY5tBehbL0MpVkhzR65MZAmxKdvV9o3spKIUeoOewOlJiEdjjucOM7j9SENkizbq9dBafS8+v7RgLQ7qLMbSFKmKE1VlzoyWnaeg/Q/yl6BtHrkYqBSz+hVPFgor28+aYVkm0jbc5jaCG0ZAHxkBRCj8S1TrlC6FH9M205jzQrruhq6R0mXRuNeePT7RTie0fS8oqnmEfmMVGkypIYNGWQZIa+RPLfngLyuUk9JY0s9H0hnFgJEklQ4jUU6ZmXxrC6bVvniwzAMwzBtCvbxSRsn7ePDMAzDMAzTWuAvPgzDMAzTwuFQV/rgF58U+Gti8NVS4N3+iQbIv8b+UNYgNT0UQ44GSLdC4hFovxGfsd1RtkpRIWPg/r2k0bCXM/bZG8jH4lCJjL/Lc1Is3BUiTZBMoyDj+RSndmofKDZP2gfSFVDcnLQtZLtP/j4q1h3Wf5VOwdBKKD2SQ+uSZad7g6+OYv1UlozhkwaC6kaxfGqnPCf1PbXLW6fvp9rk8E4inRCVoXx5DK8ghxWMvSyvEWk9IhmkTzD8XkgL0aB7sth/19tL9QrJvlF6qL32XwLVtjmK65B90ljA7pBDXcn4Sa+bq0g3xDlc7PioWyc9Xw5JvUi94XFE11HWja6X0mmQFoa0MX7yPSHdBaWL0K39AcC33/51G5osGjOkkyN9RtiR1gWIX1/lOUXjgnQsdL3piea4dqaPi+k/pHx9aIwpwxtZd6ldofao/lH6I6lLkR5MlNLCLot0cTRWZFmkcZJlks5G6Yy8NB50bZe6MegaUNoMr/GwcWwjLxx6FkS9uq6MUlaoOrv0Z487KPcjfzLD7yqWoEsCIlJTGCX9IPmNyfQhsSDVSR5rPBvdh+U5c+UYk9tDneghI8em8paKj3OqVyRT11eJfLviFvkRUaUO2Z3u2yfLMnSU5EVk+ncJt5ESprHhWV1pg0NdDMMwDMO0GfiLD8MwDMO0cDjUlT74xYdhGIZhWjo8qytt8ItPCoQLcIUo7qwLcXwuirPLOLP0lCEthJmHJ56XSG53jD2V/4vyBFHMP6T/kjcMxa8zq0m7o2sHSCNAXjsqb5YhO3IeQ741btJw5NKx8hjSYZBnEPngGB4aKu8Q5bgijyJDhwLE8wJFMt1aHWhfOielf6M+pHNT2TEv6UpkGw7pegXlSZRE20Qk2LjTOQy/F7WZyqLrL/1RPFLbQXmKqA3ukEPjc0hqFpRHkkfWT/aHbEc4S56kWAor3LbopaHAXl/XSWq9SuVJsu0O8bmlhkiOUbcn3h9UDaueBDKyaDnm1PWkcRGm+tu/QakNsYKUYI521HM4RZW2In5un+Gv5Kux9yGdFPlR0XUM51M/yb6VGo7Mr+39/Qf0c5K/i8qnlKFOHdfmHNbrYF535fVEXkC65U78Pgnr2i26/oSzXKU9I42dkVONNE/0DxLpS+i54JbGN5b04okaed+ojylfnHBcb6HuHT0PHOmHlDbR8O2Ccc+Zmj36Je0f3YuhfGfF7B/yvCG/JtJJWm4ajHI/qU20KGeX8S+Tt51dQGGeLbQJRe1+2LvdNvhxegjReIXyEJJVqiHBkTwnXbao/nCkcUDPWmofPZvVNaTnG9Pq4BcfhmEYhmnhcKgrfbC4mWEYhmFaOiJNf06Q2bNnw7Is3HrrrWpdQ0MDKioq0L59e2RnZ2PEiBHYvXv3iZ+kieAXH4ZhGIZp4dAXn5P9cyK8/fbbWLRoEfr06aOtv+222/Diiy/iueeew2uvvYavv/4a11xzTRpa27hwqCsFoRwXLCnmII2G0p1IPwyK23sNjxzSBCmPjYDu5aFyyTj2UboRwzumgXLU+HQtj68Wsm7y3KbnDHnxGBoXla/IcS6Vs4e0L6QvMHxLBC1TeD6ib1f+JhRKp9EV048D4voAUwuQLLcWAHgMzxXC3aDH56kcpfkx2gQ4fHgC+i/5dCR4xShvFWjnIi0T6a9oPfm4xAztEwBEM1zynNILKl/+tre3B9vbxx6Q2g1vnX1S6tugzJOFAvti+DLsysakTiESlmPWY++XEYgnZwsH7QrF/FJfEyOvFBrflrad9DXkz0P6C+W1JMeUu17X+tBgdDk0EG6Va07X/5BOhvqSNGsNRVKPQnmy5Ngj753M3bLdftpP+lpl07VwaF0MX564dsnweXHp15Gg8azy6NGYo/uEygsm/qtC7TP1fuTxZOaNU749EV0DQ7hVsiv9XCGZP450PEBcy6PuKVqWfaqeZ8av0rr49TrHAlJnlG3vaMkxhsOJ/4xYUrND2h2lE6I8WS59TJGGS/VTQB+ToVq7Ervq5QOxwb5o3v0kRIyfm54tpDWjfIfeGsM7iO5nuo5yjJrPswRNo0NmFUu85KccBw8exMiRI/HYY4/hvvvuU+tramrw+OOP4+mnn8all14KAFi8eDF69uyJt956C9/+9rebq8pHhb/4MAzDMExLJybS8wdAbW2t9icYDKY8bUVFBYYNG4bBgwdr6zdu3IhwOKyt79GjBzp37oyqqqrG6YM0wS8+DMMwDNPSSaPGp7S0FHl5eepPZWVl0lM+88wzeOedd5Jur66uhs/nQ35+vra+uLgY1dXVJ9nYxoVDXQzDMAzThti5cydyc3PVst/vT7rPxIkTsXLlSgQCgYTtrRl+8UlBOBsqARDFmZWvjdQukFbEX2MHgT0N0nNDxucpxm5FzQ9rRuAegJviyYbWReW7MtYLIw5v5qYSRv4cinuT7w0ARPNIzCLj8YdlDDyi+w1RnF5pVUh+4DGWaX/aj/xMqM5J4uGm2E55btAxbr3+Kr+W1FUF9tu/pKUgHRXpN0j7oels6B4mSYesA2k4TN1UjJ4JRl2DefrxDUV6biuVn+gwEogZHkjKU6WdfU0sr33BgwH7ApKOhq5F7IDdUaEImYrIH6m7cJOfTxI1I2k1lJbHS14xhlbHR4NS/uyVdZE6HNJTEa4g9b297MzVRddH9S1pPOQpSPMSOGCv8B+Q3jPZ+r1H/RbKJ/8n+7iwzA3V0F7387H3kfUhTZo55tz6OZSPEe1PO8q/qPxwUhMUdOvtjvt+OdZF9fbHz03b9WNdEfIxsrQ6xjz6s4Q0Y3WldseE8uLb1D1vPOVVri1ZF+U7Jpc98rr59+u/5AcUybZ/SW8Wy7Ir7/LFB4SVY7cjKjVnQj5DyV+KxqmQebLC5iPSbejKDrm1ZdODyam7UdocI2ei8ikS+n4xw6eIxi0tK88w8oZSecfi+euaAgtpmM4uf3Nzc7UXn2Rs3LgRe/bswYABA9S6aDSKdevW4X//93+xfPlyhEIhHDhwQPvqs3v3bpSUlJxcRRsZfvFhGIZhmJZOEzs3X3bZZfjggw+0dT/72c/Qo0cPTJ48GaWlpfB6vXj11VcxYsQIAMDWrVuxY8cOlJWVnVw9Gxl+8WEYhmEYRiMnJwfnnnuuti4rKwvt27dX68eNG4dJkyahXbt2yM3NxS233IKysrIWPaML4BcfhmEYhmnxtETn5vnz58PlcmHEiBEIBoMoLy/HwoUL03uSRoBffFIgXPHYb5T8OwxNCHnLuCIUOZU6DKnxifqlB4XKkZP8PHahVJbUXUDXpph+Hypu7da3U93UfuRRQRqJQHzkWw3y5LRNxuopFxPF0039UDxGruekoromeOjQ+RzxcBU/p3VULcNrhUL5ykPD1DpR2qgcvS7hTMphJMtz5FOyDuuajLBMh0XaH1o2/U6UL43h60E+L5EsqZUhbyappQmF4gIG0h2oXE2ki5F95d7plWXrg8UytARCHhcNeWXdpWbCsi9mg9T+hP3xW9wjNRhRWUEhrx+kDkNpekiHIXVCotY+B/n3mHUyNW/KD8XxkCWtVcTQSJr+Nm55DvJGorFEWhg6p/JOUuXr5Tr1Rd46qjDVU9cXWVJf5DF8qygHF3njmN5TKfV1rnjdaMyQPxHp3UxPMNrPLTVqngaXtj2q8mvpz5JQrtQZSW0PeTIBQDRbXj/Sy6ixp+fF8hy0f3019nGBA+StRH5O0H6DeeS5I7U++fKadYgLb1yGXw/oGSnvBUGanah+HQkrRM9SaHVU2h7j+eaUTdJ4zJDtUc9EQ/eofLboMUjPCuOZS7opej6Y92KT4ZiVdVJlnARr167VlgOBABYsWIAFCxacXMFNDE9nZxiGYRimzcBffBiGYRimhWMJAeskxc0ne/ypAr/4pMBfA0Q62H+nT7zxaZL2b2Cf/kmYPrcGc+0D1Od6ShNBX38dVv6EOVWcvsWpac7ys7qLPuEbn3otmv5uTI8101EIV/wjXzRDfsqmlAT19nBQ9vkhczooTcnVwzUqDEd1oLBUhrHdafWu0j8Yn9MpDUKDEeqj0JAMp1B/UOjEbaTTUOEHCqE0OMIPlGKA0gaQLT59RpchDWFYDKhP3DTdmcJxlFZB2gFE8uUF9stQQ7zZsKI0Z5raYTyIjCm3ZlhRpZGg6yyvhTsmQwj0GZ/SFDjiTZYMh2Xn2IMhGLYrHpRhBCFDF5ZMB2A12IV5GnR7AzUejAwPdE1ijuuszk3XxQjtxtOeJJ8KT1YA8euvh4bMe8p/IPHB7qEworSbUKFoOT1bpVNw6w2i8JwZolbT3s170Ph1tjecY+wrx5avjs5FR+jpPszUFrQf2TYQqr+qHeNcjjUz9Qz1OYV/vfVkIWBvcIUpRCZDWAG7HLqudA08crz7Dsj750DcC4bGgp/qJe0n1BR66gcjPYwZuvIelOeiayen+1MKH3rGOvtDyQVkyJFClGH5PDJD8YF90DCtQtQzNKgf56sFooY9QaMSQzz2fzJlMPziwzAMwzAtHf7ikz5Y48MwDMMwTJuBv/gwDMMwTEunBczqOlXgF58UCCse6zWtzj2GtoOmrZNtvpk2QlnEmzoexGPWqfwVVExcahxihnW/acdO53YZ+wvjF4hre2I+mvOun5umYxPuQy6tLqocY4ou9Y/SQFD/OYqjc8e1PUI/B2k/jOnuKu5Omg+jb5V2wKijc7oz9UFUpLheQaNdpK8gCYOhtyCtVDTHrrQ/T890HPXHO1bN3k2YGi61HSFDu0EaHkp7YRnTetVUXX19ROoyQu3iZcVkmgCl7amXwgrS19Tbx3hq5VRimsZP03wjdC65TFopuZ2m9ZvTh/X26MukRVJyGUpRQlOHSZdC8hvzuvqNdBFJdDbkVqvsJXKktoemMdOUeuPeEeY5DfsCpfUy+kfT8BmaHnMqvdIoUUqLoL6dprHT9fVJzYvbvMeSoMpSOij9IeM5FNXKiFFKCpoy79HHFPWfKj9EaUbsZX9NfFvC80zo7VJ9JfVEdM5Qtn5t4gXKOss2kTtFwnMCcQsA0kfCSBFEeiPSj5GOiOoczNV1Vt6DVFf7V2l9QkKlTGkSmti5+VSGQ10MwzAMw7QZ+IsPwzAMw7RwWqJzc2uFX3wYhmEYpqXDoa600apefP7xj39g5syZeP/99xEIBHDxxRfjhRdeUNt37NiB8ePHY82aNcjOzsaYMWNQWVkJj+f4m+k9JBD4WsaKDc8MijN7Dtnx6WiAfHvs7UGpq6DYcDzlQeKgC2VTDF/ua/jQkHbBMrx/qEYh6Q+iUjqQZsbwa1B6JWdTyBvGQ6YiMuWCm4LdMt4ul4VcJp2N2/DoUOcy20JaD0edyFcn5pU6IyniEF4jnYKRDkFpWkhfYegqvId0i3+avkkaCWd9lN8M9Q1Z2If17cpjRBKVKS1ChbrghLxoQgftA4RMG2H5HPuRtom8kqQXivItChraH9JnGH5GcY2EUTdZV9KGeesdQpsdGdq2QIJOSF9WVTa8dOKVs3+UL4ph9W85rrdKOWFuM9IAmP48Zt3iehX9OBoPdK/q/7Mlz5fk9Se5FR1DPi1xnxvykoFchixP95oyU5wADo8vCaVSUVo1tZk0XvK4oO5XZPpzkTaQnilxzVD8fDGvnt5CWOTLQ5pEGnv6w6KhwD4Z+d+Yv9Q+SgWitC8O/ZYwtIiUssPUMjUUeGRd7P1C+fIcst3ZX9HxJDSiZy+1P9GYxpJ9Esm0KxH103OMtDs0qGQZsj0N+W5t2SU9lPwH5HPR8CuLBlyINVf6CuakaDUvPn/9619xww034P7778ell16KSCSCzZs3q+3RaBTDhg1DSUkJ3nzzTezatQujR4+G1+vF/fff34w1ZxiGYZiTw4rp/5k40TKYVvLiE4lEMHHiRMydOxfjxo1T63v16qX+vmLFCnz00UdYtWoViouL0a9fP9x7772YPHkypk+fDp/P/O8ewzAMw7QSONSVNlrFrK533nkHX331FVwuF/r374+OHTviiiuu0L74VFVVoXfv3iguLlbrysvLUVtbiw8//DBl2cFgELW1tdofhmEYhmFOTVrFF58vvvgCADB9+nTMmzcPXbt2xUMPPYRLLrkEn3zyCdq1a4fq6mrtpQeAWq6urk5ZdmVlJWbMmJGw3ooK+GvsAG72v+2As6fOFrVYIXvZarCD27EcW6jg65QNAKiL6jmv/DXS72KvPM7x0u3Lpji01LwYupMEfRDpEjLsv1DsPJ5fyP41PVSUj43j3BGpNxA1Hv3cruTHmDlrlIYppu2WAGkMYvFUPnF/ooiubYhk6bmoEjyCDunnVP0T1X2BolI7QjoMpy+I8nwxtBnKv8ej79fQ3v4NF8iTZZLARBZIDY/p18LyypxHIcfFsPT8YORnRAepczfoZZO+Qmk+KH+Y0jbJ48jXSOpyfHXxq0KeI9RXBOWoUjox5Q1laCKoSg69lN0WqdPy6loap+9Lwid28mU5pJ8z6td3i+fuMnxuqEqyjnS8x/DBAYCIn/Ql9jKN65jRXtpOfU3mQTR2PFLb4zsoc1vVUJ1iWp2scGI8IZwjtSyZRv4vcwyRX5WsFHnRkAaGdHK+OkvWwV7hjsqx5nJo2eiZQNeX9F9KH0U5t8hcx94v8xu7I8hTJxzU71EzP5pbt63S9lHPDNIkhfU8WvHrau/nPUjeQaSrSryeQHxsqfvIcX/HpLYn4tf/X++V7SQNEGkzQzl6Gb5ayl1m94OpgSK/I+G2VHuaBDYwTBvN+sVnypQpsCzriH8+/vhjxGL2wLvrrrswYsQIDBw4EIsXL4ZlWXjuuedOqg5Tp05FTU2N+rNz5850NI1hGIZh0gbl6jrZP0wzf/G5/fbbMXbs2CPu061bN+zatQuArunx+/3o1q0bduzYAQAoKSnBP//5T+3Y3bt3q22p8Pv98Pv9KbczDMMwTLPDGp+00awvPkVFRSgqKjrqfgMHDoTf78fWrVtx4YUXAgDC4TC2bduGLl26AADKysowa9Ys7NmzBx06dAAArFy5Erm5udoLE8MwDMMwbZdWofHJzc3FTTfdhHvuuQelpaXo0qUL5s6dCwD40Y9+BAAYMmQIevXqhVGjRmHOnDmorq7G3XffjYqKihP6ouOricIbkdqeWltw4aqVwokIBckpr5QdivMdsAUWeZS/Rb5duxtIkGFp64F4LJvixpQfJ+5DY+9HugnSUahYvqHtUZoX0q8YeZWSaV2UBsfQBZk6IZfh06K8dEhXYuRhUl4eUf0XSMy5RXhrpXapQT8X+aHQr4r5k92P9CahXzPXj6/O0Q7y+aBjZN9GpI4iInNvxfxSjyB1OBYZvtTYHRbLsitvye2+HLsDMvz2r89tb6+pV0mDEA5K/Rf1VUjmR8qRGg2pC7Lkepf8dR/W20WaCB95KBl+NzQeKO8Q4NDLhHR9hcoXp3LJ6ToM0gSRVkRpw2RdwjLPUtwfBbLu6tTx623KX4xcVaQzScy1Rnm2LO04df2lLkfl0XJg5q1T49dYjhi5ukw9BLVBSF1dzENeMpa2uysW73OV30/mxco9aP/SfRwJkF5E1sVot8r/J9sftmWEaJB1CeXK8RFMVC2YfW7msaO8cHQOlYNK6aTonpP7G15iMSM/nFMLRvWF8vghbZvcLvvaU6975JAWiPKpkT4r5nEnnMNuI+UPjK83NWjqXvC5tXZRO72yDgGp5fHUSy2m1E1ZDfaykDn3olLD6bUAK9yERj4CmhfaCZfBtI4XHwCYO3cuPB4PRo0ahcOHD2PQoEFYvXo1CgoKAAButxsvvfQSxo8fj7KyMmRlZWHMmDGYOXNmM9ecYRiGYU6OdGh0WONj02pefLxeLx588EE8+OCDKffp0qULXn755SasFcMwDMMwrYlW8+LDMAzDMG0WgTSIm9NSk1YPv/ikQHgtRN1Sd1NoCwhcOXbQPDHObMd+zdgyEc61A9rkH6HlEZIDmWLZVAb5fSRoWfyUb0cebugUCJXDieL6pBVKInfy1VL+KD2/lXmTkOZD+Zo06N45Sn9k6I6oHKffh69W36Y0HoZHSMwYoZEM0jpIjYRsD3kEmdoe8sMhbYSzng3tScMj1/tI/KH7vrhrqZP1ukWkliOWZ3e2JTvZ77EP9EqNT0lB3BTzYNCuaE2d1P3I9kTDLucpVN60WJ1dOUvm/QrUkH+TrLOsO+mTTF2H25FHzSP9WEiiRron6mLSYUSl3oy0EFEXjTl5P8juIG2I8i0irQdJ2hweJx557UmDQ+M87mdjegPp7VHeO6RH8+nr6ZrEPYjiZcUM/RP1icpnZuQiI82T8pAxZBxxXR75Flnacc7ngJl7T/3DpXyHZL4/L/UH5fLS9VRKu2Rom6gfzOcBkHjvmJ5B8brpGh/S/hDKU8vwPTLb5gpbCcfQOYMh0kPqVbEi+r1l+pAp3RHlT6PrbGgcnX46Zj44VU+XfqzSUdK9Isd3MM+uBF0bN/n/KB0amgee1ZU2WoVzM8MwDMMwTDrgLz4MwzAM09KJwfFJ+CTKYPjFh2EYhmFaOjyrK33wi08K3MEYBOUakjF94ZUaB5euiVFx+QB5r0gNQED6RkT1uL5wvLVH5T5xfx57vbdePyaq8g3JsilHjeG1o3L9BKgd9Cu9KxzeKkqb49bPTR4cVgo/E4qZk97ClcKrg7x4lJ7hsEPzIePmlOeIfIxILxGR3jCk6QkWyHaRlsfwLaJft3FOlbvLoW0iXYTK8+OWmo6D5PMhj1X6Ab3dSuNAviYNMjdQwK7UAWHrdzIDdmdHo/GIcjAsfXxIHxSWF/CQPDflLmvQNQzuBv16K62L4Vtj5k2itgKAPDW8UttDGh3l9RQR2q8aByqPlD6G6NxxbZisQ0j3RwHieh/Sx0RkPqWo9FIyxyB5LCnvGFW2XKQcX6TbcOu/TmhMmD42Zh487yGpafIb/62msSTLjvjopLJ8Qbmf5HPAcYMrrZGR90v5cnmM62o8kWOGvobGovO6OuuitH0OzHWkbYpr8/RzqOtt6Auh+ksvL8GbCXFdVYKHktxO3kDUXtIwqTxiyfJ/weEPZOjK6PkJOPN70Ximsun5pGuxaOyp7THytUr+kkBaTU80CkSa0seHNT7pgjU+DMMwDMO0GfiLD8MwDMO0dPiLT9rgF58UOMNRKsRF337NaevGp/5oBk37lfv59M/czumxyhbe+DyrPulK6FOuCunQ1FPjM3Z8Kqcslz4Zi8Ry1TRO+emXwkoUFkv4BCz041T6BPokrKaty5BIg95fzpQYFNKK+j1aWfFQl/17WKZyo+naqn3G9GX6dmnu55Ltd4aE1HWgdAL1yT+fqzIo1BXR14cFhSlkmK7OPgmFPCMhGcYMJsZfKNRlHba3UUoKj/x1y1CAqpO87ircIlM0xMzwhGEd4AxDuIz6xy37ZUhAXkdvXUQuyzQaFNnxyHEt74fAXlluSKbuoBCBChnET059FJPWD3SuGKV/kKkHaIqxO6ynalDT9jNSqDuNa6dCno52qmnMMgzsMqY5h7L1c4psY4q9GQIywnLxkKHjGOoTCq8Z4TZPRN+eUBYNHXk9abzT9TVTXbiSRV6MECT1sSuq/yNI97sKo1H/UJnGWFQpSahOoXh5ZvhLndOwAvEY4TS6Vqoco9/M50R8R2c7ZP0EXU8aj/r1VajnmrwPjHOqMJoRZoMAIuEksdXGgl980gaHuhiGYRiGaTPwFx+GYRiGaenwdPa0wS8+DMMwDNPC4ens6YNffFIQ87rgMizNSYdAsXDStpjpJkiHoLQiajo7aX3ig0+47DJVfJx0I+aVEXqcmuLzKrsE2c6H9CnJpE9RsXXLeW6qp73Od1BfDxGT56L19m/U1CzRdNGoPh2Ypuqb+zuh2D8FXWlaK/WdV9aJNBtmagplcW+kxyBiSVJ0EAn6KJp6K+vgqdf3ozrR1Hiqk9KOxEjTQ+OERAKO/6aR3sBlVNRojyXPQRqlhLQQsk4eIwUArTe1H05oG02/jmcoIEsBuwPUdTdSFBA0ruM2DtKaQN4nmm0DTQE3bAbi09Et/VzU11JvQlPvIwE6udko2QJKJ5IZ30SpJcx96DpSWoh4w+R+si/VmNRP5ci7IM9jpM+w22Fpx5DFA10X72HSH9nL6pli6OLUmDP0Zk57Cr1y8Xqp6y3vS8uYjh4z04fQekPrY/a5ssyQdUg2rV3piwwdIGFqfnwH6WEr+4U0Xm5d40jHxVOUOLSL6nrr9gtWTK+DupciuiYxQQNEZZvHi5P/AMM0D/ziwzAMwzAtHRY3pw1+8WEYhmGYlk5MJH52PZEyGJ7VxTAMwzBM24G/+KTAHYrBkm/X4WzdXt/UqpBOhYRjpGmJ62vs37jdusPSXsbfQ+QFZHjkWIbPRfxAuZo8J5T/Dx2v+4FELNIGxYtwqTQC+jGW4e9B2g1h+BcpnyL5E/cgsX+Dubp2wJlOwPTnMPUX1H7TU0NpV4z+MfUJZgoA57lJY2WmAVDnlB4y0Qy9rqbOhoh75sj2BknjpPsfAYAIH1kVoK6X1E/QDZqQPoR0J6T1IL2R2W5HagNTo0QaDrf00mkoIK8VeSyNcyP9AKFSVxhpFY5Ewrg2+lKNRTOFg6nPCejrqY9J2+O8RmpfOsTQvigNl5GSga6BKpv0YiTd8unlK28dR7oFl3l9SMsjtXh0z6j71/QIM/qL6kR1N9NxaHeu+d9aU4NjGfezcf1M7xyFofmhOkUdaSNobKg0NsZzTPktkf6GNIvkjZSRwh/H0vc31wMO3yZjX3r+eutJvKYXYXpJmX5fSl8pn4dWVMR1Q00Bh7rSBr/4MAzDMEyLJw0vPubbXhuFX3wYhmEYpqXDX3zSBmt8GIZhGIZpM/AXnxQcKvbC7bO7h2Lf4UzdYydq+lyA/H3kdvJiieixdC1mTnFoU9tieMeYxlPk26M8RFJ468QMr4qo49xxPYGuLzL9WyKZdoPJz0TlMvLQsl5X6hdTI5LU58NA+fN49WVhSmOMfEnqeEv/jXnp5PF9lL7goOFf4iYtAHkg6Sc1cxOpaxXRf2PUBr+eZ0qrPml0zPxPRj4k04vFhNpp6ljouHB2Yv4kapfqI0Pr5Fb53eR6wytG+R+pHFD2b4TqaPSP+XcAiGToZZv50UxNE+lpqN9omfpFGOfUdFVGjryYX9eAEO4Gef9Sfjca3zQ+TO8l8mdy6XodkRXfz1cry5RaHMrJ5z0ktS/kR6O0eXp7yPeHyo6a7TbaH0syTuh+pj4zfYzoGqj72aELc2Jek3jON70uQPz6kkeSS2l+9Pqq+92tP4MIepZSu8xcZ6otjtxd6t5S95DuiRTOoue67FPqB3rmGrpDpeNR96ZL1T0aSpYcrZGIiXilTqoMhl98GIZhGKalI2IgU9mTKoPhUBfDMAzDMDqVlZX4r//6L+Tk5KBDhw64+uqrsXXrVm2fhoYGVFRUoH379sjOzsaIESOwe/fuZqrxscMvPgzDMAzT0iFx88n+OUZee+01VFRU4K233sLKlSsRDocxZMgQ1NfXq31uu+02vPjii3juuefw2muv4euvv8Y111zTGK1PKxzqSkEwz4KbdDOGpwjFr4WhbVEeFNDXx7129GUAKfMgeQ7ZvxTDtqK6IIH8MSj/jvL3INmBrBvF36OG547dILlvVM/rFYO+r6nPUBonw58nIZeToQWwtBxGyY+hOLzSHahcTvpxSvth5O5S1iSkV2lIbLdqD+koVF/rGg9ab7ZfaWHCuvcIXQvy2BHyOrudMgChl63aYeZJonYZmg3qn4Q8SlJnEs2QdaI8YY66WyF9PMf9WHStk3m9VF2MXGbmeDa1Xk69hrpHzFxcctzS9Ta1O/EC5P603WP4VtFyZlTWyXnBdS0O9Y0V0i8stTMij3UfJi2HvD8iuj9XvC36vempjy97Dtu/voNS21NPZem/kGMu4tdzmqkxRXoq0g9S00y/K0efqzxfNFbkvmHycaIxJ72PEnLX0bOHxqihBaMxTG1MpuEjr7CEdhg5ujxB6NA/0JSDMKzvb+rTnDq6qPncNvKdpeozeq6bOjs33TcJ+eWAaLAJs3U1scZn2bJl2vKSJUvQoUMHbNy4ERdddBFqamrw+OOP4+mnn8all14KAFi8eDF69uyJt956C9/+9rdPrq6NCH/xYRiGYZg2RG1trfYnGDTfPBOpqakBALRr1w4AsHHjRoTDYQwePFjt06NHD3Tu3BlVVVWNU/E0wS8+DMMwDNPSSWOoq7S0FHl5eepPZWXlEU8di8Vw66234oILLsC5554LAKiurobP50N+fr62b3FxMaqrqxulC9IFh7oYhmEYpqUjcPIGhPLwnTt3Ijc3V632+/0pDrCpqKjA5s2b8cYbb5zc+VsI/OKTglAO4Jb6AxU/NjxilIeGoTdQOW50mxyHL0o8Luxy6F6cqPw/DXSMXjblDTO9VMzcRaaviTMWrrQZhsbD9DeJ5xqT20l/YXgOqXbSdkPr4cz1ZPoWkbbD9K+hsiOGxseMxxNmHZW8I8m5TU2CqX1J5Z1D/US6BaWVMDx1TP8YZ9mmtklpFkiPYfqyGP4upFOJ+aRuxUcDgyopd3THGxnXpEnPFLoGcvxSPaldLqM/lHeK6TFltE3V3emdZLRTjVvyzJF9qO4H5c+in1tVSeptLMNrx4pKjxZfvN2usH4TKG8n6lOPzL1EuZgaXHo7o8l1HC7ysSGPHtK6OK63r07XgcUoD5TKyUbLhk8P5dqj40xPIeMZFMoytju2RWmM0DZDX6f6g4qO6lomumhK22RoZkL5SER1v6WdK56jzV5PPkWJuQeNPreSXwNTd6NVIYUvET07EvyczFMojzVLq5saowKINqBVkpubq734HImbb74ZL730EtatW4dOnTqp9SUlJQiFQjhw4ID21Wf37t0oKSlJd5XTCoe6GIZhGKal08SzuoQQuPnmm7F06VKsXr0aZ5xxhrZ94MCB8Hq9ePXVV9W6rVu3YseOHSgrK0tbsxuDVvPi88knn2D48OEoLCxEbm4uLrzwQqxZs0bbZ8eOHRg2bBgyMzPRoUMH3HHHHYhEUnxSYRiGYZjWQiyWnj/HSEVFBf70pz/h6aefRk5ODqqrq1FdXY3Dh+1Pm3l5eRg3bhwmTZqENWvWYOPGjfjZz36GsrKyFj2jC2hFoa4rr7wSZ599NlavXo2MjAw8/PDDuPLKK/H555+jpKQE0WgUw4YNQ0lJCd58803s2rULo0ePhtfrxf3333/c5wu1E/C49c/U7qCegkCFuOhTsotCBvIzNYUfLGPas+M8KuQRos/rZPFuTKHMkfsZNvHq0zB9vZfr6TN8QroIxwu/CocZ0z5NW3jarkJe0JdVHWm9Md1XkeSeUyEulVrD/qXp+nELfzltPzN53RSqTfrxcKQNUWEwVQf9k3c4x6h/qnQI1E/0KTzFFH1nP5j1Vp/bVQoC82C9DjQuKDyhpmZTGgoKW9G1cYRpVMiG+oimJ4f0C6VCGTQeKDRIdTbDUgZmagMNMwWJEfoybQvMc1jGlOt4ugXjfnEnxilpDLk8xtiQf1EhHln/SI4ZC9X7T6WwiOqhEGWhACCYr/etZYSAzPWmfUOClYTRrGjACKX5450uzDHioYeHXKbnkmyXJdsTi9iF0cxnNYZoP1qmcZ8khK+eS0bfmKFsNZaMMWO2P9V9nhCecu5ihMHI6kH1tTqHHi5Woc+oPqboHrMc7Y41NKETchMnKf3d734HALjkkku09YsXL8bYsWMBAPPnz4fL5cKIESMQDAZRXl6OhQsXnlwdm4BW8eLzzTff4NNPP8Xjjz+OPn36AABmz56NhQsXYvPmzSgpKcGKFSvw0UcfYdWqVSguLka/fv1w7733YvLkyZg+fTp8vhQJaBiGYRiG0RDH8JIUCASwYMECLFiwoAlqlD5aRairffv26N69O5588knU19cjEolg0aJF6NChAwYOHAgAqKqqQu/evVFcXKyOKy8vR21tLT788MOUZQeDwQRPA4ZhGIZpUTSxxudUplV88bEsC6tWrcLVV1+NnJwcuFwudOjQAcuWLUNBQQEA21PA+dIDQC0fyVOgsrISM2bMaLzKMwzDMMzJwtnZ00azvvhMmTIFDzzwwBH32bJlC7p3746Kigp06NABr7/+OjIyMvD73/8eV111Fd5++2107NjxhOswdepUTJo0SS3X1taitLQUVsQx/VOOlUgGiTrkatKRUJxZaV103YXawdRvAPH5ucpO316keHSMrN5J80BajhR6HItSAEgthMvQArkcIekoXX2K0Rt6irgGIvmyqR8iXY7S/pjToZOkMPDKKcAJeiBD++E5rAf1SRsU8ev7mVYC8XQSDu2DT98pQZtlXiZ1feU1itE1kDvK8ujaKB1Psqm2dAydy2NMJY7oZZv6G7VfTNdbKE2PV9ehOI9X9SBtSkzXC6l20i9pllSqAqmBIa2XkWbD1E5YR5hXkJDewBgjpN1x2hBobTCXVYoHvQ7OstW05ohxDxnT9Gm9p9al14HKUZYJ+jWk/nF+R1d6MepzNa09+bMkfm/RXGq5gvQ6NFZ9pv5IFu9xrI/pzx/LHL9RvTOFkdqDULeioc9RdU8mtDFu6ITp5nQKet5RnxrPUrM46jd1ryX7d9x8JtKYqjWOUXoi0g/aK8gqRGn26FJQOc40FU2ZsoJJG8364nP77bcrkVQqunXrhtWrV+Oll17C/v37lffAwoULsXLlSjzxxBOYMmUKSkpK8M9//lM7lrLEHslTwO/3H9W8iWEYhmGaEyFiEOLkxNQne/ypQrO++BQVFaGoqOio+x06ZGfDc7n0/wa4XC7E5PS8srIyzJo1C3v27EGHDh0AACtXrkRubi569eqV5pozDMMwTBMixMmHqljjA6CViJvLyspQUFCAMWPG4L333sMnn3yCO+64A19++SWGDRsGABgyZAh69eqFUaNG4b333sPy5ctx9913o6Kigr/oMAzDMAwDoJWImwsLC7Fs2TLcdddduPTSSxEOh3HOOefgb3/7G/r27QsAcLvdeOmllzB+/HiUlZUhKysLY8aMwcyZM0/onJ56C27yfqH4srL8p71krNwI85q6BCKZrXoqfwo6F5VlhvxVDQx/DBWXNvxO1CuuQ3fhSnGsWTdhxLhNXUV8f9kfMUOvkATlY2OmYpBW/ZT2gcoISXd1YWgB1H4S5W9D14ra6+h7M+1DXJtiaBtMvQWM/QxL+1T2+Vq/hgydQZg8ZPRzCpVGJHmdXId0nQrhOiSPN71qnPVQ2o/k600Nj+mJRDqaZN5QTkQgcZ1KraJ20hdVGgXDfSJBA6YOoDoeuVxtkznm5FiJGuek+4PGaNzASp6afHtCen9qZQTpHIauiMaMuk7Gsj8m99f1WKoN0vfLMq5lTDge6UZ9U3aJsUF4pY+NoQmzSI+W8ByT2hiPo45KF2XoZQxNWlyjaD5MkldV6aj04nX9oPk8I5lUvb5s6iNjVH+ldZLrjVQ+8VQfQLQpNT4iDeJm/uIDoJW8+ADAeeedh+XLlx9xny5duuDll19uohoxDMMwTBMRiyWZFXCcsMYHQCsJdTEMwzAMw6SDVvPFh2EYhmHaLBzqShv84pMCK5qouyBvERihYHWM6W9DsWOvdlg8X43zGML8EmnqRlJofOIr9ONIt0D7OXUMCbFwMyeV0X6qm6mzSfQU0juG/FFiTvmBTz+XOqfhBRPPiyaXDc1LgrbD8Kgx6wY4cu2oFVRvWSadw8wzJBusvJRSeI0cSQul/FwM7YOZ70w1R9Y15tGPM32OzC/gphbiSPVM0K4Z/WHqSJTGwbzuxvjX2m347KR8fpseMobnjpn37pi0IWZX0D7GWEnYz8i9pvpLr0pKbdeR6qA8s8L6uUnbZUkPIdOPSjXBYz4IaEPiqdWxhlYrQTdFmrdgioaYPk9GXZL5NiXkraM60Jij60e6QGPsqXvN0NekfO45/07PbXr2Sc0Z1dP0bUrItWfki4uQZo0kQGFAmFrKRkTEYhAnGeri6ew2/OLDMAzDMC0d/uKTNljjwzAMwzBMm4G/+DAMwzBMSycmUuToOA74iw8AfvFJiXN8xcwYsPFr+t0kaGXM/FGOXhemTkDlRaIdkpel9EM+fX0qX5Rk3/aozJgZ6zdi5Kq+hgbE3F9pZPz6ssrp5DgupnKU6XVR8hAz3i7j7O6oZewoyyPNAGlnjPxKmsZH+dbodSCUzsK4bma7zZxcx+Lo4TJ9fNQ5E+vpXO8JJ293KkzNVLJ1KsdaLHFf5/4JZVNdjX4x7xORTHdhLhuaHVM/R/mlEsakGjdSX0LXIommi64z+e1EfXonW0aevPi4l/oScwyZ/ZRKQ+Q8xrhuCX1r5IVS95T5rDE8hVQ/kW7N6Wdj9pVKOmX/KJ1RijGlNHlK1GUKlYRWB40U90wqL6T4w1H+kBaIdEeGlsvUIeo6OvlLOkLjelnyeRTJogPkevM+MO9FY4xaMXuGeZMhBBJFoCdSBsOhLoZhGIZh2gz8xYdhGIZhWjgiJiBOMtQl+IsPAH7xYRiGYZiWj4jh5ENdPJ0d4BeflMQ8gGXG/Cl2bKxXmF4aZgqfZJ4rZq6ZiH4OU/tBL+xxTYtcb2piDFLmOkpWb2O1qZdJ2MFcbfoCmV47TlLoSxK8ZFJpI2SdzBxQCXorpwbA6NuE3FopdDaprm9C3Q1NiHZu8iNK4QEVM8sk/UyqoHSykyTbrhWe/NgEjYOqtF4X06cqVRVcyZ6x5vVwpah3Kk8g00PGPDyJr4qpA3E3JNdZpSRV+1PkfNLKNZ8FR7tnUmj0EjVgyQvSxnKK+zWVFUz8mtg/SocHc9wYByTR0R3rszE1un9Pgigjld4wdVEJY4o0Tgn6slR534znhXABsSTeRUzLh198GIZhGKaFw6Gu9MEvPgzDMAzT0uFQV9rgFx8DeiOOBRscK42dUtnDH+1z7hFCXWY4LWFa79GmPyf73Jxk/6SkCnWZZR1jqOtYOGJ9jlD2EdMCJCv/GKbaNlaoK+k4SBHySAhppEgjkkAjhLoSnq0pQj1HCulp5WkrjX1TtesYQ13HNAbNKc9HuVdS1uUoxzdtqCtFVRsl1KUfn3hgkrqddKjLqFMqy4ATeQYZz+FkqWWOeLgjfRD9O9EUX1IiCCf264mUwfCLj0ldXR0A4Iv5M5u5JgzDMExroK6uDnl5eY1Sts/nQ0lJCd6ofjkt5ZWUlMDn8x19x1MYS3DQTyMWi+Hrr79GTk4OLOtE/jtx8tTW1qK0tBQ7d+5Ebm5us9ShseC2tU64ba0TblvjIoRAXV0dTjvtNLhcjWeL19DQgFAodPQdjwGfz4dAIHD0HU9h+IuPgcvlQqdOnZq7GgCA3NzcU+5hRXDbWifcttYJt63xaKwvPU4CgUCbf1lJJ+zczDAMwzBMm4FffBiGYRiGaTPwi08LxO/345577oHf72/uqqQdblvrhNvWOuG2MUwiLG5mGIZhGKbNwF98GIZhGIZpM/CLD8MwDMMwbQZ+8WEYhmEYps3ALz4MwzAMw7QZ+MWnGZk1axa+853vIDMzE/n5+Un3sSwr4c8zzzyj7bN27VoMGDAAfr8fZ511FpYsWdL4lT8Kx9K2HTt2YNiwYcjMzESHDh1wxx13IBKJaPu0xLYlo2vXrgnXafbs2do+77//Pr773e8iEAigtLQUc+bMaabaHj8LFixA165dEQgEMGjQIPzzn/9s7iodF9OnT0+4Pj169FDbGxoaUFFRgfbt2yM7OxsjRozA7t27m7HGR2bdunW46qqrcNppp8GyLLzwwgvadiEEpk2bho4dOyIjIwODBw/Gp59+qu2zb98+jBw5Erm5ucjPz8e4ceNw8ODBJmxFco7WtrFjxyZcy6FDh2r7tNS2MS0DfvFpRkKhEH70ox9h/PjxR9xv8eLF2LVrl/pz9dVXq21ffvklhg0bhu9973vYtGkTbr31Vvz85z/H8uXLG7n2R+ZobYtGoxg2bBhCoRDefPNNPPHEE1iyZAmmTZum9mmpbUvFzJkztet0yy23qG21tbUYMmQIunTpgo0bN2Lu3LmYPn06Hn300Was8bHx7LPPYtKkSbjnnnvwzjvvoG/fvigvL8eePXuau2rHxTnnnKNdnzfeeENtu+222/Diiy/iueeew2uvvYavv/4a11xzTTPW9sjU19ejb9++WLBgQdLtc+bMwW9+8xs88sgj2LBhA7KyslBeXo6Ghnjy5ZEjR+LDDz/EypUr8dJLL2HdunW48cYbm6oJKTla2wBg6NCh2rX885//rG1vqW1jWgiCaXYWL14s8vLykm4DIJYuXZry2DvvvFOcc8452rprr71WlJeXp7GGJ06qtr388svC5XKJ6upqte53v/udyM3NFcFgUAjR8tvmpEuXLmL+/Pkpty9cuFAUFBSotgkhxOTJk0X37t2boHYnx/nnny8qKirUcjQaFaeddpqorKxsxlodH/fcc4/o27dv0m0HDhwQXq9XPPfcc2rdli1bBABRVVXVRDU8ccxnRCwWEyUlJWLu3Llq3YEDB4Tf7xd//vOfhRBCfPTRRwKAePvtt9U+r7zyirAsS3z11VdNVvejkez5N2bMGDF8+PCUx7SWtjHNB3/xaQVUVFSgsLAQ559/Pv7whz9AOKyXqqqqMHjwYG3/8vJyVFVVNXU1j4uqqir07t0bxcXFal15eTlqa2vx4Ycfqn1aU9tmz56N9u3bo3///pg7d64WtquqqsJFF12kZUUuLy/H1q1bsX///uao7jERCoWwceNG7Tq4XC4MHjy4xV6HVHz66ac47bTT0K1bN4wcORI7duwAAGzcuBHhcFhrY48ePdC5c+dW10bA/lJaXV2ttScvLw+DBg1S7amqqkJ+fj7OO+88tc/gwYPhcrmwYcOGJq/z8bJ27Vp06NAB3bt3x/jx47F37161rbW3jWl8OElpC2fmzJm49NJLkZmZiRUrVuAXv/gFDh48iAkTJgAAqqurtZcHACguLkZtbS0OHz6MjIyM5qj2UUlVb9p2pH1aYtsmTJiAAQMGoF27dnjzzTcxdepU7Nq1C/PmzQNgt+WMM87QjnG2t6CgoMnrfCx88803iEajSa/Dxx9/3Ey1On4GDRqEJUuWoHv37ti1axdmzJiB7373u9i8eTOqq6vh8/kStGjFxcVqLLYmqM7Jrpnz3urQoYO23ePxoF27di2+zUOHDsU111yDM844A59//jn+3//7f7jiiitQVVUFt9vdqtvGNA384pNmpkyZggceeOCI+2zZskUTVh6JX/3qV+rv/fv3R319PebOnatefJqSdLetpXM87Z00aZJa16dPH/h8PvzP//wPKisr2VK/BXDFFVeov/fp0weDBg1Cly5d8Je//KVFvUAzR+e6665Tf+/duzf69OmDM888E2vXrsVll13WjDVjWgv84pNmbr/9dowdO/aI+3Tr1u2Eyx80aBDuvfdeBINB+P1+lJSUJMw+2b17N3Jzc9P+1Bg5LgAAEVRJREFUQE9n20pKShJmBlE7SkpK1G9TtS0ZJ9PeQYMGIRKJYNu2bejevXvKtgDx9rZECgsL4Xa7k9a9Jdf7aOTn5+Nb3/oWPvvsM1x++eUIhUI4cOCA9tWntbaR6rx792507NhRrd+9ezf69eun9jHF6ZFIBPv27Wt1be7WrRsKCwvx2Wef4bLLLjul2sY0Dvzik2aKiopQVFTUaOVv2rQJBQUF6itCWVkZXn75ZW2flStXoqysLO3nTmfbysrKMGvWLOzZs0d9ll65ciVyc3PRq1cvtU9TtS0ZJ9PeTZs2weVyqbaVlZXhrrvuQjgchtfrBWC3pXv37i02zAUAPp8PAwcOxKuvvqpmE8ZiMbz66qu4+eabm7dyJ8HBgwfx+eefY9SoURg4cCC8Xi9effVVjBgxAgCwdetW7Nixo8nGWjo544wzUFJSgldffVW96NTW1mLDhg1qlmVZWRkOHDiAjRs3YuDAgQCA1atXIxaLYdCgQc1V9RPi3//+N/bu3ate8k6ltjGNRHOrq9sy27dvF++++66YMWOGyM7OFu+++6549913RV1dnRBCiL///e/iscceEx988IH49NNPxcKFC0VmZqaYNm2aKuOLL74QmZmZ4o477hBbtmwRCxYsEG63Wyxbtqy5miWEOHrbIpGIOPfcc8WQIUPEpk2bxLJly0RRUZGYOnWqKqOlts3kzTffFPPnzxebNm0Sn3/+ufjTn/4kioqKxOjRo9U+Bw4cEMXFxWLUqFFi8+bN4plnnhGZmZli0aJFzVjzY+OZZ54Rfr9fLFmyRHz00UfixhtvFPn5+dqMvJbO7bffLtauXSu+/PJLsX79ejF48GBRWFgo9uzZI4QQ4qabbhKdO3cWq1evFv/6179EWVmZKCsra+Zap6aurk7dUwDEvHnzxLvvviu2b98uhBBi9uzZIj8/X/ztb38T77//vhg+fLg444wzxOHDh1UZQ4cOFf379xcbNmwQb7zxhjj77LPF9ddf31xNUhypbXV1deKXv/ylqKqqEl9++aVYtWqVGDBggDj77LNFQ0ODKqOlto1pGfCLTzMyZswYASDhz5o1a4QQ9hTMfv36iezsbJGVlSX69u0rHnnkERGNRrVy1qxZI/r16yd8Pp/o1q2bWLx4cdM3xuBobRNCiG3btokrrrhCZGRkiMLCQnH77beLcDisldMS22ayceNGMWjQIJGXlycCgYDo2bOnuP/++7UHsRBCvPfee+LCCy8Ufr9fnH766WL27NnNVOPj57e//a3o3Lmz8Pl84vzzzxdvvfVWc1fpuLj22mtFx44dhc/nE6effrq49tprxWeffaa2Hz58WPziF78QBQUFIjMzU/zgBz8Qu3btasYaH5k1a9Ykvb/GjBkjhLCntP/qV78SxcXFwu/3i8suu0xs3bpVK2Pv3r3i+uuvF9nZ2SI3N1f87Gc/U/8xaU6O1LZDhw6JIUOGiKKiIuH1ekWXLl3EDTfckPAS3lLbxrQMLCEcc6MZhmEYhmFOYdjHh2EYhmGYNgO/+DAMwzAM02bgFx+GYRiGYdoM/OLDMAzDMEybgV98GIZhGIZpM/CLD8MwDMMwbQZ+8WEYhmEYps3ALz7MKccll1yCW2+99ZQ679ixY1XKiBOla9eusCwLlmXhwIEDKfdbsmRJQqZyJn2MHTtWXYcXXnihuavDMG0OfvFhmDTx/PPP495771XLXbt2xcMPP9x8FUrCzJkzsWvXLuTl5TV3VU551q5dm/Ql89e//jV27drVPJViGIaTlDJMumjXrl1zV+Go5OTktJgM1c6ErW2JvLw8fvFkmGaEv/gwpzz79+/H6NGjUVBQgMzMTFxxxRX49NNP1XYK7Sxfvhw9e/ZEdnY2hg4dqv2vPBKJYMKECcjPz0f79u0xefJkjBkzRgs/OUNdl1xyCbZv347bbrtNhTUAYPr06SpjNvHwww+ja9euajkajWLSpEnqXHfeeSfMzDKxWAyVlZU444wzkJGRgb59++L//u//Tqh/lixZgs6dOyMzMxM/+MEPsHfv3oR9/va3v2HAgAEIBALo1q0bZsyYgUgkorZ//PHHuPDCCxEIBNCrVy+sWrVKC+Vs27YNlmXh2WefxcUXX4xAIICnnnoKAPD73/8ePXv2RCAQQI8ePbBw4ULt3Dt37sSPf/xj5Ofno127dhg+fDi2bdumtq9duxbnn38+srKykJ+fjwsuuADbt28/prYfrV3z5s1D7969kZWVhdLSUvziF7/AwYMH1fbt27fjqquuQkFBAbKysnDOOefg5ZdfxrZt2/C9730PAFBQUADLsjB27NhjqhPDMI0Lv/gwpzxjx47Fv/71L/z9739HVVUVhBD4/ve/j3A4rPY5dOgQHnzwQfzxj3/EunXrsGPHDvzyl79U2x944AE89dRTWLx4MdavX4/a2toj6jOef/55dOrUSYWWjie08dBDD2HJkiX4wx/+gDfeeAP79u3D0qVLtX0qKyvx5JNP4pFHHsGHH36I2267DT/96U/x2muvHXvHANiwYQPGjRuHm2++GZs2bcL3vvc93Hfffdo+r7/+OkaPHo2JEyfio48+wqJFi7BkyRLMmjULgP2idvXVVyMzMxMbNmzAo48+irvuuivp+aZMmYKJEydiy5YtKC8vx1NPPYVp06Zh1qxZ2LJlC+6//3786le/whNPPAHA/ipUXl6OnJwcvP7661i/fr16MQ2FQohEIrj66qtx8cUX4/3330dVVRVuvPFG9aJ5JI7WLgBwuVz4zW9+gw8//BBPPPEEVq9ejTvvvFNtr6ioQDAYxLp16/DBBx/ggQceQHZ2NkpLS/HXv/4VALB161bs2rULv/71r4/r2jAM00g0b45Uhkk/F198sZg4caIQQohPPvlEABDr169X27/55huRkZEh/vKXvwghhFi8eLEAoGXrXrBggSguLlbLxcXFYu7cuWo5EomIzp07i+HDhyc9rxBCdOnSRcyfP1+r2z333CP69u2rrZs/f77o0qWLWu7YsaOYM2eOWg6Hw6JTp07qXA0NDSIzM1O8+eabWjnjxo0T119/fcp+SVaf66+/Xnz/+9/X1l177bUiLy9PLV922WXi/vvv1/b54x//KDp27CiEEOKVV14RHo9Hy2a+cuVKAUAsXbpUCCHEl19+KQCIhx9+WCvnzDPPFE8//bS27t577xVlZWXqPN27dxexWExtDwaDIiMjQyxfvlzs3btXABBr165N2e5UHK1dyXjuuedE+/bt1XLv3r3F9OnTk+5LWcb379+fdLuzfxiGaTpY48Oc0mzZsgUejweDBg1S69q3b4/u3btjy5Ytal1mZibOPPNMtdyxY0fs2bMHAFBTU4Pdu3fj/PPPV9vdbjcGDhyIWCyW1vrW1NRg165dWn09Hg/OO+88Fe767LPPcOjQIVx++eXasaFQCP379z+u823ZsgU/+MEPtHVlZWVYtmyZWn7vvfewfv167UtINBpFQ0MDDh06hK1bt6K0tFTTDjn7ysl5552n/l5fX4/PP/8c48aNww033KDWRyIRpYF577338NlnnyEnJ0crp6GhAZ9//jmGDBmCsWPHory8HJdffjkGDx6MH//4x+jYseNR2360dmVmZmLVqlWorKzExx9/jNraWkQiEW37hAkTMH78eKxYsQKDBw/GiBEj0KdPn6Oem2GY5oNffBgGSBDZWpaVoKtJBy6XK6FcZ8jtWCCNyT/+8Q+cfvrp2ja/339yFUxxvhkzZuCaa65J2BYIBI6rrKysLK1cAHjssce0Fz3AfrGkfQYOHKj0QE6KiooAAIsXL8aECROwbNkyPPvss7j77ruxcuVKfPvb3z6pdm3btg1XXnklxo8fj1mzZqFdu3Z44403MG7cOIRCIWRmZuLnP/85ysvL8Y9//AMrVqxAZWUlHnroIdxyyy3H1S8MwzQd/OLDnNL07NkTkUgEGzZswHe+8x0AwN69e7F161b06tXrmMrIy8tDcXEx3n77bVx00UUA7C8D77zzToJQ2YnP50M0GtXWFRUVobq6GkIIpUPZtGmTdq6OHTtiw4YN6lyRSAQbN27EgAEDAAC9evWC3+/Hjh07cPHFFx9TG1LRs2dPbNiwQVv31ltvacsDBgzA1q1bcdZZZyUto3v37ti5cyd2796N4uJiAMDbb7991HMXFxfjtNNOwxdffIGRI0cm3WfAgAF49tln0aFDB+Tm5qYsq3///ujfvz+mTp2KsrIyPP3000d98TlauzZu3IhYLIaHHnoILpcth/zLX/6SsF9paSluuukm3HTTTZg6dSoee+wx3HLLLfD5fACQMAYYhmle+MWHOaU5++yzMXz4cNxwww1YtGgRcnJyMGXKFJx++ukYPnz4MZdzyy23oLKyEmeddRZ69OiB3/72t9i/f/8RRbRdu3bFunXrcN1118Hv96OwsBCXXHIJ/vOf/2DOnDn44Q9/iGXLluGVV17R/lGfOHEiZs+ejbPPPhs9evTAvHnzNC+YnJwc/PKXv8Rtt92GWCyGCy+8EDU1NVi/fj1yc3MxZsyYY27XhAkTcMEFF+DBBx/E8OHDsXz5ci3MBQDTpk3DlVdeic6dO+OHP/whXC4X3nvvPWzevBn33XcfLr/8cpx55pkYM2YM5syZg7q6Otx9990AcFSR8YwZMzBhwgTk5eVh6NChCAaD+Ne//oX9+/dj0qRJGDlyJObOnYvhw4dj5syZ6NSpE7Zv347nn38ed955J8LhMB599FH893//N0477TRs3boVn376KUaPHn3Uth+tXWeddRbC4TB++9vf4qqrrsL69evxyCOPaGXceuutuOKKK/Ctb30L+/fvx5o1a9CzZ08AQJcuXWBZFl566SV8//vfR0ZGBrKzs4/52jAM00g0r8SIYdKPKTLet2+fGDVqlMjLyxMZGRmivLxcfPLJJ2r74sWLNTGvEEIsXbpUOG+PcDgsbr75ZpGbmysKCgrE5MmTxY9+9CNx3XXXpTxvVVWV6NOnj/D7/VpZv/vd70RpaanIysoSo0ePFrNmzdLEzeFwWEycOFHk5uaK/Px8MWnSJDF69GhNSB2LxcTDDz8sunfvLrxerygqKhLl5eXitddeS9kvycTNQgjx+OOPi06dOomMjAxx1VVXiQcffDChP5YtWya+853viIyMDJGbmyvOP/988eijj6rtW7ZsERdccIHw+XyiR48e4sUXXxQAxLJly4QQcXHzu+++m3D+p556SvTr10/4fD5RUFAgLrroIvH888+r7bt27RKjR48WhYWFwu/3i27duokbbrhB1NTUiOrqanH11VeLjh07Cp/PJ7p06SKmTZsmotFoyn44nnbNmzdPdOzYUY2bJ598UhMs33zzzeLMM88Ufr9fFBUViVGjRolvvvlGHT9z5kxRUlIiLMsSY8aM0c4NFjczTLNgCdEIQgaGOcWJxWLo2bMnfvzjH2tuzS2Zrl274tZbb22SdB7r16/HhRdeiM8++0wTjTNxLMvC0qVLTzoVCcMwxwf7+DDMMbB9+3Y89thj+OSTT/DBBx9g/Pjx+PLLL/GTn/ykuat2XEyePBnZ2dmoqalJa7lLly7FypUrsW3bNqxatQo33ngjLrjgAn7pScJNN93EIS+GaUb4iw/DHAM7d+7Eddddh82bN0MIgXPPPRezZ89WAuTWwPbt29UMsm7duinBbjp48skncd9992HHjh0oLCzE4MGD8dBDD6F9+/ZpO8fxcs4556R0cF60aFFKQXVjs2fPHtTW1gKwbROcM90Yhml8+MWHYZhTEueLnklxcXGCNxDDMG0DfvFhGIZhGKbNwBofhmEYhmHaDPziwzAMwzBMm4FffBiGYRiGaTPwiw/DMAzDMG0GfvFhGIZhGKbNwC8+DMMwDMO0GfjFh2EYhmGYNgO/+DAMwzAM02b4/y2jy9QetSG8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dset.sum(dim=\"time\")[\"tx90pETCCDI\"].plot()" + ] + }, + { + "cell_type": "markdown", + "id": "8a9be89c-ac03-4e51-9cb0-65bb4af02b81", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## What happens if the data get's lost?\n", + "\n", + "Let's delete the data:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "d8731d29-47af-48d5-9f23-ded8d31ad269", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "!rm -fr /scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5" + ] + }, + { + "cell_type": "markdown", + "id": "3147eb51", + "metadata": {}, + "source": [ + "The data is still in the databrowser:" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "34ee1fbe-9a67-4342-93c9-06fcabf56573", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['/scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5/cmip5/output1/mpi-m/mpi-esm-lr/historical/yr/atmos/yr/r1i1p1/v20230911/tx90pETCCDI/tx90pETCCDI_yr_mpi-esm-lr_historical_r1i1p1_199007020000-199207011200.nc']" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(freva.databrowser(variable=\"tx90petccdi\"))" + ] + }, + { + "cell_type": "markdown", + "id": "5d8604c6-a208-4595-b70b-289fd010a4e6", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "Because of that the data can be re-created:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "666b5193-a70f-4e8d-a063-05097c6e5e04", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd49267695d047eab2d5432fa1ed7041", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (time: 3, bnds: 2, lon: 192, lat: 96)\n",
+       "Coordinates:\n",
+       "  * time         (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00\n",
+       "  * lon          (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1\n",
+       "  * lat          (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06\n",
+       "    height       float64 ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    time_bnds    (time, bnds) datetime64[ns] dask.array<chunksize=(3, 2), meta=np.ndarray>\n",
+       "    tx90pETCCDI  (time, lat, lon) float32 dask.array<chunksize=(3, 96, 192), meta=np.ndarray>\n",
+       "Attributes: (12/36)\n",
+       "    CDI:                      Climate Data Interface version 2.0.5 (https://m...\n",
+       "    Conventions:              CF-1.4\n",
+       "    source:                   MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...\n",
+       "    institution:              Max Planck Institute for Meteorology\n",
+       "    institute_id:             MPI-M\n",
+       "    experiment_id:            historical\n",
+       "    ...                       ...\n",
+       "    ETCCDI_software:          climdex.pcic\n",
+       "    ETCCDI_software_version:  1.1.11\n",
+       "    frequency:                yr\n",
+       "    creation_date:            2023-09-11T20:05:11Z\n",
+       "    title:                    ETCCDI indices computed on MPI-ESM-LR model out...\n",
+       "    CDO:                      Climate Data Operators version 2.0.5 (https://m...
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 3, bnds: 2, lon: 192, lat: 96)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00\n", + " * lon (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1\n", + " * lat (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06\n", + " height float64 ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " time_bnds (time, bnds) datetime64[ns] dask.array\n", + " tx90pETCCDI (time, lat, lon) float32 dask.array\n", + "Attributes: (12/36)\n", + " CDI: Climate Data Interface version 2.0.5 (https://m...\n", + " Conventions: CF-1.4\n", + " source: MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...\n", + " institution: Max Planck Institute for Meteorology\n", + " institute_id: MPI-M\n", + " experiment_id: historical\n", + " ... ...\n", + " ETCCDI_software: climdex.pcic\n", + " ETCCDI_software_version: 1.1.11\n", + " frequency: yr\n", + " creation_date: 2023-09-11T20:05:11Z\n", + " title: ETCCDI indices computed on MPI-ESM-LR model out...\n", + " CDO: Climate Data Operators version 2.0.5 (https://m..." + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dset = xr.open_mfdataset(\n", + " freva.databrowser(variable=\"tx90petccdi\",\n", + " execute_future=True\n", + " )\n", + ")\n", + "dset" + ] + } + ], + "metadata": { + "celltoolbar": "Slideshow", + "kernelspec": { + "display_name": "freva-dev", + "language": "python", + "name": "frev-dev" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "2286aa25721f441b8f22cbdcce4c6bab": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_fb04cb54a3204412a958a0055e186784", + "outputs": [ + { + "data": { + "text/html": "
⛈  Executing futures ...\n
\n", + "text/plain": "⛈ Executing futures ...\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "61acf91180514d5e803f091435c1612e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_9c18d70ab886442f9112929e378411d7", + "outputs": [ + { + "data": { + "text/html": "
⛈  Executing futures ...\n
\n", + "text/plain": "⛈ Executing futures ...\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9c18d70ab886442f9112929e378411d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "c7825b1332ed4b48a784b88ef87270fd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "dd49267695d047eab2d5432fa1ed7041": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_c7825b1332ed4b48a784b88ef87270fd", + "outputs": [ + { + "data": { + "text/html": "
🌧  Executing futures ...\n
\n", + "text/plain": "🌧 Executing futures ...\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "fb04cb54a3204412a958a0055e186784": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/talks/FrevaFutures/FuturesExample.md b/talks/FrevaFutures/FuturesExample.md new file mode 100644 index 0000000..f1bcc7f --- /dev/null +++ b/talks/FrevaFutures/FuturesExample.md @@ -0,0 +1,1305 @@ +# Registering a dataset that will exist in the future + +## Here we use a freva plugin run that has been applied + + +```python +import freva +import xarray as xr +from freva._futures import Futures +hist_id = 3085 # We can get this ID using the freva.history command +_ = Futures.register_future_from_history_id(hist_id) +``` + +## Let's search for the data + + +```python +list(freva.databrowser(variable="tx90petccdi")) +``` + + + + + ['future:///scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5/cmip5/output1/mpi-m/mpi-esm-lr/historical/yr/atmos/1day/r1i1p1/tx90pETCCDI/tx90pETCCDI_1day_mpi-esm-lr_historical_r1i1p1_199007020000-199207011200'] + + + +## The data doesn't exist yet, but can be created on demand: + + +```python +dset = xr.open_mfdataset( + freva.databrowser(variable="tx90petccdi", + execute_future=True + ) +) +dset +``` + + + Output() + + + +

+
+
+
+
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset>
+Dimensions:      (time: 3, bnds: 2, lon: 192, lat: 96)
+Coordinates:
+  * time         (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00
+  * lon          (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1
+  * lat          (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06
+    height       float64 ...
+Dimensions without coordinates: bnds
+Data variables:
+    time_bnds    (time, bnds) datetime64[ns] dask.array<chunksize=(3, 2), meta=np.ndarray>
+    tx90pETCCDI  (time, lat, lon) float32 dask.array<chunksize=(3, 96, 192), meta=np.ndarray>
+Attributes: (12/36)
+    CDI:                      Climate Data Interface version 2.0.5 (https://m...
+    Conventions:              CF-1.4
+    source:                   MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...
+    institution:              Max Planck Institute for Meteorology
+    institute_id:             MPI-M
+    experiment_id:            historical
+    ...                       ...
+    ETCCDI_software:          climdex.pcic
+    ETCCDI_software_version:  1.1.11
+    frequency:                yr
+    creation_date:            2023-09-11T19:57:50Z
+    title:                    ETCCDI indices computed on MPI-ESM-LR model out...
+    CDO:                      Climate Data Operators version 2.0.5 (https://m...
+ + + +### The data has bee loaded, we can work with it (plot it) + + +```python +dset.sum(dim="time")["tx90pETCCDI"].plot() +``` + + + + + + + + + + +![png](output_8_1.png) + + + +## What happens if the data get's lost? + +Let's delete the data: + + +```python +!rm -fr /scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5 +``` + +The data is still in the databrowser: + + +```python +list(freva.databrowser(variable="tx90petccdi")) +``` + + + + + ['/scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5/cmip5/output1/mpi-m/mpi-esm-lr/historical/yr/atmos/yr/r1i1p1/v20230911/tx90pETCCDI/tx90pETCCDI_yr_mpi-esm-lr_historical_r1i1p1_199007020000-199207011200.nc'] + + + +Because of that the data can be re-created: + + +```python +dset = xr.open_mfdataset( + freva.databrowser(variable="tx90petccdi", + execute_future=True + ) +) +dset +``` + + + Output() + + + +

+
+
+
+
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset>
+Dimensions:      (time: 3, bnds: 2, lon: 192, lat: 96)
+Coordinates:
+  * time         (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00
+  * lon          (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1
+  * lat          (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06
+    height       float64 ...
+Dimensions without coordinates: bnds
+Data variables:
+    time_bnds    (time, bnds) datetime64[ns] dask.array<chunksize=(3, 2), meta=np.ndarray>
+    tx90pETCCDI  (time, lat, lon) float32 dask.array<chunksize=(3, 96, 192), meta=np.ndarray>
+Attributes: (12/36)
+    CDI:                      Climate Data Interface version 2.0.5 (https://m...
+    Conventions:              CF-1.4
+    source:                   MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...
+    institution:              Max Planck Institute for Meteorology
+    institute_id:             MPI-M
+    experiment_id:            historical
+    ...                       ...
+    ETCCDI_software:          climdex.pcic
+    ETCCDI_software_version:  1.1.11
+    frequency:                yr
+    creation_date:            2023-09-11T20:05:11Z
+    title:                    ETCCDI indices computed on MPI-ESM-LR model out...
+    CDO:                      Climate Data Operators version 2.0.5 (https://m...
+ + diff --git a/talks/FrevaFutures/index.slides.html b/talks/FrevaFutures/index.slides.html new file mode 100644 index 0000000..dfaa199 --- /dev/null +++ b/talks/FrevaFutures/index.slides.html @@ -0,0 +1,16336 @@ + + + + + + + + + +FuturesExample slides + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+
+
+
+ +
+
+
+
+ + + + + + + + + + + + + diff --git a/talks/FrevaFutures/output_8_1.png b/talks/FrevaFutures/output_8_1.png new file mode 100644 index 0000000000000000000000000000000000000000..a7867e47877a79f229febaee7b33683ec4fa5d69 GIT binary patch literal 70131 zcmb4rWn5HU`}HVFr=)a>NOyyPh;%9-4bsif3?%{*f^;*Ylu`oHDK+#cU6MohkVC#_ zyzl3E{$Jk@{y5AWPVBv}>so7FYa6Adp+ta7jSB*S2$Wwu(*c3*%78$3VAzie-!JL3cnPBE{Lv& z$39?uN_?+d=*62~&!gVS-B+|ve)UGrCN}z$Kp4q0?0cD@CvOP|%R=7ER+4DvcQX>x z5|i*fr4smv7}}3}*(N(|TC|mYW|}C<%KD~ae?Y%MIJ+9Im7=oiHG%v2ar7sx$7HzS z@|E`)Po87_=a`Ox0v_JHC-$Mick`eAW=1?| zhpW874|R()6e|t7N)4;sZm-WO&QA9I-~k8M`@sw_TJYctd4>m~e>_QBZ?E^`?K5!0 zEmsuGAi$m8XSudMgi9R_VwQcWs34*=@%&A5x(r_VAiDgHRHMDTX)pRd9)IBd!udpip_k8g>4tJ*`JClkfRbPCy<%!b4Y@AIm|Zc07Du5sLf*5^qS=9` z)90NGH{Z2qfGM1B{sl~Hx5TgCzeC}WH9&)1fU)Jb znxgLpyy%y&UvWquskKwKohy!Qdx6^Vc$-6jPe34^#tr5Hs?o1 z`2=09Fsyuz;ps4%M^Xrhimq5OTvAC$N^0|@xlb6{S}b=(**Q3L0Iw6{(IEA?kqo!H zkl-3vz@->U^nR>`n$S4EqqU_d_T2Wmwrgj#Y_Z?Ue~i7St;P16kK7OmN`EK1KZUc> z{O8@~vzGntCbSocz zrT@v+$yUt7#6(R{&Ff}gevmm_`polmA9#%y1v&=JzK5?z6=NuQdo(0>-vLu$dutl7 zdmrQrT#w&*=Eq627vEr(C{ed1$$B=JFgIXNoXg-lXxfS5s~)c7MCng-*vQ@-#-Goh zwMK4^7Oh+z!5Q35fQ3)0n6LF1v->`!G4Y-Eaguvtwzo<$$OOBq^TX3KU=E23MmIOA z26({3m)mBy)YbwIZEyKuw4}~WyS1lhn!y*N*iVImZy-$-rWH#2!MB$zpx@kebIZnf zjE(2ZF**J=!`Tmaf%iB)0|piN61dZM(_Q1LH_G?STW+Mz7sDL6x5sofKa6Z1e}X+y zODCrD8q;=c37RzV`7nQbb4E0E3w*5z`W%i&S$=ZiT=z#rVlCYYb0_%VCl+u)m!@5c zmrux>Zb_l%&&ck{c>*6xt^*-DKP<*}hfxApVw2R7@_AF9dFUATS_DHcvyU#N_x*_W z8n<~oy}a@Y3hw*N`>}WMbtNd#Z*m1frTheJ2Gc{)Yt;D#EzH|{v?u0y!<_o;=-1#x8(b)*3v%2muBANHC ztupH+a4=k2blLYUBh>^-HI1kHcyn}edk#HKmp~T#2t(I|yCC|29e#8I_P(`>myY1W z-#x4`xm^q+nh|2IwEN9m1OZAM6^EyIlRUo)p71B?sQ?tiQ-qD9Avon zKcNR%+bWXIyS*UIG#Yq8O5Wy!yM(e=Za{jo>Puv+-!5-L=Y2zd8HPxPAhFXKM_$Mh zo>@C^Ze)(n{KK<3aJ-4B%v^h&3DaFkaY=$z!*8BH9x7zFZK-=dM-gMz(6Z6O1;t*&I=xz!2!Xy?pzttIs!tkk03gu`WaCJ5{xPVw zAwVbA#rc5!?tq2Mc>>x7Aow2;KkJ{@eJmnA7kKvPyjMx)EijZ+mq5hQ&<)#!?bgl` z2JE+pQg9iBSXRF8>FMF;3^>^u$L=IXSGBK2xzWHZxD58cdQ3(`)Q`p^=I1j)C;oJJ z6kJb%@VwbwxY;F$b~x%L3O-j*OXs^|c7sfV{g?yFe^5wr2=EA3pT6>hFB9}^7D3}~ zZi04z4D~o|p#ErB@(`%wcg$`tCY8#JstcA*XI<-f6Rp(W-Au!SA{=TO<^H*C=9Ug{ z+c|d_-T6daYxsI@0AYa+j^tiFi-rv9O}6)py{o4k5cY?KVgCoG(K7r+bYw>O$K6V3 zM2Fi=fx#vk0K8g7>&27ItSlu~`l7!`4?~+Quc?U!4W6FVEVZ&Es}wK|1xLmh^N3mo zeiy|%?uK=iRJ4BM6#0uC=M5S?Icn$qw+VE-zv^`yJ7;}&QVdk<&jQkCDwkoEV%rt4 zG9uU3Y(VX^w<}WlNE;6K?}Rr#tY#5cN6h;%B=PKLL@&LQaS_J*?OF_ZpPAw+;7TR$ zy&5O+i)ps~vb$CM?pPTaiDGVx!72vg{Q?IJRSmZZD&owGwf_Iu9nHLK< z1w^Fl%5?k)fGiq-PE>G$uMgQy7d{Y#suaAn=G-zsp4Zyh)Bn*gDBmLR{I|O6bo4V|}NKWx*GyFe#~=&!X#;(7d%pMyjpu=Vp+I_tv_Q!-va? zmfsykV3bgEX;a8f15GH!?~!cklbHC9r@-aV7=5ZsJ6?WFi9<#={`q0XsrtRZ!-sb_ zaX&7XwBEL9-MPggDO?Q(D+GprUnjbX?!3(lr^UH(wWKo>`254CUgq2j<3>Nzsq-R8 z8hMkpWhOgz+qyl?)UVk^UharVsLeh*Fok)ngrN6nuiyw`sMroh&Yzcang~9=a-2A6 za}Cz;U97X zy(j++JM!Ak-~1u2$#D5U%mwdl5D>G#z*&+iy?6UXG}XzikoPayaY7a=k!*eOOsC#G zai!RZfooy2WE~N5ql|_VM7-^&{@S&5qB;x9xp{L`v|EewHf&) zP@#Moc}^-bX$^|BdQ6zyhRdvdrX`h`_o^4an+2)=>D(AvQ!cgy*Y3CC!!(Lp&MH}G4EmUv$FJ~q@QH#4k9g=LmcuXf_+R%w#60#{gt)A74Z;_F0B?^Qt>!U1q z)4_TqWtN$X7K(+x|KFWy9g{zia)^~jD-Tv8iZ!$vb zXqR8cx%}y)cosp#{~no|V35I~xB1 zJd(QyzI<1g{OykROEXpxrTX@7X4Lt$?@>qpGx7|IHAXfA!k)W=-h{2>v*U}N*MbBz8iu~=WE*;4TEd440k{{|D}C~Ki> zC0;ge(lmg;=Z_a9Q2P($;Ma5OGLbZ{%_M&doy0a*Q!r4F#IBD=509X?v;eYKqIJKA z=9@yo!XG}feF^*T635c_`fv(&`vowoKRyd|lV-u!ui;HV0XqQ7J_(TC>D+bz`q-nZ zDIE>~Cx)~60ABQyWP6S%cSc*4qJi>1Iflg2jp<@3m7kUta`00O0PBDn&FE8GB*Dgnz4y0D+~SqMA_20{Ab}d4{rM`hpeKaY>I}JvvvQq|L zqx!M~9nx}(<`xtTA!F$-sy{jzcxAaA(!6Z{tOWg$q9;i4R+HLv%FaExyHv!tJ@2P> z$4w10KP2Kp`h`?bf9fSr0N}PyVmEPQ?=KhmCvJBCsCyIiSkPj4J=rJQYut|^Ao0#b z$I}sUH5~E7cInCetRL!z{A^up(_y?n*AjQdUf_qQlL~lQT^i^Z%(vKbd!@h9Y#8WJ z;8m1rmtp3}F<+%jm+>fL$L#m6-?hGs^lv5j-uRF;MLL-d`zomNEO*w_Y^_7HI&!mp zIEtGbAfUR?3$oVZ0$vM%9nra60dz&q$S5mt^G?WgwJl4EipB5GifD9G#ot*o<)mW* z0F?C{A9^(H1z-)G_tc#eq{qgK<;`dI%YVj^KfRjD{Npt|L>$`kr0c&t*d_~}{qu9>(P7tW>k2lRD^~`qw&ZGh4 zjWHUEroZA=7A_!kL<5BSQW6TUSl#(~2tayz&R3=FBC}3bXXD#me}VQD>Ie;a&5?*c zgG$SAuu0jg&aLqhem^84LDW2X%E=URI&I4^=Q*l=zAk$kmE%2w6MS<7Jv`_nTKQH| zeisCwp?d?V+?_kq)w{v~z%-!@44vrETgQM3kAa|i=D`3TC>lP1s6pbkZyVapMSL=0HoAIRS zHrODa$3vl)MTLMr0;Dz6bP3s0N+%BrZ_Afh#JNT>6Nb&6o|z<(RD8U-|IB~Uiga|1U=cSPyMRym2x`oGR;+W z3ZW8QN^b(S&(=JVv_|?p(y+S4cCADP)3n!kU%KiiCz=27O;D+NfK^pvj+O-Wuc3WFL&D4@YvNe5yqnSBl$IJ4+d7Nk`{Khwq`)T0gfLo&+qXL zTg$8{Z?18GiqPNR|6mRbpI%T+<@%YVDHC;i>g`lLBtj({)C>*+Bm_V!I0WE3IS4IY zE`ACl>;OcC_kg(Z`E}Vcn)7Na(Vaw;ZQK=MiGu^|%W5v@au*<8k_UhcxHw_t+6{2% zC?nSvFTK^_EKzu$mqwO|b1XB!OaORu)Q#r68G^Q!Yl9h}kOuHN`ataV>S(elcGk6x zPIA9lkWg$9gwD=Wu5H(Dqw1p0#UCf}vW6(3yn&mlXd36#zXeb+NmIz7B3f4hG}G82 zN*=RTTHQjm%1LhEU>~wB8Oa6kLU{LF19*48yqqTxg+^H2kHYx`f}b1pxP8C9xs>EA zngqlrUyJruU>wlYrL)8r!>ZcvaC3WG;mK;yCzYa6Y=xwnY?(lbN1C~@SoFT_ts8(S zgU)1PC`3{umnalYq_XpE-Kyc_b=b}^awoLNR_^?QzO`Ep>1efasKOktFYpv|VbbTJ zrN--_4@^SdA#y^YkcYlz^z)NidF6Q9RVaUPnR^T@D4&HY^T%n03^Fwe+O1q@N_dYEF?j32DmjrCn7AI^@JU4L*3ZVsk%;%X&;F}}o_Z~K0yCagH> znJF!l{1p^dHoHZBSPyrneYP;@5QLgh8Y4d{r!xmKLoP%W+9habjdoyJ zM*;+#C|rJtAlCSwx+B+i9!n>ZMF|B+;~-R);bazRkRW1ZOX-!ZDGVQof$R z3uR#KC4=d9pDL+IcK4e86INI#%1d_LSy)I)CIQZQQ1kZvoeQzPumqpMrc^(F8qv$n zb#h6-)d89lB&;Sw0F9u_4J19 zdZ9P);w=@$ZH>AiZf?&7x{bzFr7RdEvm$pX*Rf zQv~lUUVlfbFrRLRq0MR6Zr}@{i({*K7gAr*SNHH!o3$0yRecUj{?$>-Hy!e`x5gZ~ z$*n~bpthpy&3uWvWg-J^!aY2S%R9JOy$%`#S6D-BqEo-x14P~g44L(E;(ptCQ#a@z zim{FKvJ7rNhxAwl;#O0U-OMdlSH1EKtj2W9Xb#|fXkR$Vopc6Te@Ay$Q?Sn;nV^I? zwlv@PC}c-(T2s(+*+VLb-O{I|2A4vpa2eOoKBT$wE2dc;u=mYELsj`ob5~MP| z+1)+yKT967Zjg>OIK7lANiL#X>C%iNl5QwXOS;UGd2PRWp2*9^H|GR_*SruF zICi(nU&!94HF4CEcZC*t4$e!V1^c}YLoK0bg-ay6#MzB=3?!8-7mq@kv+!Z>&JqWd zkTqXveId+HOUr#-%{JI+%~iQb<0`>{rka#4)&}ytnGsGjymjRZVe!3Ebx<`lHRX{P z3*jrAqWw>2&S_c8<7f&k;{Jo>wc~Y)mA)X(H?W?78o#Nc0}haa?p-en-s^~vc$=+^ zoJm7`^V9s1E0sFS?05C!Qo`Bq%>-}%DlaR4KE3AjAI%Etth66;c)pc)g1A*5aW4VG%IdH|jvlMmc*R4?vLk$;FAthb_b!|5b%sQKwn`J{jGPPJ zrIZ@g?tM#Np=4XqOR?jNPFKx>m)}@LpY~T@k!`iH?g<2Ev!q>E_&pe-U2^q!Iu*Hd z(Lz-=!47U7=u{&m7x!v>At9OJeho4<6Po2mTa^f&V5Tg}%WsFvy}t=o^OU zCiqoJ?Er~9=*H`FSJm5f3=5~P;2I2o)0?hKS8!MSf)gfaro<4J58=DVk}y9N>vtvZ zR~GnRkUWOj?x4lNznB!z>0;o-*g7EORUwDus?p;bVrJ#)DeJhm}9c z%Yhn05%|i|H%Jfzqj1Qx*Wp8teXTn`6s#3UVCLgDvo-X2-!1o2Xf!+J5A07ScjlQg zH7hiyyOplex&5KPWUP_@aoKu%Pq-F8jz!nkw12YBdue1v%w)5$GLeHp)}#x(i`@IA zZmoS0dQ>x$?Hvcx723@PedVmxy^0e(04gv#!wz zrr&eK+`0q@LFk6mJxE-&)cm_vX+`IiAWR-z6z{vn9ytie$8C$W?aRY}>@+o~ zBi7R!#hf{YnfJ$;7zh@EkAq5sypPrSX0NE}-QtaAv7u=SvmjS7ds4ZZkr1}V_m>N1 z60VnX)nV_sIp>a4jWY12cnK;puAO|OYNHs-=42b}%X8!lx@mditpX5`49d;7oUo6( z!mEg0>j!wT4oP}x#uIyotxip4;bF#|?1^15)=AgO+-l=SL@76{kc|zJh~L=5n1lV*}?8vpJ5oXiZ2zLC$5Gfk`)?wKE>S| z$dh^IwHPU)B0om07#V@Gc4+^OO|t&o7^HHk+B)y?%s@2QKbw(pO=_yDGze##%6R6F z1HRu3%RTWsuNG{GubGYV*}G-iKZm@0H@x{?N-}C^`{8=sDg)}`#ft-MyUKQ|Vk3k* zW3MFBI!Be2VgNxU-{YiN03YF7YFnOUy}^e_e{rauUTduPT0J@{QH&{MoqM#jdmvgS zTm17b$bx6JMzegAGWQqmZ$YN@uw5?XT@LnL4+)4mbuj*5pALn%4VP;FCyH0!){tMY zQy(7qPd2d1$Y8HBmv?fGPWD?GI<>jhExOl2%DABMX|aNfSG5po)X*Wro7}rkdzxZscVEiaSKwuny|f-XxnQYx4b*V~I{m2eo?*HfX3(h);Bz<=%tQvSeCKNQxsGSMUO zK1B(!i8?@K4`-ThdHptdf>%_8AYax5xuCAf^FwZ!q@Ia@wyeGbnDQ$R2;I#1i{$PD znD3vXD3(|qY^8>8oMSIdK>s!?qSfg$x2PonRhGE7te zbV+v2NO0Mn2iu^`^o5L>i0nS{Suw}TcHl=A`8c8mmchUzjKu6SZ)nK8V&y4zORPbf zTS(Q|rCY<(l++(!daF;vN)IL&22~R#saMa5&wTpN+HmJ?Dlb`T`^w;7lbT7tCehMA z-#&WO%W0mGI*{z%5;AiA$ajEEWzPDQk)khI>X)a(Z^xA5x#JwmHfjY;yiod5ruL=- zVZQ^`3bFvi^vU591l}z_wV5+^Z5Q`Zppub#A0G} z7wVVmgDDv?KS#pnunlB+F(F3AI4?L)X; z4HLv`2~uX0>W3Umn_C^$OSkrD?JTXPu7DdB?aA(7Ky_)`I;h34rT;vl`2zcc6qlaB zh=s4^>r+Bu1gs*B^u{&OIFCNhzj_%|Z6YMjvcR=2owa);^`782Sr++!=Yf{#dD|1m zl|F8lng3#nIVf= zi2u-ucmHu@)rpvVpo_Rv8?*SaL*h2e1+9!`*ZKx=&F28qofA@V*rwO>TW+Wz2xPd; zkC<3;%s-!Dni%Li68Hks{xeFk?6rAsJzVD1t2%a%V572!@PX)+;VG35a>(yx)q5wJ ziO`=_o9ijHjS5^wV$zCR*Vsix30F*CM`^Os_1A{wltd$GQ)EPC`~|ct-h)Rx-XhC^ zX#chB#{%Zr_Mc<3LbQ-48y3Q>Y1*6Isz-KNa4I0EdRR~Vsn)AF_!{7ujVKR6JP_qDvT(`Fp6q8W*Mb0m993N-wc0JGHW!i~4o>6F!}FPS1*FyIGz z`G9j^FjtxeE_1mvB+AG=2Y(s2uDqb7uY-+#tZbxAy|l0_iRy_ynf=^@4c<+qAx_i0rkk+$3NR>g z(?9p#0gElqwGKovu7|JlKS#QTq>IWsQ+dQ&2E~?;JPUq|bn4x#Y-W{nXUndA*AUuF zHXyk{u}{C%sMQ+gFT9*a?mvg^0RLE#xX*`GtpBEgo4)Sud*Qs1Y|>=%T*b1lUFDepT#ugndEtxEi}S6}xbu{D^8793o`!FTS*P829P^OVYBimqi zNb6ZqZJju)>sIIFI)kiT_7!Lufi1U?pGFhDY*J0ftty9EzOK*o+NwzKd2C$XNcAL< zQ*VFRNskRtNy0Z*+Un)RhgJd5YHguYz1B+?TEMGABW?2+x%S+(AY-I0i;Hip#+ZuLF#*IOqSHCBCIql-!MdVI z`N3;ybC9E<)AK|&)$f3U46Ll#Jx6EfZosi}(906vOv3b6PXl_J-=~|;uK>eQ2Z88Z z2;g~H)Ni{W|J&tu?|F!}Alv}~aw-N$EmNqk!DS?0`E<%0Xr^y$ZF$`MQ%pFRlJzF- zZi++le%d5$;dT-S>@~2r-kelmfB;KU6xvQ^Q18YRC%%?Wk|yaoFJMWi9(Tea*1fZSO;Sw0C*^c79{8b&&qwEywRGu<8!?R3(#IhhIz4M|<( zx%gm8kqI5Nk(gA#+Qa(6hruQYMu{H=FU9_L@oL6<%~v!2;BXCmLzHt(xPZGHB5N!> zENNQ=b*g75B4f>pMVkcD2+DrzBx1Kq^Rj{_al2xQkZ_$?M=38-G$a zqqYykc@T!(`P^x<6x+x3Qe1cgCmu8!fjqY5eiD+cF#6^O1h^X0Zoj>S$J(o%55%E4 z>j)}}vNi~$Pt#uqzXftx)|p5IYj@x1)l#aA>y7mCS-f-MIzy^u@PWUk1G}M3i*~Nk znDvu^^IlgEG4@&?43L2RD6tH@#7kGJ!KPLiWkLz>b~0kv3bc0Oiv1wj)Orre`b`N% z`-q%f1G1`J(@ea7s`9qn1Em9&1CTiixjHO9kj7gF!|ZHW&y5)#*0{9Y94W9uTR;Fr z7_ELkYbXW|c)4P1bNzaz&)~r~q<{&P8>HZw3tWNTckxa@b4dwa3HJm^Cc`pbTY9uX=S!XCuJWox7lcv;dvF8IqbZ z7Js{$z8R~xoFq0XkCD1C>)8EGJ~g!{y=wW}L{N}Qs$OpCw0fG!HZBjhX4*=>A3@sX zMAsuGC;r_&@5y}GDGk&hmsLV)V~kq$_>k8sg>vS#a5yzBbd6jjrp-j4r7`vhu}2jeaEhLOk=|>Ev}#p{`VrBa76;bLG)wbQ3qL<^q4bU>)wKp%|5p@WlP`_axSq^V4>5|Y^%ocP`%=?jp^+#$ zN$&ekHn{;ExFxjw-A!p03s@?xZmv*bK(k<19B8D8_y+{I1D374FJCY&ck39?#y|_l ze_<|19%1Z7%n+mAckTyS@X!E#)eoeaQoqIN@7>{PJ-6gCs>KI9 zK5anWssyZ6Epoq~`~}UZWx!_E5h-)bgw|K(h!=r7)WW`vKWV*MUmfY_WgiD11KBvxMKeXpL*MEy+F8KDk9_S+<{!$=X z%1_duerXmd`iFIDN@IqW*~FNnRI4oY$q!@ z#nD7Y$2{#dqhYDj?V9Lk%t%HhuA*z1Ws&BCX9r7&mZPz9$kUKtYpDfKca%I8y@;vkL_r-5(@cb-upi4Mq)|cd^S@ zSX-oW8%0EsvP-N3mSw=BSuw6{p`f4(Se}7O;IvFNpf@>Eph`E?2$7K;W7`gQsEGz{ z{Xm-xuxYzcy)>l3032HPo}A!2yiEECH{<|=xn7d=AzhZFJkzgH8o%Q|M}=cle8q(oX}(uzv7t#g(&fJwmTjCyZ~KB}T%^xx(s-WW`+j&*1@r0%t`+h2-M0`Xr0O?y`#Qq-rk_+JKeoPS3i4=%^BZ0h zd%S%>i)&UD3|iNt?2xGv&9WFo*r|xIolpE6KbmoLq%e^6GXZm7amkM~D5CU6N|%m-v6Jd&=F11TwfBqRd+P` zFskM?L5Y5aX~~z4h=@X9LjbS>rn*R;|4hGnsCrPa4s@luD}t{bV;N-U#an?C_611V z@v=Adf6lTNt}rdAEGJ40t*8gw&`#Zd{#Y*ZmMOaT&g4he96g?(U)u z6*8xl@qc$101nR>{}vZNN#F~>5}X5#is4r>W$a;zX}aUsPq~n&vx0W)oX+ydB0Y(8W%{cr@Eyx$6x*w@RgZ$Mi~OUl3_qiUX}gy zQ=)`#%x_JHr}(*P`aj3hnTrM-w)qNwWd%eDKyL6?Vw#V7e^*|yi02}`AX5|-b9#vb zJ&voUOwgXVY8bm^fR4=i&!tnQsj-6VkZAgC-i(t#o&gQX--yG^E0VDg(`_Fd0D~^)S z(dKf%+fVhXg@*dy)zSSZj+o=!7d61)b%A!|{0`2Do z1W~m9`S5PI{wQ{4IQzDAaQks}(Dk3{u@#=1Ogdn{EZ|ufE#C8>D5X~!S{*;1 zkwiqC-$+fk;^7eF#Rl+b9|^f{(7ZWODaF!RG}SDRbgB+4$He3N^`#ei&!M?zmnhX< z8up~TNdI{RpS7Qo%g%UD{ode{rO6N(8=GMJ=Iy?eZHoDqid!2#Uh!h<0)dY>4(iGV5{W436R}|ja=WpmY!@Wk$@x`$JxVir7 z_I(u>bkw3j6S4XckJaj_#*6+VE{u>D7pYg@`L>~aU9L-ezu2RVq3NGU#k>lixLY|j ziNRNktS|5HrCza=kUzV52g8pw7;N&pfY0td{A}e=EYaTGL zhk7bi#3c%7t}-dNv5QyOkT}wlVAeI2l7muevCU^zCD{lbe`DzicyT!S`zhTqb_u-? z0RoN6vFMM+~5k>|X*xT{e?{PCcI)sX0A0KoO zT5XVx4_4~&U}4!W(O75fq{VwFD#xvdYbJZhE-U)|jv}GgTsld=(sC*K6~0|&UGjsP zKPf`f7WKY(H^T&PE+eh%ckFENGW;|nVj^2^lEHHxrTaKj&YthZ{y68@t$CP_f)95{cco(Nkj@rw|;bg*|35&gD@^ zd@N(zJ(SV5E-<*6IiOg|Z z=BcX(zmrPnrQwy_%QcPv@O!-#J5h?JN0A<9->QV$s=?92lov1U=+dNIX>b~BWsR>9 zORo>x()63rm!W*WTaf!8o>7{7S@Q##=6cC3tN^qlY4Z z?k2&v#C84DcVwOeqZek*1W($?T6)=*;)%if@bLwDuOi}yA>jRbE=SOjh7s7Mv+I_>K6(+KD6u2 zR~q1;U;Q1)NqauJjW3$)@i={myHW(LmmF#M0y{jv$hrWILk?b7RJCgb@o|?I;+c2I z8K>3am93=5k2eQv%-iMeQ8hop;TVPPV*5!PGP4?m<>$o*`9xP^sV4qBZ5gl53WN+o z)H7Z#6UMO-&s8~@hzL`P?;h{++R6SrPL`#(0pA6U2%kM9E^0Q;1nJJHg<3Za#=U0I zZ7)o0jdJl9r)6L(sTCpb%PGxzMRvNxxcOD>%L~O`^L#-Mvp0j`dC7)l(buZeYS@L- zBic4AJhm_@gIAAXSRwynPAw<7|1E^~J?1a<^UWZj|9b1C#&QC80PBXrrwQZuv=)EW zXS+!CC7ChmK^*%fjeFKhamN`DugA0`JRB7@h?Ne+{`f1yLasj8)wZQ;We2|Y>+)6P z$){;IDTkGzT7h9>GiT2*Hul09#)d;gqIFiMsFBAjh|&FkiYepPWDd@)KG>3gc@xCU zoNbS^x~yY$V7|(9;677eK4LdAAjq)4av-ShA@RIobn}OI$!&0pV%r9xR60wMf6EbXxS)w%>)9Oj;cECFyD1ts^Bq{&NJ4sTfWrc&Ci+Y4P2IrFD(dn z3*n-CvSOMR0{3FVoXYv`Dm{(S#G2!ckuTy`dlyxnzTI)ClJ<=HlTGdFE3meGv%Rff z_88OA6wlddYW}6jgU!T&P?ek62Y#x(*KAAK3tt-th?XIb&cb1RN>L4(JZTZ@8Dhrr zta&R^+ zL%*?GEORAE--n`jEn}MkP5Kvs^I=A*twkOk+DWZWk2CM&OgUXy3drvb;@~)_PfJ1i zUkaKvUJy)|WDhXyoV7eB%fk3yk#GFwxbuDbv_rJ@kO1Jq)x#14dz>jMV!-ZI{-7&g zz~cWG*CSU47U~)Qy054(_{N22WTS_UyVrqzxTG%4htHc===R-C(bi)aAZ>!LfL-Q9 zL1#@1OXK=x-Ab|-zeOLb{MG8ovZzIx^z=0~iQ;4~?9i%w{qczE?hU}i0b}RFPdcBu z&@-S}0}25e0r#7Bs_<@r?TpKR_Jhv8Zzd7ml zUT^%GA$A-W>8m_uDPWzH#THKaM?xIai4qnu!xBCjUh$M(qXfrg^;B`%)mQw(fO;sw zKuPW1i?tVlGxtDGCp~qQ3#Ms#O9f`5la(b&Ze<-}3+g+%63rf6Jhj%!W^rPqqtRxNL-vuggP*D5g)fbA%M(rmE0LE8WmPLrjF7fd z46oKtOe)?L z$~}$o)men3{JIaqo|Q>mBYmK=GW+XeIq$=dmBy@K=h`A3>yM);NJ|edsGXPmfp3f0 z0hC0N@megjen~S26h+p0ABepU~~N&tH`f^J!R=~x+YeU zLt8O$^j=7`c!=H@BD6SFWj*k5VD;C;#M%xNXdnR+jmVpfRgZ_OUANIqjg38ArhgY_ z&)vrCz@6`=yfU|^uD2qk@?nha0P_v2YhLAM!FAx{GHE0O^!rD9ZMQ){jpgU`nQ!*1 z-}oHUQ!4fE>gJi)?q2U>hjvl69^40lr|f9%arD6lS4bx+T7bg$>JWzB&$`Z5YFe>^ zR#MTM7100bLb2Wxz?$mTdcg&FoRio!>8k*VSDF&MK3vlVJRzU+j8Lbd9UsaXX)6%8 zyvdRsVq8?BE*H$@p!;t5r0aUT@JBMGEmc_%jvpVgX@r?tz+Qo>S12k?S9yz!`+@(A zUgl=qn{sw|yFVpC;sv|w+e{{eCf}X@x%y!H{&gAO3mM_xXMJ7)lihlhh>YO0#&5!P z_((1)-E{UkIppy%(}RVa5L1&5)YsL%6y`|A@+=9(xvF6&2619~&Hjt$IB6w@JulC3 z5KA9*%>&=RV^P@WWLz6ho~_o%2p`wc9~ysGnJJeiiJM^x(4y6mzFG`rhyEA%IHnO} z?DBNmRMPScHiE@Y)bpVsH^b$@umBNtnvrb~*Q*A7%SoT+v{ zjK1#1&};IR_s{A@e)kzY%CAqx$E$(MN2&j~;zV3Mdm(S*>?2`q@}w-&i&wi$2sR4-}!Glh9YdA_1xDzuQ`8H-+{AA z#agFMeTS%a!IKg$$I-qWa@|aU8!t3zei(beRk3Z#9GOc#`Vi*uycJ`C;;^AxnCAg{ z*@DJI^Zvw(i*}=}(z(21$owA1Wwq#(d|71S`ne4W-5VK$3+8^kshjKy@EG(^GQb7o z-#b7yC9Ln`{tx8Gzk%2SgMkz>+pP!+)T77h=KQH*{Hde|HMct_i&sa`*9Q+X6bJxI z^0E3~&=x%Iwe5zVC*h;MzP<^-G)Qs{4i1Jg0<-Sm;nd%msRh|>F%T@46}Yy6qQb2@ zga1rTi+%pb!0-%~u)fNFz;_~w-TTSvcvKanf1o4cO|4c3U{UPp-W=;%h|}K=o0S+~u*?O+o`b&1 ze0PPYBwV{Iwp>GExyiCYafjpEX~HpcM$A^-jUF~<-o9jVg<$pe*= z4yCude5n@E`G+Y%5$zL2^SW<%i`}m5Lev<@?2E(itC`t2QhATM@IM&$ZJ?JeyNlQB zv}2XDakLDt`qIU>jBf5a#JfY1DiiNEX_r7mNkfUE5%wgRWkY2$|s zV7WFixWq1Xpp>8+oA^^6HMsC+9IMgQPt#bg)eEG$y2Y%-c3ZJCos)0Z{ejvAsoQ|Xa$M( z=I4u(2ACuIFYv4MT#_Rc>bsA}4vQHdUVoQdLY_=GL_~UjAJi#7mNsF3O|N||s+itv z0AJ#x><+g7Re>1JcrKRhU+Wf&h}@t~72-92?KK`QE-}pM*FbhaWs)A=qUF%DbfhLL z)WJ6}5PbOkcv9jWQrC@tfb2xs_wdebvebb48^#;N;bP%NK35>$tB zd}^FYc-EAHhIJ^f<#w-DD4I%@nnpPk?Hk9#(=1+dMW4SC*A)1cTHdkYPvxqO(Pd31 zbr#nBEFxCiyvme>^648Mnuwyx(MV?{*L5GK0fY0*fi=FhI6wNa>&#}0*D2mP%Z!nu zc?xdWv88_OaqHKW(b7-mlpF^Y5h=(u9Raa0mNz9oS8!FWX&>mVC4V?0LVn1XdC^V|7ziJsF~Nl%kBcW?dbc0R~7fwUhDm>dO(A@zlG)jJI+)n z{I`vlCl9zIoZ(_c0OhU=#{)x~4P2$(L?I2izR;T=82Q4jVz#QnKi$JRsS!zE#MnbU zhPs-#(Pl-JT;;m?@{otrnL8-b;_`Ew{-Q1)aD=EF#WyI5MRpG=8RVH!z&G+L2_k)x z&OoRNLtRJs;s8^)ru1*(U+G{!IFgF`;*b&eOj3cP^=NZ2s;uPo3krfP3 zUp8u2GoC(=U7D`MDnhHN8)cM;t`sg2N3rBCptsIBMjBSD91x$|<)EaVPSR3TGrQAg znO8`ExXSv8h)ywnslmq6rP!#aK+^wf8>`WD%CBTatrShODAv!}$nXgB+%D>y%vDwJV?b7d=yXsO@i>KFYsLRq6pi3>wo8Y%|yF~3>e>eZfV6|NVh2 znB?ANTffenZP}7gzdXfg^qrR2Jc~3TYu+L0Fug}fV!4`9ol21h{9~=mRu2SJCWWg_ z&p3Bx_kL>sdH#c&X1!kNMPI@a-w)>iT6&E#=I9lM{8nBA0quOKW*?7UU>XKRbN zv>9+Jz?r-iclY0^_`-+Lh?M7%v$86-NXVz>`v(Z7jH)VIX^(#{Q!F9i6ZSoJ+mGkA zrt*NuYFxj+Acu9g#g1*-LgCE&&uo67pdJL@iOq|lju&?QMP>)%j?C%**muHUwu&|} z;=>60fe}oH1k+rT-r=D{y{M$Pm>$xqK+E)cS5afZV@+@5Ac!L&ZZZC$=Tm>&(PCyp zp1xtb<(HIg*445S(bcR9t%#M~7NmSDb{h?Yv!{+O2lwKZ25cY7QDu`M`Ni5!8zviT zaEKFiDPlFSM9lSNUItz|GK`Ib+hMy>Fr(se8u4zkX*pj*d`MJ}~cF7TIl*by$VJxTnW z`ljs!xqSI`-$`JWV5qTWK4)9FvG1U?ljvU=PR!5x?eF6bs;^G zK!Q_rp)Ru8!*W+=vgS>ji&`~9o`o~MSd#FEG1`B}#UFC7Wh{HV5OMXP7fbKi@gr`c zuhZu1JO@4bT65bBl%Wl^Mr*hQi`QYLh|-A1%O~$%zU^OVD3*>`QZQPuc<-~I3J9@hOC21kaZQf9pdTS<3Sle_q;AK!g9H}**6gLRuz^O>dLI27Fk$Je*KylxT%*xdn)j%6E` zSdinFf3LUoUn^U;PgE_S)Ic00z}Q&;6Jc8vts;kk*6nYixoaVuzX{zhIGfL9pzx`~ zcGWoK9N|9T0IOzzxB1b>IUfX)sSpAOLWD8vcRX_L2jOC?i}jo(5GLkU$ioidT6~~o z-N)YF85ta`7oIr0{)+!{av)vlWznUWZmU^yuRak{08%@We1GaOZ|ub)dAanbM? z+rS3>*TjS$_-VLyAN;=z8&hgB_}HyfoVx&~b2i@m*Bf|REc_fe2)z2(Up2Mw8P9R( zal_uf{kdGKDU2sT*ZrHe76bO9|6COb7C9`+l_A)L6YRP8JQ;?xL)VN9+dD|$fW0|qk2K0T;yWBBIG-);y)xIr-ApvN^dfyx z(mbi7>gxl9<{NdILM(m}((U_N+K&*%Y3TQ=B%U~Nj6Bhc*Pf2Q>+I;$H6KWV)kA^* z!=D`!?XHI7JL^0${#sM_(a3H4o`Vqih?ISexu8*5mTAerD|76|SgH%k2c&{qZ{eS{ zE|JJq4Z_01stztbCgK%Kx&=S~dAG`;0Y;|G-aJg#H*@!%5ORd!pH8wee`Od|S+D~mmrae%YL z3=S%@loU?cIo34h)O&0d)YJ&#>Iloxu7$MOhv&jL5m^yB&sbB?SAEbad~&;2s`r6Y zNwYEO{*LP#*PJ&E<`+~##i5v@$f@f@4+rrx>wGTT*T9mw<#7oPiO5(!9_wq51{Mr!XW;fFERW3W5v~(u8`zI@POIC#BcRD~3KRePIQzWugZ;!;SAhfw;0m;J2iH91 z+C(Cs>&3&}o4>n6FG6H6`j(u_hE;qDD$FvThe#ucN{aF+PSL)0YjWlUy%E(Gze~3n z+`sSfz}T{0J9~1BO|W>D|MQ%ib2}abweIk1FZ;dvre`o1=k+EZ?8|s6ONvhI=&D0T zXF<1rja{qc!jjFn0a4<)@M5T<*{fkPI$OmYPvXa`z1_#(cJ5oxFXNooTCM(S6%Ez; z8izL`Fh{&Oud(>ljKb-+S9($8%UU;{_5JLh#}SkAE`68;2hWxn;tp9`gwk=txkZ^s zj8jIb!&%$)sxCJQP9Q%CLs?eU$2{ zOWks?eTWw6A&=w~gZd38Ckl~N#|rSMat@St9|Zo16q!?gx|Y7j&H6KJTn#-b3E{ZF zWpw#Rf@+CDUl_g6q3P_Jjd``MO*Ptz`aZSt3g1$PIQq992Wv9y$91J5t3u!ND87q2 zc)qpuzaCty8)l^(${ar$>NK^~k&K`7WOeP{)^|57)FnBWXlY)5C0s?*U9p}cALq~c z>317-PN&UB$yHmj!?+|4p54pLRwu7Vv2crgKiUMRnZ0kL(m!&e?`R)9q7D43QPLaz z&^C{EfP0}^SwnhjWcy{jSaIX-CWEclWN_>PK0;X=a*zfNh%-BuKj#7A`5E< z#9$PQO5Fb|HID>?XlAcpzup53O+W-Vfx)g;IhzIXeIWE)Tsy1Qqr{mjfI#$d;=f9GxY@18=)bo2jbjRBZ9l79Y6)1#AnB{4 z;qbFwn0dm9tK1OjVa58f5}$|Yz}gjY1vH}Nd*Q-GB%^15@NC7e*J zkucLhL#40kTsb}Kc|9G&PNkWHOpR;_>dm*#(OkWtH@zb1Mp)NHUF+RPwR0jPr?gdQ zOvVwF*7@_%e>PcMi5twT+YP@Cldh5_xh~saKXQFkbisD$6cxWww7JS&*gkmOjkJan10$W zM6DI+9ou`kza^zjtzZ9)ay}&$+3lryB3FLK9}@5q&jlBHv%m>s7ZaBXd)asHdB& zE{u|_IaKxWdgj^-^JRA(GLuiZ7Y!r|N(of8CFurO?7cg(Rk&x(l!%RqF9nLzFj&_9s=CB%3YS~$z@=fa!R(UD-2VAH66$8^ zgu}q;gzjqB%a=;dbZ4VKInydCtVfdK(|))|&YiSYgq!0(L#>@t?U)a(`{3D8&;5QP zuNdHD8o)9I`Gg4^6F}bcyk#4Jr?|}c{RGgo_epQQ0^Ab`SjU8x+N>);r-=Z#Ia{@$ zQvU`J(>5PJ`CGR-1EJRKh6l^i1v*B-S_tB;=8o3fY#zXp@7&mM89Ny)3c*wETlbV<5 ztObbd?b^yuiVu*UQ{MFg$I{V=v|F`8X!m1;vy4+|M(1)9;+YS&Xft(ssYVTB#BdI- zSaIMKFuz$@U#&<`o%UV1@-4(hZ-+bNiA9iHWk2AR^*ZKH#|yI*WL*r!Rx1ugSkYE> z8iq|rtmE)SCeX5N)8=UQVLLsMpl^TDSeMDr=&6hM`MWT3$hnU4@>!U`Ti4Kc;#VV- z`2ig79D@l4Qrrfs*4fRziQzd?dw#tNOWHHlxS{-OA*EVR{n4QK-L7{-p$F}^S9850 z2Wko_f6*Oz-V`DtW{eo^?wNC?jGULbP{{52TyR!-4BU$hdrF+@2TTOB*?gq*L=hu; zRaOo75Bkwe2D~W8bs5yT)-ZOF5ZieeI!3jlX3dRjP6i~eB#AN`S2z}YMxS22u;ASg z8ONiaT}bJ)*c+jiv=4Ms7A!{8T=2)cDTeIsqrld64o^$FWTQ?Vx>NNe3N9q|oa~9l zo-@7{Q$NUEc9eJM_!J^iAhU;cU5Dtt_z0Q$L;4r6yS&Uf@=VSK_ zSanoS#45Cg|jJ9*+uS`&zV|7G_z5n3p!1D2B zuFCk3T{~4E*7_L?sB*}VIumO6PY9+#`AJlkzu6Z6uF}xUl4$-61qwYtyjHzGK(sSmDMN%bc?sikwGOlKVQfO${5TWy$lkPLl z>HV=}xYvwsr9Q-eVAVB`IVZnwtNIuP#+r@_E?*WXPfC;))~mwAV8_^^XSNl zsZEAQtkZ8I&zR%$Yw*OcK^}KL6tm(3DMVI{_0)zHQ~w1335GKCLcvx^j6AYmVVnwz0xm$82m73 zS6ovkofLT9pJ2_KqFHQ2WbnvSm@|hLBW7TI|6H(10Jp|4*6FqQq}#>kT3!aSCb6^T z6;mcuMMk_L9SYU%QQH^eS-i44mmWkFD=^gg?4g9*nQ=S!}8*UUML97Aj(2W{O?GW*)+`h#+ zo($q&%Ln~#UyG1p{CU2X+B}Gp;0`UYA!aS<&6yaKGssmb;M)6vJUC5sqj~^Xc)Yig zw)@{T_r3c0YYd2L3IVpwN4Wki%0K4<+l?N0Geb;nhrj1*EXG3=rhp07^>KE^pQtDI z2qc26-Q0Jb=b;7cU|t=&sg1uNYuzM^V$_$z{zDiTOz&jvv0nf zZOtz^Qeb;2Qs(%6igJz7y&9o%ex9s5xp}43Um1OB%)VdOEq5$Ul(pg-ky;wR_|m4! z$mBdo(_|?^1Em$;V3MX8&UW1vo$tRT)r7dKpcXBuVTc<7itAMHR*b8kQn;S$Oi zd>Df!HQQIxvAHNzKa;TjLSnExe}sk{m-xfwuak!QBYuXmyAj1*Ht?cq8?n)()M&E< zHeQC8cNnXp?NF|Q`VG&tcId`&RTEyv$$sc*oBCi->yo-;9%59#MA;FK!S+ohAQfSE z?k~WU_w~o6fP`G?Q)?7avF5q={YFy}w2|EtnujDHw5X z%>6>2Y#WU-xNAR)vgO-NQRU&gAukzXiynd>wK0ZMO?@?**==!)i)s_j^!qL)IkQUi z!%bRq11o17jU9%&+}WS{cJpbjR1=NO^f=;47;j>26ct}|#zud6IpoU+cZWOH8~DQ` zrWUXJjf7i2f1Ex@&(v0l|M}UqXGGpCwrZ*}R07Uu$T$)hr5|=#^;5=B@uBA-`!Jo| z)2sx=k7QCqu8FAiG9$?^CAEb5jF5Kc#Z#&Vxhk@GqntxKxA|Tk3Ph+~{jYMSSbzHY+r5Pg~f;x3N-ZepCCx3#^z4U?J9tPiBJ1Q9BxQ}`!=kF{0jKiSwN zxUdbI|J#SZ1ROoHfk^;HDudz>fX+v7(4M2kn4uMNSgEb8O~h<+`9UvIbN#FTmbIS04k1Jp^qIb_}|Gc?S`6yil$p$f^SaET`HeIWDsn9wZq-UiJy# z7w>G?0`Ny1_si+|Jpic-tthK=@5}I(@EZY7Hob~|L{4FD+^?aiOTx_I4magmI;GFkBDY1Q1ZQ>Hb zaC_42)>17$emmjcm7R?DaT&v&p~0QKcv`cTV-BOw z9+Q}%yP!oVB{$F-Tg3A|BxvS;VlHlux$dp}@x|KfnU!B(+lW^eiJoJ-N#ymd)To6d z+7AGS(K1au+U#bRBih?oAqAW`ekW-tfZsuV7U1>`QB%vH z<-D^ZoSRjZx#o>;OjLaru zZ!1K$Y(?jU!A|Dg-HmQQ#eoOZr2+c_vUP<2u~>UnSfPyj%|*%0R9E=zqLih>&tot$ zk~4#ee_YEN9h6%@VL5;Y|H%#V)UN12uw{bi|1K+Zx&(HUP&)O((&wS~9YCCS(gIZ} z8O2Nw^iz<|se3zfOo|yFIASBOVn6klrd4&k{(VgO-O5~-i~0F9lgq=;bYx|=4%~Y| zM0Ac11zR{gx%Vbc-WHb;lDDLWHRbHwpKe{MLiz5xT=L62V}xX_%|Br;=XX`&)l>7& z=oEbZI6|N1b{Lq_R3C2Va0RP}VWXiQRBt;sB)luRT?y+(#Jk3%Z z;e*$bk6_%X#l#tVx=E^@9R1>0CNuQXyK;!^Dj+*uGe-RCeoM0Wv1;;({2B#=8R94~ z%H2a%+1!c&70w54ahU?=`dgp5#7`5;yBD5+r=`>o-r_`@=eFJR`mm{xJDec6vA6RX zKG9W?X6Vh}Z>@MnxSTO4>T!zB?(@YVMe)1uni~JJEIY4?F;0;a#NLW(`1JFYGKAp+ z#1e(*!eEwyRpOoV%d_n<7)(WAekV%(bc+dJ%2TZZTW3wE)%1dzknz!ODm<~4d0b*U ztHwNp$&9JIu{b#}IGm81)t%d@rg`cEp~h3RAde)mqU0k&tmo-Pci-3Y>1CK2robCE z9YdPA8>iZQLoHoc|BexdoO`EBPz3r!y3irEpAQUbD2wAL!z(klc+CtPbn6Es`8ySw z#*}dUK3vS9bjEb-pF{I<3HY~1)^UQphvp=ZnYTLZ;|%@NZscj@QVn(rNQ>ZcxP4|f zTLf;-Zk`GLoe;#{YrK`{X9vxmabL{N!}^BmNbgLMy7 zd;p(RODitb`-#y}_BXLi{?*mhSZElJF9Qca>52qY!vTA=bb(BI27~%dT#gHLp7X?=Dv}k0&KLSDR+ncn`mKL{(Pp z^mJ1fS$M!qs%vI>{lj!e>ts#!zHCtU>klQA3;t1g*ZL>pT`RO0#frjrPzJuwJeM3? zCXjMLJ;#l<^N-cSkR!?(>Nu3qyWY;usJ=-2G!!PL7+qxP>QVmb(7@|3vO!Qm2ll+FKhdJS+w3n!y9!V*MpJFqg(CW^0E}w{Bh5x}&=f`vuZiz*; z&Ndg-v3S|#*0Bn2=2D4n^YD$s6WYN|`rJL(a}w4nXpT#rbsC1+rTE-k$ZkC2=YUw@ ze$?iRc*F`qKGau3QrQF*RlxHUbxld6O}pEWe3yPWHdnK<0N%K49yi;-c|rY-M|5hw zk9Ea~qjRanY9`NJc@0x#$=5cmySG(KqcXgF`GbV^GJ5xq>IO1i*8PFSnF2pqnc8TL z4-GeYS%x0zsl+gYy50t=W}hp94K;Z*YGn@FtaUspt#1chPnD|VkG`mMYh~Fd{?YMf zXpy4p;ItsqP*JfL=i;-KOU)VkGZ)C;8E75gDtlf2`nwAX^(QG}-Oaqw$9OI~@A>2?}%!fI5EMCA4~*q!;Vr9Lqf5EdYPwEpt83Mlt6aK4uH(u zq*l^+GUbQ-PvlR7aj>kcYTM7^K$|JB8Vi5`)DV;y_8Z8M&z_2i{CnCNp#g?Fs}2G* zpsSpea^IpUAd~AB2uML8&#$w9Z4I*odffze+`qRvi|{K^caEokCxHTzr}$AnW+o@O zm&=ZSf~^4b#~iMY#|KA8y{(oyCalL^`NU*r@9St4}>zvmul_B;NnrAc&F8_D84=JO%`Q)oM(L8hysZ(j&0NhQ5eM%I)>kPd(xnx=3%jE~$+Cl$VJPCL`AUcO?#H zS_;>X!km;8l(W>Q47nvg3UsCpcqZ8MC}|o9Pl6Pjk&}$jwJ$ zA2}fF>#IH)G)KX~rUjVkX9(TD5R}~YN7>kz$`#OY#ejO-1PJ9A^;f}obmj7Umt&~ttEg^Dd3m5j9OgjZ~l8ter1sETm$#k&L9FdA6|a2%;g0n9rBmX z6S^*-tVDVXfCX2O>ECFRW&vZb;6xO}6yw=sw^XPZ*h8V=#>x7_s_aDcDKbB%L6zyGY3yq?e z2lB@CU86tQM%%HAWBPUYL?s5yz>{it2Z|;NBwQ@TW7BfbZKcJvpT`PK>2s5(+~De# zL^?X8a$^6o4vNuiiA*!Uf4HUMDRSjmm@RJ6el9bg*5eTAR>aXsjDK;Zq@m@8B(G)o z`s2(^qv^&@?CZAsg^Vd8dSl0lFV;FY&V-l$w%LvokPZ}GELrqt?4X`T0#CD^ZUnN5 zv7LaP;wja+0Plg$2Q%!0PrV^NhK6~=$BQrUD86M!eWJ*6T5j+_t<$j~rQV{3<)Yot zGB_!XSm-@k4?u7ha6}v;DO*g<4cslZB zv+G`7{j@3Py}~C84^JZwt8`x7Pt;+fnCW^v^|x|#uZ&2D$~(N&?;0JGa>>~#&t#IXmqet*&R!90Ts{!XPFd@tBYwW$ zCv{v(u4kKTBD2G#$@JEL_#pHkg&L3j*E07H$FOwW^tIXOBcx>qOWmpQsRe7b4)!I- z?_~o7Lisy$oF|TDW!){BV44NQ=0#|m3IvQD!O(fI@`(fcdcPi$lR!CqpWN|HnDa}s&Xe*?jo2Sac2^?$@@@1pN>gkU=ZzakxQdIr3oH{Q@>3Z#op=!@8=BR}TF z1T@|6&7Nd$fb$Qk-GTO`w=A#HKfS|? z(~B+RUI4;LE7&*rKp1N9)+Pqyb~C7+TLPc76G{()?(^ zfM^K}v5;ZWuB$(h&%;X&x0Y8YB=vkq>pM>(y^&ACD@s*oYWz6b%5!~0>~mk=I@}2R zlPY$fMTU{Y?mWwO@2+vA58ID5bJi$3?7W)(2HqrxMa3l9r{HO_KHhCTK|NM)m^e#x z;{W^+|Bh&}m`l2_mY-{18Er9hG?newi)n8Gp+=0*g3)r5R zdsQEeX=+JEZ1)=qB1-2pS{BN910y!I4KGKAd&)EvG9yb2wvcd>! zRW@PsUg7C&k2hcN3L|>qlJ~>eBqGPF+)~1;+2C9ibvyHKk#wrTrIzf|wF%hH*U?{a zM>S;LL_#m4D3*IR7N2E5iPx-I&ROvm+NY?-l&rnAbo+HkE5gUvZxnhdFU5;ebfZqX z#0jw5oYpTZL@~O~e1d(#l*|zrG-$B$MLK0QV>hEr0S4UyLTi^l$f`N9Dlr}gPnh`r zEE6J(!{ZJMdaG-uMqw2*Zw|0TNNLy^W7zW8C9fQv0&B;AeWpJ+b1$1G(#P6~Sos^j zncFB#VVl_X^sqKQDU_b=h$}wnF_L4{99y(2@l6O~j%K2Ti@y!j)v>QGcHJ&FrKvnY z`QZ)m@c({k1}z{QY=lsA1WlhbhNkL_8D8MohblIRlUyWJq-JzF?gMsB&|5Gg^oMnfY4kih+xSG|p41x8-B?M2AzY1l1 z=$kXqaQEc?N6V>{jk~aA)x;}x+ko&rrtb*H@`mp(PLOIt)SAiaJ6tMCI0K@ZGn+Q@ z3P-vf-<;nWb~L7Q{vBeJPbGDj*lQtR8?_zSY}Q!~D;JW@$`XpLWYg~EUc-6arXo1> zGKhBA423#u$KI)JI}rw3rnD~ihMLPQ1}|{ zFoFLd{pavnD}%oEPY_k&xdIoF)3DA^-UD%$gUHl>j{rm{hZ0X`8>-C#(o}91Q$YLL z2Lr3Eu;9P5SPd49q&^zyqk@)Ib%qDdXd`2O8K>>sl1 z9nBaiP#->5WjcU@G87rlqQ}4$!UlTmc)_k5`D7mKq9Oi+D7M$XQMKyJ^6KExOHuV34r!R&t1Fq ztO4WaS6R!;y3AtI1a=4Vh0lI!)bNktw(xYuN}a|wYMO_h(hd)-Qz3#&j$`a4>m5SX zc4RxW`+J_=3H3F|x)M527U%NcEUpL=os^`H*NH_7|4_g6#M$`%<&fq}Qkzm$T3PuJP=(rD#g&ywrT3aWG0O9w-st%SqQsqG2E3vJY+=S4}70RD3hH^C{V|P>NSnxGg0HeW-MYKVlwHR4&~( zxH356^>pM4K3br-AvHxEc3)BNS-Dq}+?k5wlzz<(9>TUBF<(^Z*~PBZ#S`vavTykP z`i;j8g;ur){cyjedl)sY)9JhF`D?T3w>py1*AjuDKa30f$4zO21u^92h5411d1Y0n zK8lkLC3vhD7?VCW+5Wm|7BNHb5{!EkFB<&;#U zL&NaKafZ1+qj1kWLV>{L#7d&(X1C~umwXP%8UTZGx4_m8@uhSg$p?^`pr^WRBu~+*kA3_%;D`|Z&v1a< z2HO3g8TKw@vQze+Wj`P$ z78DqJT2sE=SWsI(TCOeb@aa2V%M091F|uB|GPBiQw)eg#agSiN zZN-7=XMI?+5uB| zvNCRtK8Y`c%~V(a%KGv1j;pTIwvhRmBHDv@d9 zk@^E=A0K}%f7XKjht(zU8-8SB3$cVmk|x|dl$(?Oosif?`R{}9u1+%QmVQ3}=%fb+ z;U?ZSH$Ca-LX8AG;|-4etS>CC3Q^Fs-re}Ryx5??8Ed-`IlhDXes$xDu+{1zZ)3`p z$%3Jp)MJ89tL(@1IY3JGUP;*0yfH5RtZwpvuu>BCg_&WAasgY_`Qp_R4If^XDfh6{ zw{F2TQol&PZm;04v~7?ZoBg&fclk`zX_@R`qn->dCc9E$_(N!=3rK3>r;2sen+5YNqO8%i8zygt@WT^$UHTkf{Rd z|A9)X?!bVrmFHI3%?Rax_`_v8{y(Ut`gIdP0HQ}y$+Q4LfzM<^suC%<9lX4)LFwdg zG~Kg1I&SBNTR^t{WNK;?(hMTD_!YnZ%^L4bRSdh2fs)+66CMd!~Vpj{MF!geS?ozt{e3uV{o_9hbV#rzQP1SwaZN)P1 zPeEGyS4gRm<3Fc>Xoe7K4phPP(jcn~K(tKo`FnN6#hLf%;n*Ud2Xr(L$M*IKtfJqxUyE+H!?czo2Wl(UHj5wF6wlv z=mg)wSR@Xmr?x^f4H`Uto~^ClBU zWcuH|{>k((bEh(@JN80y(8j#VpgJuHPdSSo9w+{FgRMDH=heOCI%$D0o_FRlh`+)= z(glW&@-3~~Dsn#)4KjpZ(vv69ZgFq88C=Zf$jO}19Z_#2ex#Ch3to@4k?Xbf7jEu= ztF@`-&YAjs8M#_d4U3-8VxU3zht028wamT{5aca*xnv*)=MR5ObyfD|svO?K-S4aK zraZNN-$O?>sWT{en`uwrecqY7Nv-T4?-QB$CbNVUjd-FK?QYwERcRyjDXE)Rhwpc0 zMjyRxb!b)0I}H#}%UBnHCr0Rx)bv)y5+@zhR7T05lW}clH^+}!pz`%cN~?^8-VewK!dTXnba5C-}TAnjt!D$HvpUt7$W`vJ8{+J9RIH zVlDf**Cyx(Ai8h^$N zP&o46LK^|!7VMnNd+%uLYT1q|bAceU6?hNafdR?K59+c#1Adr5>wa#djLv^8D4($2 zKjPwVaxqYwXl4Nvq%H`_W=`oM=JIv|en59Qa^?I@+^8 zciMflN7+qFiXl<-mNE$lUl|n@Pm`0AYi|BtvVey1Tjw-*qm`PBzI53S)SbcHFUEEu9!sy&_v3*)j&V69!na^c+fss9G1$SL=V-LWg6ID6^dTNs6YJAOlc48@jLr=H@ zYb6*K?m$}yUcf8>#NZ}Zx|ujgaFs6^zi$|S15F-B2~hbusBb4M70^bxBjAqEDp`wc zzq0P#x3Zp-A699|- z{P57{OBim7O2yG<{iY9_@8@GaXNUGES8Q)`SY_uPQ!MG4M;z7}CK;0Ws>jCScKxmV zRB|NqYFq?0MDACMs}JS~+vt(&ypna2lk_CX@UN2`;Q{fEGJT&t-zoH;e`YnCVK4`i z=mlJxl|EaQ44Q?sC|m}zesq%`mNVTqFN}Pbq;}ao<~|+;N}@gPgnM@luLr7DXVcAb z8O>O$`?{wdIEXWGE`*0a5ieGHL!zB=w5z#TvQ-;94ub_0J%z!Nr>!3?r}Wf;0MN08 zh)y*3Tz#_T%~;%Kz}0urw^WZAx-0x^rC5v8T@40~*&~FBa>st~`&g5l3y*RBa&n0` zi~GHzHte3O7PL#-jx7L03t+H33dWGQExf@augcxKF{S#3^%_EzrZqRu za~ox@mx9q6I^xfUVw=38=~Sm&=~Ro`pbvz7Q0NPvo z?VcKB4w(Le`C`hI^z6s|t)cH_?`=Y{0j!{%rIXkbAQPTK%Q;Bf0JU57J)d2}wm>fzcr3M+c(o@<_(W0*hlG?M3G2u{*R<{@SM?%(zJWAa)H(j6KKP0h?m|f6GY9X_ zOLU2R#OIWs?kPlqbL_q>^o;ushx_n0ik}e1>1#Dzid3mhciP31yn9X z@VkXOfjOsTCgWNr@gh|^_KhZO_fyInSkI-3UTVb^exj9OMwerc zI~YRUrVL>^SITm;E*cfzuw{=>Xvuh(Z%Tbm(2`+{*+)U!OhsbkI-5P?V)P*eakVog zdM5YOTXl$OPP@QhCiAf~bv^IXjVD!Iyy{~XD7$V|a9dHUh(!3l!1HOITxifs zaG+?4eu+f>dpIK%GALw1jbPVChA zCfUTpdXHeAG9~jlV$8c=4@Ej}_y~a$_&zgT7RKv8WYFrXYweK8rt#VmxR3Wq)oS6C z{Q@^G5MCH+^0NZ&B6Kp||LE(lutdW3)dztw0_eX}kLfeicld$B6Bv=8dbouaZ?z^D zZs@uD0FKGq8aQx$!T|e~D?d*HI>_j6R4e%h`oB# z!8AvZ-B9DA&X0~TGO9OK9Kw?392pZg=_6y~*y0uvMYF`K@WjEE0+3e6OQLNmV1p!dG2AqA^hI zMT7YV#EGRpdlEj=g;Ug5en9fKMm`Cj>*&`#WQ{7ZkDTV6tteP zoKkfd!=_yyHq9|wAp0G$n4cN>>*GaTZTqXFJhrJE?3}pm1gC~?-;Q;&cUEH;Of$ad zzpsAACapfpM&Wm7oDc#3B=NQQ5BuwT*M<`N5&>~BIOudwgCE3EEi1q|quVbN*4xi~ z)`I&e$6heV+wWF6^-D)Nr5G2rT|NH9-BR91r4P!2%>Jk+s1*b}Tp>0P(AR(XePG$F zWo6%FN+~j4@vEt|yE7Jyxyb}K;(9K{??i;JLs17raX!o0$O|9Tdg{GR)b+V|VCv?KEMC0lcl#b0-|oT9LH$ z1{fw#!E%Iq3-<34Sct4-PO_ca_lP>l@(w_7Lv6@~I*o+jveg0cyus%NIQxTgd-dG+ zxxqHj3Zl7!4o?uqsR5Ta$QSz?Tuxho2E>z2#vzi4z+w$Y+!J55>qA;_v796~zSp}n z?%23Rl}cUK5FzzBBdWge>5Ghkm1M2#&#^-}+D-nXXo9q-PFC+{EBkW|wEI0=pUKv4 zW4vU{@hw%@TSh4}t1QHvbYs-!h(=`7)VfVGb}&%Cs(pPR$Qj!&mE1xkS@a5>p$V63 zdu3?UW>KG_(|?BK1ht5&Yr70#yK3)!$eULQq-oTLHRS{OcOtG2hOL==iuGct| zYnt*lJMZmYF|uu+oEt8)3P0hwEGP|V_C}*zN=bTbOdtR!;fn3zTx5OUuX`d?B)|Hx z9T zj=BmRX>-%R72a26NxfyJp=!}KsCb3XV`SeXd|vbB95H>(Sy6}#`!z$W)hHVAzBhY; z{V+Ct&$p&BWhTXGaOLD3Bbjyp=_7PH=^rjBh8M=|A41mZdiP@}KZCn=ykD9jc(|xVMnizv;i}?z)3v@zIV$hF#yA^?+BcLd(fn%PZ`F~6~G%nJh z`Sl&4OruUG&;Z4hR{d;T<_=R%fB(JQC6)L7C*Jw^GDOc@fn~!}kkWh&UDKsLxq(^7 zay8y)5zsq`<>Sen{?(qnEyF7F&aUG>j34+0E>GZQ^_GhKm4^m8h(tm%BA8&foOeJt zdAy((fE@@p&1akn*h(zg6JNt;pTpB6D2$wXjjEN@EA@pV<}~Ccv`P_Q)5b*ksJTxH zWA{4W$dDa;EsVKKIk=)cyIN%Uy-%4nDxtornjqbjlu~qNwX|E$kJ4?%Ze(`iYQ7r1 zxTX1!v)QG=JK>V(87Nq-*#qCibl6pvS6W~G)zg#AWlyLt02xhYM=zGqT=|yIpV#QMd2A%+f%-S%2 z)*MB`J5A2lWnsfnjEL)BGOoE4gQ8ropWqFY*^yOVV)DyYx7xhhC(vhpR-K416)7{@ zKx*O`s~fexBpguCAJx{8$wJOjvt+PKSu4PHolZ;DKpVoN-y5xEjvt=yl{;!fdFayt zF5R6C&~qT6(g5zFw_O)(Mj`BfT|gbiUV-lQLjVVxi@To-X;|&Jp)BII|BI}*j>>B5 zzqe6A8U*Q-?hfhh4hc!=?vO^MySt=IKxvRrx>357l191d{;jR&`Hpvt_dh)zZWx2L z_xi*&=X8iQ_TvqXUj;rQ)J!7K!WoqKf~ilevRxiSZt^!*vz>iF^nS^Ksqvo#N*{R1 z%-34z)>~r%De&XJNgp7!IRrq*HS0t99QLu}H36qg1|XjN(HXh>H*qMxScWA0-&z|1 z4wAV*EiSZCrbK!O9F-rjyJrG3un1MZhY$}!l!%S77Xb=(U;s`Ap`?F+`OVk)d+=fCwD}%vO@4>UpWhu}F)>MZYPgOWPhSU_Rp(t^gY#tkDz<%r`=g_1 zs88WV2oFkAH#TQc&7x9JcYvmB1@%&BKw6mix8n~V1%4H)jhDy-NKYRuhR*Jdd7mUO ze&EhY-(fcudV4`7jV|#8$YAuE#a>G4h^fi{fh#MgoGrRmqT33tR9_ex;i$ZnV##;@ z!*WST!n7ya+miOvaH=XS^TH^?QN3h*I(&^Ug!6GmK}4r^;w4KalRgj8ny!rB^p)K& zuX4t%kR$UtA7Pe5xCB)x)~8J;dVpN6lTg77LXVobs~XX*=O(O{(;-mhwI%*E&PVs* zo=|vk!$z)JwS9YxAGU<0kwz6qjGo7{QrjRCRA6xjy%C`p7q);SR4De!X0--Hz(cJV1Q5GG z|NJY!Yuj0nY1f7XTy9`wE6d?;yVhkeo~hXGU-ap!`LAihp%VWCA6cCwY z-^>A<-ahASQfTv4)JQz3n_9_ra~5z<4GZ7*xpphtLpi? zl3y~sW8HNiQe*J;OABwU4?)|^bm}K>uad%@2hz&e-!Tc7=tk@Z1)p_(agC>RLjC<* zc(7-ZUJFk}uI7(+(GT00+Jl(mS$~ zbRCgeaHoVBsGBj-t7BuPaj-|RDpe=U8f|RyHqSm_eSbzc{*0+Zz3V}pU!@U+_UZXz zt2&M;aG)wR8jur33j8277RFFCb-06j+7e{aB9s8|+gZ9ny5Y0PAJg!YKkupxs-D5* zKQs||*cHWPEuuA5v6_81kWs^_3Nx`GN0(97LvWhLH}jC{=v^oL;m}O{0V!KRn)r_A%yQca<4qi-myfl zyDfXnu7af?HOLphgn0U=bVO7gxJ=qWyz$8G*T`2es(fBhJFEZY4_HRm;ntu!c@OLV z*+^1_T0L@gwSOgrsl5$J9$+X}(>iZxpmO)-C@#=FweB}4VdsFJMb_X9yx{?J2MpyF zt!-`f&IiA|4>kSw#W>x654)k~yoC}N|KaC3G|pS1Em; zC;x#OY`A5b_9dAYNrZdccDr0Pe_4;Wmk)!*=Vuo3ce-9;GtXtP#~I3#F5UO2l3}i+ z8)$N@*&-V9KZq(HP+sA77)6|J6x76?ZYTc84a8|t8tFWK-B)tG?m0;pbtSby1@AFf z*d%9U$n9A`5>vdCDl z-aC^>TGtj-FfCHSGTYCf#Yeg?i|3+qKf%wLQ_lGHdsF-9m~(#(But+jiu>!aRB^~k~6-UMXcGim>XrtZ*kxJZK`*d!c6>Y%V9 za7ZmiK#YctflF`r(8>VSziJtHL z2Q97H3u} zMXmUK29dNZeYk{hcD?<2>kda>c3}GRE%w*Sq-d@>wlPyJ&K`m3Ol*q#pYqb@&9`N> zVv@GXGq-16Y;%~OJ^#SI=vtS|AOIYmyEF$-o5bDKT+y-3zE7zSrVD5zg}s`{n@~X; zyhyLBY1~YJ=U13gs;JKh7}9r4Vqhxpl-m$d9_WAA&yWAqVL-X8F@g=dAuiEK5{}cK zHLTmVM{a+^Rx5K*HUX7?e`3jpxtQwK5ImDw7`j+(nUGJ z--)9Q8}^mpb^G88Bc~^zHgUK%)aC2jnkZt|Z#k9_b{Y~Alr_iv`Db8d)W325?>G&k3 z>ajbhYw}evuV+@8CW_}-S50eKy+dKS4Oe!z*@!Q%(bS`bA=8TNz`IK*;4oo$^G`~R z9|C|S+j*D_!N9IBh8Vn?Pya9RLq9Wi9E=enpn3vKE`at5ScrlZ?j^bJ4V1)W1^PIw z6yXB=JTNRiZ$9cHJ_6v|IyAmmfu%P61aO2%iE3W#E%>%lZ~vR4Jk-~%u!F{WK+laY z1Z2Cw5!VX{aAT?(7lz2lcN8(%-{I#$9v>G|r6M6AALNd@peK zarB-lFdRrT;mx~m3%N#q)im|B|Z zf|B^)*0dNbUA%PX2hOC%4bGC8h>om9fMA;HDut%82J571Z7!d6cpAZ^YY;3w{DMc$+?-K8k5yIr&bCvZ=CfDPMFpFFTB9j<07FS1M-<|ElwI$evH7^(tqx z#CKH^oG6gc$hjF&x%9u}HnQW%yWH!Q^5Kxpc`%vQ@c1=9>!jU{p)QLVb>4hs%mg`l zHQF1)$g%0JT=bBLab+8XWR&<1@0Qs#9;n9zQCcVvaU|l%<0!P|TaRH{lTSEYwK;g# zI@aY&M<_c~b1$yhX4Gh%4~|Tc6=Urt##*%UGx5@IYL%?kw6o*FeXD=`NR4fPgdvMl zy9!62v{80nJu-1^!K89FXYX@mNvy45pH30J4Xe;1?~~CKb691=b2D<|+z(_x{1*p_xUUibKd{G+&=(WJoi-AekXGZ8>C^ zzRpW3UrFYzJ>5_29p)n`G@s78RrmEwHpNZt$~pT4w_QL;9;xKaTXp_Lb89uz0L4^ghc+E*T69S z;(J^GJRDN@6MQ2tioes7cu5RG^$bwsXMjw|T#y_3;2JDvSJ5pMu0XBv6Od8;V41AW zjQ0sL$^j;BV#R9}{&$;ffnR-Bj>&LP5TLnCPettCg2!GXyl;ElG89@EH-iN@Waaa( z27@eWAm?=;OymHwZ>$u4(98ngop2DZ_Y~?7u;3p6MSzwNY=G)w4ZkxSObeZ)#6O@y zY}k`fioar*=JnVMuv-rWV|1+c_V#Aj5b!7jL<*#k=Kx$6v?7NrjG=FvUsZ(;mb()l z_eMNZ6H+arMhe~dUpH*KlJ8Hfb3YClwR)a8^(sB$c+Q43%=|7}kvYT3k#`A)H6P>3 z#+RbSVf6yuraYVD8|~ZSc|}@$<-;d%@ZwRIsNS5OgiQlqQJ?p^CNplB3^b~+#{FT9 zlvJXN>!eD_vh%4NE03mNDR-O6NGmSCRC#J=g1&hgay`*g)lwbU%24VdfeH8Xv|Z1h zGz6oYZr}swuvd^s_a!nN;TU3n81^lpYYO!*0dM||9PUW;kQ}-$xm?_; zJ!TRkICh$BV)_Jhv~$`%)(F3OQA-K2o2tbX}Slo4(s=Yju8|3U&-%HV+Ltez3LGXFB`u)(1SP zR%7QddTg9{&7N4ilHfdJ{W?kC=8Bm{v1@P#Im$A&&kuXG+MDE=h`twFV(CLTiV-VlV)11=nqHL;mcNGAilG~;jE!L_oUVU_z86hW_y{Tw@Q zJzp^5`hlxNnl-H(40|FWFDV^EkLmFL331FnA|z%#cr}{I!?zmz6r5kopMAtmJ0WH{n?sKM^U8zGy^I#1HF)7SOZ3IC4OL=$Qc~AV~ za_qG;APQH(zL*pYOV4(PHeLS;AAqh673hPhSS+O=>h~i6i~Y{(@*1uo(>h=($G>%S z4sfVYW;>w6y)^+onZq18X zD6-*{^$)0G4Su_g^KX$rV=g=4E$Dg&|It3M6FlyG+wX(^fCh{N{KRWMvphIsfG7n8 z@9f>-?k*>rsJi(nNiEIy1?%LtYxC~U<+y|Wf0#)ol7*gkPAW-Sl~-cT8mIYjpIclR zsyupnnBsDj#tetF8(NomkkH2EwzNVlY_UnP6i$CxF>K)V6NaSw*zG)AiB*(kfrP;| zPs*3t!ka1APq28sTt7LISViUGsm;UhRr#Y~(_gSy66>SI9dX@m4h01rXa>f24%s^e z&+X$~*N^Qecgzlii^y#Y&egGQ6Lt0Fyl^Jk{L=o|4{aEJ;m=#j)gbm}aLL}Vj$bsp z)buY|KDDISD;j8WB41>nL(!pOI;dZI z|G*7bWqI0S;?rn}v2SApo!M}d>EJi%fEZtv)2NBA&5!<>XIr%V&X$uWne}cKqKQby zM};hlc6TeHx!E|d;UeLB^*Nb7v6F}ycLEGu-4uR$0nt-NC-+Ms&;7XYWSDn1cwN36-X5|(N^-ree-BLPJNozU zhlgd3%V=+(nwQ&A=?Nx}<=aM#45H+rzO7`yrS;NkYs@Xhiwz$3K1fkEq#KLM_VZ$E z(r6mIVGUo=Oy;G-Gyctsh<#>*pqU{%2o7-tk8Eb3j#rxP+zo{vUr66K)_B zQbcsaXu0xsKBTqzuMGIt<5itJr`-#-%qhQ=+xRbu}~Clpr;qQ9Xy#DvuQ2f&RN z>cT)qEn!8tIEP6WJkZLUw2%33rs(|XIB&;<7zxOQrAXuO{sLT_PLNbtxn&*L0$e+w)Ln>=f{Kn{yXuxcd9%Ny z^QV`lRC^bYZWVF_sGVp2+g?KE+K|$UpB%foc@4z?&>T=^IUXo;`ub!5;Eh;3v0WvE z$7U4W8--65NeRUWH+15IzXyWQ^*K;19RVX7Cm>_=<@c@9?iRf}!i4YD@kZg z)DN@|VSuv30C07KTXf!6U>I@)sj{Ht834rizN)Nhgz#?Bwc`ELK9Y%suOZ&dH8QO= zi7sw;Qx)5bkxNfjkmmLq2T}onQowwbPc_H+lJJ?Xb}bg=7x*%S{)pB9oI1 zuO<+1E+@u~C(2T8C5BQ9$Y_tt!S>ZT=sppRrid+k`#53mo0he{qhav;RIWfsxCuq0 zv`2>g1IhJQd&x_~T@G=c_I;SfT>l24g+jF@@{{ZIgh})MmhxvF%?p&;{W4y-#k?>E zCGV4sf;?;wzwM(Gsq*D$uFI#{T>FGW$>!2&kq3V+C220@^zD*cEylDYJ)bqCV`sA} zTn}W+r7gE;+u*UPrW_kBs0PHGJZcfy2^bTeXCq-4Yv0Jp!m7&q?nt3fsz zqTYo&lK@=L@w*Pw1i>ZG?7fYffnyQr4lN$3_RyHHn31CvAVK5+dMdj0Bx(X#_2A3n zt#v!&Ya(c83HJqDp3trLKUY|u3N?@yEDrYt9HS_3)-C4GJFmU zz2OMPqn-TLiTS`(vY+`QHMD>HkoI&>aODUC+PVLD#__j1J(8h#Q;00E#tDZO??4#6 z=L4h@uOQ4Hl*6%5z3ertzw!>ijlHaldjB8mSUYg0A#xI`qYDF$C=%I>%tFAz#{e`9 zP;fl-h^;ovjwD7x$?}TESJ)lkh4(+FXZk*j4*Ox~T>*3p-{#N3S{C*BlJg_z!H2vX zplq99t}(txfZzgjbaZhh8ZA{FFLH+R1JFXq7i;i=0gnsNMlLq>eY*M2uDq+8prkdG z)o}Obv+&%|FLty~;2HeeJ;S{M9wL7$`Vdt7wRE#sLW^fk%%J#6>dCqcp+lky?jp}m zMe#5ic>ZjQVs`!N2^PcZRea~Ga<;K^1)bwCen;C*H8;!mhsc4bbkFF7k|G&uJ}P+O z`4g75x!Y3(C;w3zI4~hi-J|r-{2j6sVqeoEWYlIK{4{az1HVIrzc+!|lIV=DycY-7 zCG~vvv0xExqVqfEekx}V{fflvQY-uxc4>9KvR>4O@q3<6kMl=QeY0b;eOdTL_VW%M zlnkc`22YX%B|0K)o?nAkIjTO0~ z+%A4qIo)lfoxG(iT(jVWN-+YFHTimC9j^Hip&xtr}SzXMOjqjRCQsPLs8s`RU>GKU4PmcZ* za&hx%L4G65g$QS9k57BXEf(aY(HS%=87nnAT!a}=XIGbft!L7mW=z>iYoI3{C_m-^Imje+X*{0EzAo!!1lx*^Fbs zd7X2E{s48og{bb2%)sLXY<6Uyz)Oi^q0A@&lgNt{7(y|xy`)(0`%fp>mTjQv?Q zq?H04FSPH1GD<+dfeCp~1EZ5ZRCjm++U7F z?w&xkNt#=_V)XD*8&UFt|8yh!k6&*3B!=~>WNe&)z8y}7lK9E1%wAPyIv+LB0p>P6V)(saJbmWJO<~@MG|vv+2WZD_q-}DXTxTW>@({?JT(pHoRH#e0e~4 zhS|cpap$GMztN*B^4LQIduy6*u(=*dv_hw?U#cHzLt4vFnOgtx^|!08mh1WRO(Vd&xa?!8yxF8 z1BG~M%n!Yc47H936%#@!wk)(2JHMwfu#tQUP5(d`-k}@dA-}-1pj|MjWgtFA);=)OeHc}|Np-j~*cg$hws<>UBcpY%bJ+VMxL;~tZRD)rV_jA$HJX(CeTv%4mWt9JIy&?nqcJgQUFAJf~g=g;L~lc`iqefHjY z>E|ioS56k=zR&%-czJ<-0WPt9A|S|=H6M$&W%Pzd`haUStRZ|$JB*wCm0sRQ^hJFF(9?)Go@mWCD25DJbHx+JX18-;3AOG7MJkVW(gKoX8 zUb++oldfRoxxo8d$VC{0Dg66595V0HT71iKgi%&rz1?oRrn~-V}PlmegaA9Y|D`B?exK_p#+)oJ30jFW;G3x{wB)o zvJQEd?kFbUVwaODV9+5YRz+_cYA*kagV@KlSZEBh|IGroP@Dk)+<*saUo)9Ii(g+75^N-m!jSL3))~gz4-z(|(#svwHm~CB;79Z&hk?+|R zZV!9nw9bmBl@dP=kk|U_TKcZO@z2>gZ5#4YvXU(zOlF*{XQ>vPHgD^mN z+!!GjGkqzF-}}sYtoPhN!c4ANcxs^FH+e&xfs|3XSu zB>;p%IsPFtL)?aIu5D? zt|f(k-$rI`WH-^2+TN2{ot4V)N4Aw!WrL!z;CQ z915c;RwxaX)jOZb^6Vw3BC&ZHuUVEcs0>RE>^Zgwb7tsnC5Fe@?eYN zM?3UG&Wi!Xol87A-u9&M5VsODUoNusT&_+x(qBa%=E94(g2q!qH-EJy7bS2h8YL-M zUw&<4CVo0znp_m}P+n^a)zWSjmqRY zql3~VhxArI*|wZKCtVU6q>*!Yi?7zK6u&vaqHN?Jh5FN`<@n6&YS+(R2rZz%eWSr+ zPSLgrd}{Xkw{pqyhh+FY#cY{D)GQgcmaSUVd6AN+44Ez6sf~bqf27IMGe7y7TH|ca zV%5tVlgO+xxjf5sOS+K!p?a#k*V*^1Dfzjo{Vm?TmLVXOrUf{@JV<8~0iHgH-DUqK)0uSO!RmxQYZZEn zlHoq$!1$+OgKG=q>NG(W)+*Wp*19T`@je)RYjeH!1-^wVkrLr@?FqNwN{>vnsxXd9 z^dHP!!fJJuCz@9wdt$rq;BzTg%lc?myPh&OPn?b%=|_cDr1j(9MRqQchI?~+^4mT- z-bysCNi;SYVs1hS6Tjl5@_r4|{t)t3S9I#wo1b+!zrXjB`s2Le8n@-QZjL|8zv*{` zOh1pm?J_A>&;7E#ilg1En4ZH)O)`A>KC%N1^OD;jcZ{I<2Q0>`gPFLbO3qqmsqbLy zwcL-hB(E--?n9U{>u=U3jR5gfmvauJnFH5!KDL2QIarJWwvNrap7Vkn_u8N~l-YN0 zvvXez;@}~bqDm9?sQtQ@Iz|v!6V{JKau-!NcOR_sRBc8{mmN&(6=!*CCo2a>wOBJ&chm zrirQ84lwUcr2HrZzY70tP0V!}B&wssH1Kc_6fyU+%jg<87!BX zrlfxd3y5w=ef*L5u@M>eS^G(clo^nr_>(Jyy%@MGmmcGtr1GRFK-HZ8y6FJt;wTE^ zY#cdAdM%l8le~Q!oGU`-O}roXVf$_)7}fMrA;Qy2S~4t?zy8@z5=z8(B%zr#*K00? z1O7i`B9;>6Ho9)5ebjCd zvz&Uy_bG21M6s$79jMC?HqV6{yeGPbYXwAwv(=7zYTc;&kK(ItehF=7nS!l&((9Qk zHm*4SJVfiQDfwpXTs@txV@lah#P3Mhj;eE(JuW^?9M465SM_ZP!ohieYAdQQv^O1fq$<2mw zC(HaQ--*f1p+j-uvw@dfmkU#jn@2QXY`Z3(?C8qco{Oa9Jw+{)ILOfr(v(1F0jxj) z4s>|vh=X#}NeyOd_rLFNMZqM}B?$g+Xl#fC2cGV4{Jh3SULXW}hV&82Yv3b;f56(h zUBH2^@^5ojy-TF{;XG;_)b-&2;e}duluz z;=?j+dA?A;Wg(fXTqO%TsEiuBHiE#SZm9z-M_1U(#Ox!1oCjSpvHweDD z&OQT8CTLo#W6oJ^w3?pY?D<<+X5;6V>KZS2WNVm?1zCK=TF5lTtD^$UkXJ&Yb%q*r zqrAD2i9Q)wVpnclxGl4acAx8*?Vt20z%U0&<-8N0%%_AdYS`hy-XXQ0sNg!_4l>X3 z%?_L%TuqIFI66tAwcEu}?#fXS4<#ql*OU3-=;|9J7Z7RwfF zbArZA;*&ydhP^j=ogs;njb?Q>18sgj&i%6Ot=tcocELUAsU2VSRAOz1`pKhYf?afK zvK9l5%Bn{_cNY9yKTm17zGR!V(QU^`8|KO79<&(`A7s;&{NBlvz9TSGrrVaDX&RmU zmS2-sBWdBS1ta;{xWs%z8NtDH{@(vgE-)bs9^^C7emu0nKKGn@m)LUlFwd!=dxn{W ze6{{1X=(j%lHz#+6`k1(=F~9p?;qm8bj6c^x5XRkZ{bc(PgjA7i$w8SD`f{H+|L^L z*ACP75rE;$OF&h`3ZLoTz|uNNPQ2QU$lW{txwBwNfC%GIlfY6zkV67>m(o#q`MS(& zKy%U!z3vFPEPsN&a{mAFFoVjgzuy7p@~CmAfMepDeJjy!@b3{X7(>8R3=fj$eVdqg z2dQ5{9k=|%#nFALPAqapWJA+@+3f=@0*~y#WCDpxgUz2kjfnkc$7>r|)D7%!f*qqa zS<@Y4PFTwF#jC?cKP!@sM3m~tzePrY<5Al+@=H~Hadf80ns<3V=c~m1uID*ZqU+#W z5at#T~YRhYBTL~p+S_&ov7#UTeOLz{FO(kZTr1-b$1BL+VAKd&Ch6d5Mk}_u90!9l&E4_U@Zr|1#0W z*}A(2bGp2@gqCWLpYSjb9i}L8+u{(S`EVpkp_>d!o+!wObD-RCBhh2LdneB-#r>H3 zyLB7Z)0kT1@HIKK$Vkd+X7$IE!z1kMR#iX94V`kT1-3rs&ZnOr3kij-R8&?}W|jPK z^8X>p<9Yk&{(HM;@>uLHb%WX+(XGVn>+rn>49~=^UHaQ7i6Y-5EvDoH>(U>cyLaR9 z9>aB*AI$^0bsPNSG*r6EFvDR{Qk5IcoflKHvrL`2@7_HGl9Brda3_b$#K5IR#m6o! z_!WD2!0px7T4wu&diljOFzsIl_HwKb-@+*asEno5oI2wK3IyM1S>`rxFA5%@+ zI|$r^q%QB8uYjSm1U*g{a6d=9@Ds@f>*l$7o2S1EsF)ZQws@De}9Gf0M`D>ZYuCYaSRfXl6t9oqr^ti`qig|H;M z&Q+F_d>oEb=mgfFTY?UD{_eBu5O?hj9w|NAUAj$SsTJxCGaMSxLN8H`yJyq620L#h zFXJ)hhY!2mH70`P+9iS)-rJ?qH$B}^Nyd+GlS{l$JkgC%Kv!WFBV(`i=afy^dgj53 z`)YQS?v#$ZaXVYwJ1XRu{`rfxNh(f4L+Y@bqJ86um*12N+%0OWH+&0WC4*;~9V!im zo3&{-@7Mef6Rs#GEWZg$StN)i4av)<@+Z5+-S}+i7P*M+F?8y&t6sImV`6W(^?0ic zJ*C@I_Tg+*u_SA8=G|OKBKr8ahI#xDZd}~3%~G1gyXZ!PZIjDgY-5(@w-aoS-+HdYNDbZyVJV`SipT7V}c za#JT{9ECq%8@Et$E4_X9^2n`H^_nr+>VBfspaw0EUhtNnK_8Q@R|uzRq7)TXnCgv! z#RKZl*%ty2(kw`*?j^!BklvKM(%eP0v2hBO3U2cnQ%lQ)sjOmqUuuO*DvQsY7cxvI zXG%8oUhJzJl*WrwzjB9PV|e`V$3XcJr-1|oTV}4JzsxExZV6W;w`4$ojj`A)M))~; zND=cTgQ(K1;vxR=fX&FkewReZnQON=p+MPeslO&4<@Jx+8v(*T+wefO5{52T!iD#( zYJ@nvFNSft1jRgR1Ix*keBXHug#QZc?@vHE|IQ|DWI?V`rWsOb?RVi31&?y1Hk3HB z>`5bh>REhqy?Hto-Xuuf{bSYMU!a3fyKrxVzbGt>;f3N3xAl#zxm7U!DXTh!YGD3+nDkt8s|P0p+9(5W=y=$ThoMc>{Hh6BS>G5dp!8|nWTQI>Pn|; zv>v)o_=|bb0hr@e2a$V^tR5 z8$V0W#?}uet%sk@$IL6l`pmOxhpBq@@uaV~~V*bx8mmE~d1W3%VK#ty9=U3_p8@$Z@jN zsOE`41|gHK821mp(3BSRMH^{&US)7PvYpa~ZT9d+B4i1`7fxqR zj)j)2XpjgpmeT5TvXXy{sb9U7`JLySDv~n$GBi^!*EEua<+Eg~%G(9mNiSrr*!(8s zeK#czS|+%cGD4@p9e&O2A`V$4C}FVp6E8055Zgz^rEervr50GaABvqOB)lsUSJ8JG zXcA=p_=7cEgR+^j$T&eDSV(yJ;gh^rvN`gU)5+4UN!{bbJ}LX_s{?5-H4?l8~#?k&B%Ub=nU&8glcoTi@~w zDN}nH7H@=~QY&qQ$}{GF#rBd$Z3a2*Q|E*ye?5M_eLGt5ONvpl7LIt@o>C{Bh3B=2 z;p)2>zK@D&DM(`lv-!r>Pbtt7nHMW(#cfX7uI|3SsTVA(BbL)Bp;y*Q6X4YI%ndpb z9Wr`b@3Ue0USoV)OGuZ##!18`#5_xG(Jg%e$$=2g&m7@N;Sq~wwOT7qpwgm>*(l0h zD^aVge45OS1NqAeu-1+X-iJetGa+VfvdKZUC(0vS@lkYafWmzFh%9- zHwAj(M9IBGi&Ed9npo4@7pc*!Nsr&{%6#&(Efu0W6>b>TFa2G*u<=KQGUrK3zMnT* z&9gAv=yv8BEE{1;!Xj1n8zVW?@9%wU=K^OJ6;DwHJJi85duIG_x{*I}FW!Gb_se0t zq~YL&d`(uR-18oOgZ+y#eL7)d4Ec7s_Ei_DS@oHi>a+=)c)ZYhjsTc2#WF&1)VHeJ z2Va_g+<6dZG81tXB~kgy%q7eqgc}=g@=LG3b7yvM---Cu>{${QwIf>O=WiX&&`tdE zb-7{wS=pWX6;-)n0+~|sL>Ft6y9>9r`O6}gM2o~RnVsl1ZZda=v{sI7BDDpynxl^{ z_Ec;nK6p~?t<}*Q+GPTtPpsku>CdSGIlF%|roLBvNU5PoKy&--GG_3E;?uKfc``d8 z;^nYSez#46q(#Y`Z3?RX5?E?voLhwswdSl&gx}{iyh|+gVvPBm!$rDbPWR*uY4fYs z$V~~@C7)Jb8rlR&8bZJ7?s~$DsK3Q#y))lbipWLp-#brFK&X<*;ZKw*N-(N(2>sy) zR2M(i$hu*^x|3uImf(yqy4*B5$Jf!qDfdw@c=Zv{qWi?>XuUODmGYkp?GWXt#Eb+P zol+?TUCAUncpN93Hzq#82qsM8t)5)|Bp@SV{QYFJnKF)2GVEc`@k43OWj#`BV*$G2 zz(SECH_dqtwjBj?VvHRhgiZNmsYNO3x#mfJv`+knjG=-(wp(=}jYVBD_wV! zv&Bo6O_ZHcJqxp!!!+$2=d+nOY2>5ok6iM zRZLETW(>FL2`2WA;&#i=)V}AbCuu)>4V>~1Nrf>pGuBW$3J7P;}$}to($z`cWmOcoW`@GD1 z;o^hz-75t4BvGq^;%kBsond3yoiix?#`SE;g|nu4infR+cYorO|GiaKoy(Z~KQ?DT zwT&LsVW`A|9N+F*<|PmsWNQeL=@=OqzjgTgnp;_!^@L;1fg33zuPEaGzWy72Uec`_ zWg94iAZaCNF$$|Xfz!wzunArR&S2dD9SN=Jydwe%9c3cD#b)pg5%Nj!nHhdPiwT{` zkrPFWT=YecBbk6_h>Ll1xS8)d$akjRiq$Px^44|g!ks0q2Cvo;wp6l(=6ys!gr8C~ z;KG_x7goJB#opSs&b{F4|B!xV@Hof57AL=Vop}ShCVfAVLe*{g4_-1)hmIHuUC%-+YVgkB|b+o4Nq#7TJ9Zp=~r&KX&* zT@F}Kz0$LoY;d+VL^IB9_8k1P{SP&)k{y0q4|0TdN8Cs2 zYSc+CkQP5J5PHe#uapp~c&aHzo|Lcm8T<3@=A%zvJFHi3simUxvT|99cnbZ(R*1R< z!w;=mV_l;&$Lrvg3neXa727sSNf0r~dIl1xjzBE!Dj2kA?%CPeLKNaUgu8+<4ho!Z zn-_=A*?t7DfTHNSd-Q1>YfBaT$9S3f~pTNQx{^8r; zgDOIR|A_MuGd_6In~_ozGsPOO-D7Nq_*NKw!cDSoi=od^dKA-6<|o;kthK?=8R^Z> zoHM9Y7*4-Rux0K@B7Kv7qr*uZ%Z*U3AB9<<2^CzUt7jY8XvqcqMW@pk;i;n;r1*qJ(|g>bgmSycRt6nE#j+;#qr{Wck`eAtIaHhfCUFQRjiWekJ7 zua3~AeH@um^0wKr!wJdchBS+F{FRw&{J#c0xPF)z8(J;B|7KY|A1NbpfV}*(b5fov zHV>5zPjYI%q7g@^cE48_hUj-XF}Gde&1be?cZp`6M8Yw3zVIS%VURdA@Y?8aH+DUSQz zLF{z^|BUqMS^v25;;ES-7L22|UZ79tsxFw@%%j+|KNz;QI3?^Pw5e6i@)CbjkTy*i z)_Qrq*SUd+GuRj??}Rs8%k&%8ix`|@)xtIA6)h2z6HPFq?tpPvJ+zfCUrdqAJBR%$J{z?Qt0a`p*f`Ww4S?qeZ4h$ZWlasRzq=~`r9(wVmr>Z;^ zd~OW1t{`Ctv)@svB9Em{1QEn{@X2V~E25XO|Dk=z-DEUMP#Iwzd{exDfS!@6MxosjXiC z&g($2c7G-N_O?6#pTRq?|2=(F<>$UpQQ8%1WI8l8k>8Y0;kd|0u}7jnzQ&XHH#(%>_{qG%}GTo4`{@;-@MhzT%k+@g{QjeZ)f+jfUy2Y#O`wVN7|p7wMpHGM73J zMO7Q_Xs;$Lbi{Wk@Y&JV!+iFF`Yg44Ykpzka?*8g}QPpvGlGA=c?a>wG zbRyOUQVPk>;zVQ$z9xi|KGQD@{r#nOIVBF(EPBl|;ffE+)4EV5W~UbWy=*sMm}d5= zPWn-~v$iPdF|_2AoMugiot|wE7fEZl5-O-mXoktBNx+DYTd!i=vER~Y%-0SOPp{(1q+S1crW$QfrHWO%48zTTgEd$itf26Rya zV`F{k9A;`SUn0kCU1aSDQ$M-T>x)DmM~me0#h5?Zv3}#{yMG{FUip5`S!h#y?LDf6 zCYte~-Nm26R!N;(CkL8MD0q(LPG1SC|tK|l}` zq`N~vN+|`DRHUU#K)T_q+jsB%?SGsz{xgolF??Tm^1iQYU2DxX*PN^i31ZCbGXy5g zZ(qdX-?B4QGBsPe-Vp2>?w8!8Ooe6R6F-H!i+A^D@a|fdg&a`=JC{sg{jY!qTN#Ws zv;b9VvqPHW*qYFWms#XtTU^*wqx1td6ut`1kpY^*cl8H?JXdLDQfMhhYouSODVgf& z3N^USBvksv^Msl0I*OLOR}nRH;2%IGok>_v%y^NWicno~EnPXUyxN;Mx64{bN-HbL z<(x*n_42t<5U2WnGN1Mv6n-=hR<@R=pkywHiHD`}?^Bt>Et-mn z5!3!n7J&>Ko@%N7q>h(9L|>{n2zLh`M^uRm4%z5Ld^`30d{jJ4`pad5(Y%eMSJ}!o-&n~GEH~G>2MsyUd zI4J3t^fevm=<23F*_dSG=GI&7>h9LOcQ5>k)X5F2k&pKYs;jF<|CV@WYIh9V$!NmAT)@stp*Qjyx#yA1kN1m-lNm9uJilz9L$BA~>*NUMlfzb6~AI zN2F?~fucU{k`KW$5#R4-jo%Wfrk~FQZ|cNHN6wBD<_i-D(w&Z%%ylM-K8z1y&slqg zvcoms)RA=d%Lpm453yXX%OjF_fxo<{b4vW(=Xr*fxQrNXE>FmoH*XbXS953P#&F-{ z86NrPIIEW}a%4()(aXc1wz}RZGIq9??VQ}7vysEde=NLY71tzVC&}iQG$8b4_VcjP zii@|~W}!?f^N{|f`8+K#-g!JLTc$h}{KohRvi!lV6+^1rjoY7C-M6env(orihM$Bl zuJd_2{Rw*=e)f0z|#dwlP^##?j4w?$6o z5{z${t2tjQobf!yjWtauBJu2xK@W0uX%f5rMk-KsaAlmovS8)=T78NC1}*T3Pd6q z@&Nk$ir9#hD!<=m-T$ZIf$V~3CCi(~r%OMIsi6;Y0ma77{t@xOT>Clk;Yp!=J~Tt% zFZ+80SyruVrAn*nFXEAumzQU|eqC(E7YzeHU}~ci@@i-31YSgan!ZtEKNiGoT#rH! z@f$D_@_VEbgI3HHg(@ZNaff#ez{+yY<%90QVdq~8fcA2_Ig zCdMiFEHS-yR{}LN6%en9ypoa*Xx>DIg@q9xWy}_aexi;YO*OpdG+mJJDHQYa7xvP4 z+OTcfvdd(i@y+s0#viDaV$AGTpL=ko%yh)lv#!fpY$(=a4QS>WG^MX;CX)}8Qg|l3 zv@?!J@9ew$T8uGqdN8BGRY~7`&P>aMPVaGr9Aq1h6QoCxHQ%*KsH(%2V$RDf^+p>ocnlGyY%T?3|Yuleyk+Nf-~!zRtM(!D-or_g0?Frf9k5;HN_h%@Gs=gZw}q& z${D(I7jLg3MszA8Z$Jz+YniS`q2rg;yM^xBV~Fob0(kNXnpAoZb~k;iWye6Cm-RrYP8Wg`t*6imuRoeM|98+eOPSop2RyU(m5=VU?#MN&KzZt zsxUp-`mS}xcC$IbGcIO9_ApssX;M_h&vGd$k0y62xKwW{M}RI!QK^R_Jr;LBOer$p z(G|~2uSe;&S{dyFDpT>+lv|mHkCjf+kDF>A=Ev>U%V)h}er5Bd=BoI}M){Q;l}L5v zTjM0#_xnn0@4Ov4{k$jF%Du?0Gg)Qu)>!oR!YTGpj9*+)Ws&%DoT_o~Sghh#=2HWu z4262u74rczx$Mb^DgsUNNKsFz&+82KAzNHb#Td$?G<2+Vo@>hfva=HFHWprJ%WImG z;#rE@%d5-DZ8t+8fy6x}-VN=tv7TdM{u;Lx!)r<7Y)p4Zc6ZeI+v2m=Pt{Lbv%P~Y zo1}PlG3K`hc6C%fSlXuK(f2G~i1FA+O1-sNzf46xa7NIj-Tmh#-`E27J*>_?QGdn( z*%jS#rlUryqZsxH!g=+~)kn58Z+*qAB}H`A6Mc&YGzS`)I-lI=ExBY&Eqr*+MoX29 zk@_9Z)xgL6e{ZF#*uVQ61EC)`l@D0D?*BLJ?SsJH;~yz5%~QSP^_fnf!bmI$)pR~Y zd6p{SNlPCo$nDlPIW<%(&co?N_q6f7iPW`%Exa!k?23`o)tN4*m-1+LI2t)L-TLr0^BEkzvmI&Sh)!ly$229NmE=`z`E#@U7V#SrfZB_6`q$s1YASY)5wV_$Xt z;mR<5@2r;ap*!84$vB{Ed-hdwl>gi|W3=wkg~kb$S?Q*0cznVdEhR%2%vPW9p}E^A zW^RVK+~D-_R-z|)MgAv7LU^A0VV@xGI{K*>M{)S{J&T1q88sK5NeDJ*jmc8c&hL^C zj+RnkT#t^I3|bm@wofXORoYj)Fylo(&?#prnVq+z#n;K;$;rM!p<82=MPr&Z=Cs>moWdb z<@a&=ise$*(jk_}_S1fkoQmbctcT^czw_64x2jdnUP>F@Q5V3LOCIP97L;6mA^5jv z^mCO_r-)o!&T_skak&T+!=;ZE=Px8?FKvdII9Ldj*7CG8UI z<-Q^9S$=o#>$#kXl9b_XF5d;z4wn-@sgRJ}KDflWGploS>4>E$r?@*t$$!%HTRa8H zK-keu!@HXriKkBua$GW(M+i4%R|)~)fZAg*Ek`Z$xeKwHnB05jTOxU#ho zN1a^9R!Y()ijKx|+}#3HBqN)jow+uGTTJdcDCMlbBY2KY*`}`MLlXDnifai)wqHy> zhHY56cv0>Hjln&BtvvC_hq*GTQSJqHJ$$&o`Eo>qD|R1;J+cUEq`b)Y$z?MpeU@T{ z7`v2mT1Z`PDpi9FkJj_1UBlq6ptf=COL>zB0+!u!j)HS$rTq`snVRPsuR9EM*p>6t z(mgz_4{pC5EW5Z#F)dK9S3r|F)w3w)t!N`|d3woMohtfhS2u4lx#3F0gx3Bj zrfHV)?;S5py$8^P>k&L8$d3QdznT)ue_Z#f{*C&6nqL0B>O0L*Hf#*HFML27aue1fArL5;6~Z4#mY!rywnw{jLHH5+ z%wRv)snO7|mZOaJ2J;26x)HXKiz=)yDW~M}ulD#XiD?;zc(l&>R`7gJ8d9JC{DGm@ zBCEG-%*?JcrX9_ge8X&jex!TlwfWM_P!j)+wc1ncMwd;m{8g@v+ucb~bo_(CeO|Jw z7JGFSJuz-dLdC|*;kdL6W)FP5F_z6Zjspcu9E@j`I@`75MXJJAyjJ&c^i)gz>l2yk zukqeOle0?c439fUwF+GM54b@loQwA#=v0-(*ZpQJA4Tf-f0$omfOcfH(1v|{={P+7 zXu@P_s31lyFu)?qE_C(b@2T2}`qlxHjw#u>%a$H<20^{@C(?Dv60Gs(S7=L*pUZI$ zptpxRkhpP}5(zpmcB<+WPN&f<+-@*&?rZCN}0h%??@ zENg7kVx6*uRn7&C#dtcte%!{AoNqxPPZvJ#p)1d39n)WUhDm>y^j%5fka{0pa*Skv zD{Iy+Lu2fSgW>};?Myi;{P#Npc5Do#q@J9SkC{(V>00^}cBD~qpK67Uv?AsC1O4-R zv6fczqm{>I8x$UxinaAMvEe1gzI@;rwltz!M0;D(`qC9p|yRNu0+w;YM!hlcSf4FK^rV?i>{yPZUe}V|u;P`p{!!Q@|B9ZoD$7 zwI8z{O7bmZvHrLA3WnDLRlRKXtmb~s?e90KR9?{($A*M@WUCe62K^gIVm4>c9*Mi| zKdnLjH~$bzNJuy+JwM`^o11$l8;oBILq_Fpt9tfnK|$y`Iy&!sj`t8iDTI)@?CJix zb-`wN>%aS9jLzF%&O{Xu+g5nwFQ7bs0@4s6elV})X9A#{7Wz1RSQA40oRG@y4LhSN@<}%=Xg2bbC!YlD^^2M)w^n6#F)VC;mt?No!3; zJ;U=8Ubge7t$l`(=S9@*Q<*`FQ4YX6uv~K zi!>n30ktD%m1DEHb*&#PS^9QLkKRAHvdpGqx=MA$(6PqU&g@hDKBh6w)=$DMu@7(g zQ0a-qqh<@r8Sa$Hcq?fE5-M6YL|hCf7NOYbWxE9BGHtHBh7+EiP2vwV? zH3roy_81wtj1TMzRf}(4oI9(UusG1`cd^#_@x}9_8yEg=BW|3uHXhK zrg|y;2Ck#V<@{)#r}$&dP5xSA+Ui!z%`q0-GsBOQ^LgdHt`A(%8dPoOP)sY7Fcr|7 zYckt%&fsNjj3#m!?yn5)$VPeMV%*9rwwm+S}lG*0~%>9(6PrsL6!XPW~!sJGjBm*A$2y+z~z6=>6~n4 zr!Dk=tv_$YpD+mv>lg1qagSe?pO@DH9AMBdbbK>@cn|YrChmm>{;yX@Xrxj?66W#2 zLFvL8q7JSpG{HP765PLCmQ3E{ok-!iMwkfA4bVhU%Thk^qFn_7LbLU0AkMjIm*;Bdt z%h?GxB-~WbDQre^YLxBBl%ma!Dk#plv$R7GvmDwL(fqHoKXL7(rX0>v?j@;5cRA6z znQzRUDHZ=DY?;@p>dyCx<+qkq+L8CRdSZR@)-mRLGt%zqDzDgcwm$3(Q;8-sZI~!2 z^Cf0;WL?pY?rD^(OQJIJ63_hNM#H^T&KONMP%l#QzEo}ac{|&c_^vMs-9hSC=0`JU zRn-}1DM`BcYQ$^g?IQYwWKDCA{KKMF46oJOs*G9MTFV?N$+BlT2O4Kpw)I;zTEJdbHW11#cIoP-R{W5qhWlG9{(3@qi{2k;p-cTfk9* z)!vHb?*h>jGf+mv>DRNp?>77E69CI7KS>zG{`XxRY^$sfAV38B%3YVW5aKH6y9d?y z{AzjruZHLM`r>=<%{!xL**G|E->andhoW~Iyx8s^{F!FsX_QfrHA|oPj5!FjXMsE{T zZ!)v8F8%+3vwq`?IMu{|YIl2w*59SRkPfU}(yj=XLEqvR45a6@7_FR@xIRai(YtE7 z>7bh46MIZ4w7D{P!>2KEb(!B=rXI5srx`n#a!~TlJ&(~68I!(5U0SZOh8Vqe_8--s{3%_fnaW35evjeW1b+Bv{Z=X20eNDgc84o|Yt7n&mtfUiI zrK1>auPg@bUA?t=(#|U^;HS^xizloF%$S znzblFfplUQVpjH35aY!_)q>}2)h>XF9Y4!0E}%eVH@JKL6C7a#xagWDCQ%@ol4?Yo z@=R}YX8Wt~)Gsj3XrGOiijwp>LZQHSGZG$P4kpS7ln7p8e?act?0bPO0No1BzNb#0 zU~LWr*Ca_FG4Cc4EZe{3Lq9?1pO++r&r^?pIv0w{BfPjcKNNQv?B@%;g{S2|GJ zBc1d;ws-ygb2DHSeAIMQlLeHyV4fob!nR%;@2PfFf)aYD*xZAGSdBM#?TlR~0!Kd% zIifZX>$=pYOtL&&BZ?-Kx1|lENW5smwNOf20o{EU>u4C4*^GU{`l-FbYSEbvEAr`? zjH3q5k_OY`vTpq8VsF9nVvs$a7A?ZqRi-A{Ts?lRcX88|2!G9AeTw~7ij~PVH=lXI zuztZ9@vg0hzvT7Q?pUPW~n2f{ax z-7B4fi}}wPixXq5TZhyP6qEF0VkTQCn6oCFM+t20ZzSr5VKm}@tN32E5aN7=a&X74 zG51II@bfOsS6D}aS!d3^iuzu>D~|<>Zyr{%_&W9*J*a!JBPO8dlXIp-w&7e9z1&OR zP1CH|$R8Lx>aX!WBfVGCP5oLGuftNn@`5Y2*Q90|Rj*d1$cnIA>DA*Wk_rT) zG`*Mxu8eYgzAk6Cx1^;Z`b~iJ&g+U7$^e2qi;iC)=-vuCjW57G3C+~^@G20h&{6+|d`}|} z*qZNl2IZB^jEon}O9&SW_wUQ#;NX-$8sQrUMeW+1f!mNgI)i@XFBmeWKH6KuK{V@O5<(qy`QE`&nXjwFlxt&~piRpE**L6Q^ zG4cefpc7p@Tt8gWM4=P4A&wH+C(|mbE|itDHJLvmTWnxp(e-R{8ptn!+n5Um+Eq> z57RBQ9Q=1;Fac>FC%Q0a5K6U}b?o0^JKmy_n(X~l#>?-4)um;cppuY|hS0i;KH+ATxtJno4neb+;VN~Emca#&7 zd1}bHE^;L2ePD1Tq)5N-7P0IoTW(S6ZXjVAxlQrugvf41LCe;AhGS<|>Am!^s2eU; zxf4HYLcec8N`9sC4#|Lc(21tG+Tn9`sYJ2d>C42u;nx!JzTSRO)A}cmcNJa4Wi5|X z$MNp9x2-+=EYw8}@md~{G|D*HCq}qy{;xMw1r>h?F7!w9`$YBd{K_GlQQB4QE1^6! zTTzPd_}H-CaWFh;fABlY+c$-d4{C_l`|C+njMn;nk{t%hKYKqn<{aHFRZ+1Yj$L^t zQTgepPI=5q`3mD;w2I(I3rS2{*_r(B-s3 zb5*fk+TwTq)31HQS>EfS=W4z7UVF-4DZdZy*sFZ5wwVhLkFkzqkv5Y~GVD^2YcnTc zrCga={w?$$U;|hiLjOB!gY}x$+>!`BaHCN`77Tst-QGh{w)yaAg2mRV=R`Bgggi%0 zdR{(*_GM!Bj;y4Q&vnyy%c;G*o+QduVe`3yrXcjTaZ@|XlcS2RlH-|Kl+zuCH(zoP7HB2HA2I}{IpEV(hnfBRJHVEy6i8>7ydrD;AN?;%m*)n%g% zELO)S*HypjRJdL5G~{$PT|C3G(l(Ct<=r5TRefT{O`S}uEv0yvP1KP^C9GvCGt3m4 z6JEl9xF+Z0#d=R6wc(&P@rdX#?(5Td71=q7j#>vSpNDgSTKn;bMZ6M$I#RI?Uzcqx z_7YUYtj^iqYKHM<3wWvwSz#vx=wU>X?5keq$vSA&JcD+Pt76cr?jgn%F|otjVluN{ zcegxAzGR@yd2LJH*pRn~Fywt2qT>D8Ix}W&-a{h`YlUv&!@ZQvPn1Q`LfZt`%`CVy(}MtWO^@cq9CewRh9mN=)<`S;+T(RX8Dnb^E;GZ8 z{v0XRa>E&@OizpFpDPh`WDKWp4 zW)7$)N-buWxv7Y~Y&UPm5$U5{y-Fc#+$n(mmAzN7PG9TCJX@!*eIAFrF7?%+Z2B~h z`!DO?y5@D~XOuKy0;n{|M5?Fw6d`=E$UbJ zA%9BUH6(;Rd{u?-8R1T$=|Ej50tFo37zi zW#V+OMl#U!`p><+owd%h zPJe!Vy!J@mCF(~FFlVnBb*IY)KRB)$s^R5A^WC&lkVz---N~dkJ2}`?9CzHDX@^+%b5X)s?OuR}@*I?$=JF4`>L1cwjvfh^@( z;PE12&hH$jnh-*6>dmLgA0BkJi!Q#&G)@CEGFf|2u=qa@IPm}2`wUe^COp-k?EbBR zHN>t5(HcNhE#cOoK|!kl1yE3s$JTr-v*Jwa6{$AB>^4Dv&kVW9fS;rkV6lrDj-l>D zkuqA1+@~UY$9#JWL(CU;?w}&exwW92)xW{jSgiQMJz6NIh*4RSU?L=;K7z<>7&tp`pK|(^3SA)ga zHuoh?9)Nkmx9-V#MMaM~3~A}Xt~na!&K(ErG4N>!OiJ}7 z;3p3zKuY@(N>f+&yPTkebB~Q2CmAu|56BgMF!3A>0|*}EerMZhfdn!L_37d>56G;) zOM>ukSQ+PSZ@ATW^!77je;*2iUl6bN!Jqifs#i6_7xUTN8tv96+?%c9UQo@1x~h z#45KB=6jKqE$;psg+eg9X(xk+7SVJ!VHR^yZ&;z_Ov}*NxVV}XCM*5X@wC?Rp|Ohp-_ODR3~DfkXjguReXBM2>7#*x2LJB>p1G3ra1gN(TCN?jCRZa;(y&=U!Nbu??2AF zDH@51^K z26+%j&SEG}lS0Ia0cbRcIYtBp??qG@v^9SJEYJMXVJId#8^N!krS(GJ)JL~*366Mk zpjJM3Wd$D@pGM>v5}pBwL_LGD8!`ejVDWs_-6fs@j~wB>^@&20Ew$_#-blH}g@t2$ z5RS;fXSf77w?WVf2)&W!vCfX#>4U zIZe%2&@d{vo|#?qbq*jb62Q2~!B2z;)_WZyHp~L|qiv}_^SdMxC}F#p!xcd=tr@Ue zAcQwG2N>$B!L|irzd-2QY|44JLJkRzGk~CzKuRzg(eUaUI0th7C^6<}I@!8i?tALR z3sFzgz<>?TdFB9unVb{{B7ot^z{HsB99%i&?%sV3VC};N!`vL8aZYHX+8R8!+raLS zqsDQHJAl9(p2#F6WqPva=tm5BLKB6gcdZEAi?-?3U|mYsxTLW6$f<=M5jZw%1|g!z z?YqOKQ$}~RX!7md+}vi6tp%VN5uD7~Kw(V)Erw^v!{lXU{gJB?X-5g^5p zy~%?GtbhBlzIH_Mn4`9#Xg;ERD^e zMb8{imRohcqTfse_xaPtet0+c2h~Rt^|~AufGy4(t(KCHjEo@75=3%H`<&NKEo!I+ zE_NuRY*0u>2GjJempsI+HgMsH`9n0RHP%su%gIRdIFs^k&7@}bv-9sHZjun%KfPYu zLF<1_5g`TDKU6drGx)EJ_5YNA_ON$?@x}`fk>8CM+W=@*w=0A=8zN#EC(bLY>6Yhc z?ECjBER|()T(0>*Ow=t`eNU_Qv z4s*}V&kH`$Rr7=eo3e9t8xb~kUmN`{kzh^{6c^8@T5k*K=VSfpJZN=RCE@M~ZCN@9x-Z;9Wp-^XZjK5fBi zsRYDWP;`YPQxPH~FW4J^ez5|Ml&GvRqM-=uJ!;J1!<|4u)P0Ek*DZuL!L1WXlOKpu zMIw3LiVzTHl_&hU~_6pjX#hfxesKH zF==VhINY@;2zXMkHj9lRoXElogIyIkFrbAj)E0=p-yzp|KU+{(A_K5AJk1FK^Z-lh zfYi034#aD?mNvr$qr!X(Ms|UVMwrsP^WwU7nNE4L?O)UD5!81JG`ZhAp=z z>bgXL&>>G?{Gkot&@vc-L-e?G#^^nMT|m4NkfF~XrKZuNqod3#{HcCto~|oH%7L$< zSgR0GR76YYpq2jY8RXAsaKBmyvTs-WzyZDqwv{unigX`?>3u`shT$Pnafr7c?bA*a zk}-p!S}@Ywg5dfI94&5+gF^PGBm$T#MAJov60^>Lz1gP>`S3E!FGL7{`s_5r9WqMf zu0b4Yf!~IGSg+?;K18w&c)U3P_DEh2COUz3gE?jpf_?%TzutWAdjfm-6X>;EXgRyC z18F*d{0(PEs|L-!jb6NXfifX-Oh|v;8JYS3(m!&M5PPTH3{RG*AKWOXI->(b-UCSZ z1Ym!4329X!`MG^*UY_&~3gp85`G`Re{#kU=u#Q3BX%jXH=|2Y}BxrE)OQTmuL32S# zz%fcENLh;9)Vn-M#5n_wF?Gp9ITXR_aH;-S^Wg$@Y-}v!8QcL(#sIkV<*0X7t0ral zpChvX-Ny5N3$Og~cgSeoa7`4mVtf zgEr$ zEcWpClBi3aR@JOSR3U|--W3VRiOI_iRPC>z`$J_Z3mf0)_rwQ%6annrJ0t5lG{weW z5I%z(ETiu(u>9LWa6E4P_T7&Cjj1%(50!qvB@+V_@67;Ym6z$Fk+e{2b@aVsG?cRz zaQ7b=TU%fICb6wrJzj31h_K618rs_a@W!)nEa;C-I0z$}CzYv{x|@O7{Tw049YJebvpFn`f}CNGE-B`k`{njM}e+HFk<*B;a#CJ26rMy zx{=N2H3NpoFNhBba(<2qHBb4ukg7U2A%c3z4@;DPl3`woDlCGOve*da0XFqjpovgPeat3mFALLu!xc;_L+FijcAIR$3!t zvL3UM!Z#eoMPO3b(%O0kl+r|Dss$p>2^ykQ10yMPUQ3MQF5O(6-+4d~jTR2RHv>Dr zM~ERiMz%WW>(ioIAn8U3G&?KbSChIvcX!JIg#qcO8M*e$qki+CA;N1fG)6)Jgc6|o z{(}@6GWGRTGML%2BUN^B?j?X|Aj#;85%Q|S4sB3Mp-_!pyDwl$0e**!e9>!DYxP&! zs6YBycI)2$k9&@G-Dv2z$ZW7Pi0NPD%0x;h7&&*}m_!t*P%YpO=`-}0oSb~NYEZ2e zcJ*^8{;y5gz&YXpVs=Q&d~RVOhqDms(50znsT{SpVbBkf07Gj1tF;3gwlf-4p0k+VOS_mA1{;tg7Db(XSx*`*yeC&5p5sMy(Vza?g zCyX!x1##l$qsazJ#6A^0F3mMt+QB_(WhBX6(3%+79rh1YAx_Kp%zf!ZLeLDBmCZWK=a0YqmPz-wS8|hL209`}y%nO-j=YHtk<4TS)(JAfo>PQtGnF5_rEn?0oz&U1+(*}wH=)s1}N=? zCf_b13|)Wt}#T5oh>93R~1;Vttyc9#IdoCC;mkfZ-TfSd5f5e7ViJ80h*G1oDl=kQipUI+;}2YO36Fvw)YNgG&5jnLU^)O+fVUMkXPWw22nOQ