diff --git a/talks/FrevaFutures/FuturesExample.ipynb b/talks/FrevaFutures/FuturesExample.ipynb new file mode 100644 index 0000000..ad80f5e --- /dev/null +++ b/talks/FrevaFutures/FuturesExample.ipynb @@ -0,0 +1,1668 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b40ac9f0-a931-4b6c-af0f-4e3c6015043f", + "metadata": { + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "# Registering a dataset that will exist in the future" + ] + }, + { + "cell_type": "markdown", + "id": "d6f47b6c", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Here we use a freva plugin run that has been applied" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "0606ba9c-dc40-4cc7-bc24-b7ab7b5d1b73", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import freva\n", + "import xarray as xr\n", + "from freva._futures import Futures\n", + "hist_id = 3085 # We can get this ID using the freva.history command\n", + "_ = Futures.register_future_from_history_id(hist_id)" + ] + }, + { + "cell_type": "markdown", + "id": "fda38f35-b941-4bf4-a023-931be0171e00", + "metadata": { + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Let's search for the data" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "da20b295-f6f9-4196-99fd-3de69fc5249e", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['future:///scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5/cmip5/output1/mpi-m/mpi-esm-lr/historical/yr/atmos/1day/r1i1p1/tx90pETCCDI/tx90pETCCDI_1day_mpi-esm-lr_historical_r1i1p1_199007020000-199207011200']" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(freva.databrowser(variable=\"tx90petccdi\"))" + ] + }, + { + "cell_type": "markdown", + "id": "b0de5e6c-417f-4cf0-98e4-78ad308e2ae6", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## The data doesn't exist yet, but can be created on demand:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "5f74b885-023b-4b64-8dc7-115946b60443", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2286aa25721f441b8f22cbdcce4c6bab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (time: 3, bnds: 2, lon: 192, lat: 96)\n",
+       "Coordinates:\n",
+       "  * time         (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00\n",
+       "  * lon          (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1\n",
+       "  * lat          (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06\n",
+       "    height       float64 ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    time_bnds    (time, bnds) datetime64[ns] dask.array<chunksize=(3, 2), meta=np.ndarray>\n",
+       "    tx90pETCCDI  (time, lat, lon) float32 dask.array<chunksize=(3, 96, 192), meta=np.ndarray>\n",
+       "Attributes: (12/36)\n",
+       "    CDI:                      Climate Data Interface version 2.0.5 (https://m...\n",
+       "    Conventions:              CF-1.4\n",
+       "    source:                   MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...\n",
+       "    institution:              Max Planck Institute for Meteorology\n",
+       "    institute_id:             MPI-M\n",
+       "    experiment_id:            historical\n",
+       "    ...                       ...\n",
+       "    ETCCDI_software:          climdex.pcic\n",
+       "    ETCCDI_software_version:  1.1.11\n",
+       "    frequency:                yr\n",
+       "    creation_date:            2023-09-11T19:57:50Z\n",
+       "    title:                    ETCCDI indices computed on MPI-ESM-LR model out...\n",
+       "    CDO:                      Climate Data Operators version 2.0.5 (https://m...
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 3, bnds: 2, lon: 192, lat: 96)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00\n", + " * lon (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1\n", + " * lat (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06\n", + " height float64 ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " time_bnds (time, bnds) datetime64[ns] dask.array\n", + " tx90pETCCDI (time, lat, lon) float32 dask.array\n", + "Attributes: (12/36)\n", + " CDI: Climate Data Interface version 2.0.5 (https://m...\n", + " Conventions: CF-1.4\n", + " source: MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...\n", + " institution: Max Planck Institute for Meteorology\n", + " institute_id: MPI-M\n", + " experiment_id: historical\n", + " ... ...\n", + " ETCCDI_software: climdex.pcic\n", + " ETCCDI_software_version: 1.1.11\n", + " frequency: yr\n", + " creation_date: 2023-09-11T19:57:50Z\n", + " title: ETCCDI indices computed on MPI-ESM-LR model out...\n", + " CDO: Climate Data Operators version 2.0.5 (https://m..." + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dset = xr.open_mfdataset(\n", + " freva.databrowser(variable=\"tx90petccdi\", \n", + " execute_future=True\n", + " )\n", + ")\n", + "dset" + ] + }, + { + "cell_type": "markdown", + "id": "295e491b", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### The data has bee loaded, we can work with it (plot it)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "ce4cf720-b472-49b6-bce8-d0bc48898686", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9ebgdVZX9qjvfN+eFjBIgQBAExTRIZNBGiYRBBUVplFZkVGaMiqAygxFECASaACqCDQ6tgIg/sRFRpMUgEBwQETBAGDKQ5M3vjlW/P85ep+qc916SNyQkZK/vy1e5NZyzz1CVSu111gqiKIqgUCgUCoVCsQUg9UYHoFAoFAqFQrGxoC8+CoVCoVAothjoi49CoVAoFIotBvrio1AoFAqFYouBvvgoFAqFQqHYYqAvPgqFQqFQKLYY6IuPQqFQKBSKLQb64qNQKBQKhWKLgb74KBQKhUKh2GKgLz4KxRC48MILEQQBXn/99TEr8zOf+Qy22267EV/b1NQ0ZrG8GbHddtshCAIEQYDTTjttTMtua2vbYGUrFIqNB33xUSjeZOjr68OFF16I3/72t29YDN/5znewyy67oFAoYMaMGViwYMF6X1sul/HlL38ZU6dORbFYxKxZs3D//fev9/Xvec978P3vfx/HHHPMSEIfEjfddBO+//3vj2mZCoVi40NffBSKjYibb74ZzzzzzAato6+vDxdddNEb9uJz44034oQTTsCuu+6KBQsWYO+998YZZ5yByy+/fL2u/8xnPoOrrroKRx99NK655hqk02kccsghePjhh9fr+u233x7/+Z//iXe9612jacYAHHnkkfjP//zPMS1ToVBsfGTe6AAUii0J2Wz2jQ5hg6K/vx9f/epXceihh+InP/kJAODEE09EGIa45JJLcNJJJ2HcuHFDXv/oo4/ihz/8Ib75zW/ii1/8IgDg05/+NHbbbTecffbZ+MMf/rBR2qFQKN680C8+CsU60NHRgc985jNoa2tDa2srjj32WPT19Q0477//+7+xxx57oFgsor29HUcddRSWLl3qnDMYx2fVqlX41Kc+hZaWFrS1teGYY47Bn//8ZwRBgO9973sD6nnllVdw+OGHo6mpCRMmTMAXv/hF1Ot1AMALL7yACRMmAAAuuugiy0m58MILx6Qv1oUHH3wQq1atwimnnOLsP/XUU9Hb24tf/OIXa73+Jz/5CdLpNE466SS7r1Ao4Pjjj8cjjzwyoD/XF7/97W8RBAF+/OMf46KLLsJb3vIWNDc342Mf+xg6OztRLpdx1llnYeLEiWhqasKxxx6Lcrk8oroUCsWmDf3io1CsA0ceeSSmT5+OefPm4YknnsC3v/1tTJw40UndXHbZZTjvvPNw5JFH4oQTTsDKlSuxYMECvPe978XixYvR1tY2aNlhGOJDH/oQHn30UZx88snYeeed8bOf/WxIfkq9XsecOXMwa9YsXHnllfj1r3+Nb33rW9hhhx1w8sknY8KECbjhhhtw8skn4yMf+Qg++tGPAgDe8Y53DNm+MAyxevXq9eqL1tbWtX61Wrx4MQBgzz33dPbvscceSKVSWLx48VrTRYsXL8ZOO+2ElpYWZ/9ee+0FAHjyyScxbdq09Yp1MMybNw/FYhHnnHMOnnvuOSxYsADZbBapVApr1qzBhRdeiD/+8Y/43ve+h+nTp+P8888fcV0KhWITRaRQKAbFBRdcEAGIjjvuOGf/Rz7ykWj8+PH29wsvvBCl0+nosssuc87761//GmUyGWf/McccE2277bb2909/+tMIQDR//ny7r16vR+9///sjANEtt9ziXAsguvjii516Zs6cGe2xxx7298qVKyMA0QUXXLBe7VyyZEkEYL3+PPjgg2st69RTT43S6fSgxyZMmBAdddRRa71+1113jd7//vcP2P/UU09FAKKFCxeu9fptt902OuaYYwbsf/DBByMA0W677RZVKhW7/xOf+EQUBEF08MEHO+fvvffezjglASA69dRT1xqHQqHYdKFffBSKdeBzn/uc8/s973kP7rrrLnR1daGlpQV33nknwjDEkUce6Sx9nzx5MmbMmIEHH3wQX/nKVwYt+7777kM2m8WJJ55o96VSKZx66qn4zW9+s97xjGa10eTJk9d71dTuu+++1uP9/f3I5XKDHisUCujv71/n9fl8ftBreXw0+PSnP+18sZo1axZ+8IMf4LjjjnPOmzVrFq699lrUajVkMvqYVCjeTNA7WqFYB7bZZhvnN8m5a9asQUtLC5599llEUYQZM2YMev3aUkMvvvgipkyZgoaGBmf/jjvuOOj5hULBcniS8axZs2ad7RgKhUIBs2fPHvH1SRSLRVQqlUGPlUolFIvFdV4/GLemVCrZ46OBP5atra0AMCB91traijAM0dnZifHjx4+qToVCsWlBX3wUinUgnU4Puj+KIgCGIxMEAX75y18Oeu5Yig4OFctoUK/XsXLlyvU6t729fcgvOgAwZcoU1Ot1rFixAhMnTrT7K5UKVq1ahalTp661/ClTpuCVV14ZsP+1114DgHVevy4M1X/rGmOFQvHmgb74KBSjxA477IAoijB9+nTstNNOw7p22223xYMPPoi+vj7nq89zzz034niCIBjW+UuXLsX06dPX69wHH3wQ+++//5DH3/nOdwIAHnvsMRxyyCF2/2OPPYYwDO3xtV3/4IMP2jQisWjRIqd8hUKhGCl0ObtCMUp89KMfRTqdxkUXXTTgC0EURVi1atWQ186ZMwfVahU333yz3ReGIa6//voRx8MXqI6OjvU6nxyf9fmzLo7P+9//frS3t+OGG25w9t9www1oaGjAoYceave9/vrr+Mc//uFIA3zsYx9DvV7HTTfdZPeVy2XccsstmDVr1qhWdCkUCgWgX3wUilFjhx12wKWXXopzzz0XL7zwAg4//HA0NzdjyZIluOuuu3DSSSdZMT4fhx9+OPbaay984QtfwHPPPYedd94Z99xzj11ePtyvN4DhwbztbW/Dj370I+y0005ob2/Hbrvtht12223Q88ea43PJJZfg1FNPxcc//nHMmTMHv//97/Hf//3fuOyyy9De3m7Pve6663DRRRc5X5FmzZqFj3/84zj33HOxYsUK7Ljjjrj11lvxwgsv4Dvf+c6YxKhQKLZs6IuPQjEGOOecc7DTTjvh6quvxkUXXQTAEGYPPPBAfPjDHx7yunQ6jV/84hc488wzceuttyKVSuEjH/kILrjgAuy77752NdNw8e1vfxunn346Pv/5z6NSqeCCCy4Y8sVnrHHKKacgm83iW9/6Fu655x5MmzYNV199Nc4888z1uv62227Deeedh+9///tYs2YN3vGOd+Dee+/Fe9/73g0cuUKh2BIQRMreUyg2Odx99934yEc+gocffhj77rvvGx3OZoPtttsOe++9NxYsWIBisYjGxsYxK3v16tUIwxATJkzAqaeeiuuuu27MylYoFBsPyvFRKN5g+No09XodCxYsQEtLC/7t3/7tDYpq88UPf/hDTJgwAV/+8pfHtNztt99+gJSAQqHY/KCpLoXiDcbpp5+O/v5+7L333iiXy7jzzjvxhz/8AV//+tdHrVuzpeH222+3L5JjTYT+2c9+hmq1ukHKVigUGw+a6lIo3mDccccd+Na3voXnnnsOpVIJO+64I04++WScdtppb3RoCoVC8aaDvvgoFAqFQqHYYqAcH4VCoVAoFFsM9MVHoVAoFArFFgMlN3sIwxCvvvoqmpubRyQep1AoFIotA1EUobu7G1OnTkUqteG+I5RKpSHNf4eLXC43Yn2wNwv0xcfDq6++qis2FAqFQrHeWLp0KbbeeusNUnapVML0bZuwbEV9TMqbPHkylixZskW//OiLj4fm5mYAwNv/4zyk8mYpcbAO/nckX4b88yLvixGPJ/cPVXaUCuRc78BQH6GiIY6vz0eriHW61wyoG+t5nMVKeQFjW1s3Bus4x6/Lj3l9y1lLWesNr45gqOvXIwa/DwOvXZF3/oBiIvc8e9ogddtzvbL4e0DXcb9fFtsdDh7T+mDIOcE6w8GPD2jDEGM56Jh4nTRk3w+xH97WP39tdQZhJNu1xzBkLPZ891kz1O/kPj+Wdc1/xug/D/zrU7XBrx/smiHHbYi6hyzPw2DzYKgybHuGmFM+wrR7fOBYAPVKCX/98SX2340NgUqlgmUr6ljy+LZoaR7dV6Wu7hDT93gRlUpFX3wUMZjeSucKSOXMxNAXn8HLXFds+uIzSPmDPDydojfnF5+h5uAgGOrFRl98hohlU3zxGeJFYrBrNscXn2A9XnzsuRuBFtHSnBr1i4/CQF98FAqFQqHYxFGPQtRHKT5Tj0bxmfZNBH3xGQLpCpDiq77/v1AB/wcRpuV/c0N9hbDnD/yKw/+hhRwJ/m9iHV8yorR3uD74dQP+V5psw/p+PfL+l+pfP9T/vuvZIcpPxBWuawYOUSfby9gG9EfkHnfAryl+H6/rf/Le+K4rXTMo/GvW9b9vf055MYYcA2/+DPq/8HWlqNb1xcarm+X4KQFb/trmmjfPh/rfOPx2c9z9+Ry6MThj6/eJ38cYfL897s8lxjzUF89EOXac0oEb74DK3UuDIcbC9lfglSfBJE8PODmGun+99qakb9nH9suPfx2fe5l1nAcgxX+ph/qyM1T77NackKoN/owddN4M8SwYqu85f9f1BdefB6kIQHXwczcEQkQIh/15emAZCl3OrlAoFAqFYguCfvFRKBQKhWITR4hw0A/Ywy1DoS8+CoVCoVBs8qhHEeqjdJga7fVvFuiLz1AII5vzDr2cccztkR1DrNCweeiM+zuZZh2Ky8OyI6+O+EI5jzwaPybyUDzph2R9Q67i8vgTPtdlAIdjKA6UvwoiUfdQPJqhVsgMxSPyV6D4XJ+1rjjhz1HKYzAGW47fT4NxZry+4tJgxh95Y2J5Fx7XJcV+E65B5PEuknN3XavrON99eklQc6+PfE7EUOM+CPxzU74mm8+78OeHF5tfbjgIf2vACjHv3hhyhZgPf27xsiFWfSXLHDAXhprf/L2eJIQwJ8V6nLdkmYG3QtC/t/y5Yh9T5G7585pzr+YWNFifD8U99BHPe7cjeF09zxvCLd/Wl+hQn09l2z0EZ9OPjXPSnu5z+4S3lKoBUVVfJDZH6IuPQqFQKBSbOJTcPHbQFx+FQqFQKDZxhIhQ1xefMYGu6lIoFAqFQrHFQL/4DIFaMQUIf2aAAnPo5oqpNeFr8fh6GEOq1Q5yjc1tSw6f3I3Q5wv5uhc+H2mImAaLi2Wkqu7Wh+UjeHoetly3ewbovJidss/nIg3BF7I0DL/v1qFRUi+6v4G4j9i+dMmra4iFD5br4tUxgCPij/8gfR7vGBifc57XH7avfb4Nt16MGdoKYCBXbW36K06ducFjJAbMuSG4MEDch5b3RhVgzrUh+GWWr+LZJPi2CRn/XkvWvbb7b5CYhlIstuczdo8D45Tva/74fDdfl8Yb3wG6TbxHub/sHk/WPSCuoeCrLNvnlmjn2LknOmQyvvWc/1yM/27ved5rwouxfcZxYxF87nnPt6FUpAc8/8JELL62lb1XPJ6Qz/UT4u8AqwoWQ/5ZPiWxRahXNrxiM/FGpLoeeughfPOb38Tjjz+O1157DXfddRcOP/zwQc/93Oc+hxtvvBFXX301zjrrLLt/9erVOP300/Hzn/8cqVQKRxxxBK655ho0NTWNoiWjg37xUSgUCoViEwdXdY32z3DQ29uL3XffHddff/1az7vrrrvwxz/+EVOnTh1w7Oijj8ZTTz2F+++/H/feey8eeughnHTSScOKY6yhX3wUCoVCodjEEWJwIfrhljEcHHzwwTj44IPXes4rr7yC008/Hb/61a9w6KGHOseefvpp3HffffjTn/6EPffcEwCwYMECHHLIIbjyyisHfVHaGNAXnyFQLwARl1AO+JrpfjK1Uu/esl9+Kg6zrlVFMl0TDbW0lp/uJQ3jL3O213O/9ymYdhH+8cHqtu3wl9gOYelglwNLe9NDLAdnWiY1WDrK+6xu009eWWHebOt5d7+ftvDTMkN+Uh/kWp7DWNKynJXLWvnJnH1ql56n3N9DWXzUmG5LtMMfLz8tapd1Z93jft08Hg2Vdkw86WycnvUC4acw6955TAFwTAakgIb6PUg8fsqW+1O1wc9nKozpCT8F4qd6kunFtLdkfigzYc7nlHecddV5H3uSAdbCQNI5TAk58cA91++btE1ZMSXEJdmDL8Hmku04SAyATRMydWP7WFJY3r1nLXWYVk+5y8JDL0U8wD4iKZ1g5ReYPnKtJwbKdrjtZfuHer4NsLoZJJU9lB0I/H6x957bXl/mwk+zh+nAzoktFWEY4lOf+hS+9KUvYddddx1w/JFHHkFbW5t96QGA2bNnI5VKYdGiRfjIRz6yMcO12GxSXfV6Heeddx6mT5+OYrGIHXbYAZdccgmixEMqiiKcf/75mDJlCorFImbPno1nn332DYxaoVAoFIrRoy6rukb7BwC6urqcP+VyeUQxXX755chkMjjjjDMGPb5s2TJMnDjR2ZfJZNDe3o5ly5aNqM6xwGbz4nP55ZfjhhtuwHXXXYenn34al19+Oa644gosWLDAnnPFFVfg2muvxcKFC7Fo0SI0NjZizpw5KJVKaylZoVAoFIpNG/VobP4AwLRp09Da2mr/zJs3b9jxPP7447jmmmvwve99D4HPFN/Esdmkuv7whz/gsMMOsznE7bbbDj/4wQ/w6KOPAjBfe+bPn4+vfe1rOOywwwAAt912GyZNmoS7774bRx111BsWu0KhUCgUmwqWLl2KlpYW+zufz6/l7MHx+9//HitWrMA222xj99XrdXzhC1/A/Pnz8cILL2Dy5MlYsWKFc12tVsPq1asxefLkkTdglNhsXnz22Wcf3HTTTfjnP/+JnXbaCX/+85/x8MMP46qrrgIALFmyBMuWLcPs2bPtNa2trZg1axYeeeSRYb/4VBuBVMH83XIEPE7PAA6DXVpptmFu8Lfgwawb/GWvdr+3JNouLYZ7vr8s1l9KbXPlgyw1Hkpe3r/GX3IekX9CvgVnk1eePZ6o2+cPkTcyVO6efBufA+RzXdL9cl518POSIH+K5/p8Ap9f43NF4mW9ch75G14fJ2PxOSy+/YO/XNde63NYpC5yQ8gjSg0xhgBQzbv7fO5HmBV+hb+kOuUuRfYR1IW/UTbbTJ/ElvjQ6ksn2OXZ/tyyFgVuOwJ/ubPXX2nvS32S2+S30/adva95IHDq9G1j0hXhq4QuF4ZwuD0efJuHdNldKu5ztzinBiw1l21aYuZ1qUGsE/x4bJ9n3eOhN+csV9HnG3p1DOBODcac5UB5sgSsK23tIdyywzT5kW6s/n1R9+Z08hxbV8Y9x7fgwFCSH16XWgujxLjX1yLdMNYYS3JzS0uL8+IzEnzqU59y/r0FgDlz5uBTn/oUjj32WADA3nvvjY6ODjz++OPYY489AAC/+c1vEIYhZs2aNar6R4PN5sXnnHPOQVdXF3beeWek02nU63VcdtllOProowHA5gsnTZrkXDdp0qS15hLL5bKT3+zq6toA0SsUCoVCMXKECFBfp6HcussYDnp6evDcc8/Z30uWLMGTTz6J9vZ2bLPNNhg/frxzfjabxeTJk/HWt74VALDLLrvgoIMOwoknnoiFCxeiWq3itNNOw1FHHfWGregCNiOOz49//GPcfvvtuOOOO/DEE0/g1ltvxZVXXolbb711VOXOmzfPyXVOmzZtjCJWKBQKhWLzxWOPPYaZM2di5syZAIC5c+di5syZOP/889e7jNtvvx0777wzDjjgABxyyCHYb7/9cNNNN22okNcLm80Xny996Us455xzbMrq7W9/O1588UXMmzcPxxxzjM0XLl++HFOmTLHXLV++HO985zuHLPfcc8/F3Llz7e+uri59+VEoFArFJoUwMn9GW8ZwsP/++zsrp9eFF154YcC+9vZ23HHHHcOreANjs3nx6evrQyrlfqBKp9MIQ5O1nD59OiZPnowHHnjAvuh0dXVh0aJFOPnkk4csN5/PD0rsqudjufVag+z08uyBp2dB+PoevsVB8mtj6PFKIo9XMkAG39d3GWJOWs2NITR2gEE0gXwZeF8e3tdQoa4L67L5ejk+BB8j+XffsmAojpKvYxN4+fZMjxz3+h5e+U4cXlwDbDL8cfX4M5bD4rWFsJpCCR6A1cLxdJYG2JtQI8nTcRqgpSTXZT19HM5Zp27Wabk8rkR/VDCFBbIfZZHml62vmZMSuf5st9mSX2U5UQneDflU4RB8C8ZQHme29bzEKDGz0qAWOFvW4dtqJPlFuW732JBaQbXI229+1wrUlJE6K+aCTH/knMd7Lant4ls1xHw6j9Mi19TFDoF8ItpC2HvNFu1yXga11fDnt9TJ+5Tx29Ot/Y1wf7x/HWwsvg3HIFUH3r+wAbWDqIlEXhyfFVafx63b6hXxuM9xHETfzGp++dpH1BXzrh1gA+RznnxLn8QzaGNyfOpjkOoa7fVvFmw2Lz4f+tCHcNlll2GbbbbBrrvuisWLF+Oqq67CcccdBwAIggBnnXUWLr30UsyYMQPTp0/Heeedh6lTpw7pLaJQKBQKhWLLwmbz4rNgwQKcd955OOWUU7BixQpMnToVn/3sZ51c49lnn43e3l6cdNJJ6OjowH777Yf77rsPhULhDYxcoVAoFIrRQb/4jB02mxef5uZmzJ8/H/Pnzx/ynCAIcPHFF+Piiy/eeIEpFAqFQrGBEUYBwqE0JYZRhmIzevHZ2Kg3RAgbvTy15d24k8d61/h8FI+/YLkRCe6Dr2uSIhdCuA11+VhldT4GcAUYk7s/7f0eoAeDgfl1P+dtNTQ8PpHPK/C1gogB+jjJg5F3zLuWeXobN/vD5xV4HKa65101mD+aP07UEhnK2yj2HXJ/kyvhcwLYf7bOBHeIvma2XZZXIVvu9uZQQP4U/d/IfZDravQTox4S+yHRX3Y++vyQjAmQXJ6gL3Di97k96V6zI0teFeemx5VIaicxnmqzG6fPw6jnhBND3phoA1EraMBYeHwdjiW1hIC4r8m3GaC/ZWMY/Lidx0JW872qUhX3glwpnpS+p9YAv6ec6aQ6t+IPWC0O7gsW+wEKB8hqTg38B82/N9jQwHs2ZHvNX8grCqrsZLfMeoED6/J1Yn/A+HzGY30KsxgU/tzis7JWdH2zBnCZvHsrGWmm1y2T9wDnhB0CTzPJevKRR+TxLznuYY43QoBwtMI6w4B+8Rk7bDbL2RUKhUKhUChGC/3io1AoFArFJo46UqiP8lvFWhb5blHQFx+FQqFQKDZxRGPA8YmU4wNAX3yGRD0fISV6J+QXWK6GeBelS+JRRA4B+QaeJ1DK44r4OiJAIh/NKobwaEp7HlTkNNjzA2/LGOpsy8A6a8IrCDxPMp/zQ/gaMT43ZoDXF3PpicV1PlepXnS5HbauZu63JkVygNoxrvjGwDo9/6kEyB9Je55dvh6Rzfl7Hl7kuJBXFHNJ2Ei3nOS1drw4Fxj3EDo39GLi3Akb5XLpU44JuTNsN9toLpKy2JUVHvM6fQh9I6st5PliDfBL8vWfEmVGlj8m85E8mapoAvV695TUZbk9jFj2+zyrlKcX48RPjg89uayXk/ubPlpp6fNsT91pD3VueJ315Au834l91AKyejRpd76S02Iv4xzy+HOhlRxzeVqD+eH5HDWrO8Q5J1ydWDtHYuDzgLybDMeE95LLR/K1qRx4fCKfYmLvU0+/x/a1/K42uuUN8E9MPFMH6PL4vCDPD87q/Hh8I3j8S2pLWV5eLkI4gDCm2BygLz4KhUKhUGziUHLz2EFffBQKhUKh2MRRj1KoR6Pk+OgHKgC6qkuhUCgUCsUWBP3iMwTChjqCnEny2pfkqnlPtJ48ltsiefy0+zpteWTWL8rlLyQxpB5P2d1Prxqbl+Zh6n14nADyVwbLsdfIRaAWDHPevi/WEL5X5ASRA2Nj8blBHgfIXONyPGLChcvJoZ+UHYScJVqZOqScSrsr2kFuC/s8TBjtBWJ4NJRnE/s49PrDb0+lVaokN0DKs/wU6r8k7jJ/nCOX+mF5EtQc4W9yQNiH7PN6kcf5O3RiyiTIjFbHxPP5spwkj5tGf62YT+P5LQlvpe5pT/l+SknYuUPTKZ8HZX2zBt8/wGcNjNHliCV5aZbrEnDchf/kcZeIWpH3uegbedwg63klej2hcF5C8dmqFeL/T1qNGOEF2Xsl6w78AN2pIXhz4RDeUL7GVPLvMd9N7gXv/h7oWRV4WzmfHJ+Ux0cK6UeW5DZ57fF4g+TFDdCxGmp8h/DFC8lxS1Tta4OFHq8szHvPHl7nPa8tr9DPDpFPlYsQrs0McYwRIkA4ym8Vykky0BcfhUKhUCg2cSjHZ+ygqS6FQqFQKBRbDPSLzxAIUgDy/KYpO+VbKLUQIkmz2GWOgbf8nWXxN1MfidfNlJcesWkl39LBXwbKz7ccQX6OZlqC6Tgub867S7eTx6IhlqMyfcLjXL7N1Ie/zJnNYhbDfjpnrMmlttInvl1E4DU0SpmLag3SIVXq47tpurAgKZ602abKrFxiLsXlsm8KK932+P3hS9n7y7VZNs/j4ap8fh8gNYBEWoXNKHhlw42l5qU6BqQMvCW5yXYCrnVDul/2MX3KlBVtLtheX6ZgHf89slL/tFfhXE6kkOJl6+41tgyOI1N4XsrXt3bh0uM4XemmsZIpHz9dxHPt8u7QTWVR+oHztdqcdo7HUzTtnF9tNBVUmgZ2mJ1bXmrHb49d7p5zz/MlBgakgmSuJe9hpn8ogRHxPvVS9NZixU9Z2TGT/si5+4l4jOIDXALvS0IMsFThvB8qteX1l02jht42MZ/8ZyJTW/UGeUbk3Oc6KQ2B6DwEfI6zPN6Evj1FbeN+NxgbcrOmugB98VEoFAqFYpOH4fiMLlU12uvfLNAXH4VCoVAoNnGEY2BZoeRmA+X4KBQKhUKh2GKgX3zWBj+fnvJsFbjc0VpaePwUb3l7rXHot21yM7glj2CoJdf+knOfjxFR4t9rA60NgMQSWC5f7nfPTfKBgAQfx7Ok4LLgyIuVdgJccp3kfJDrYZfr+/F7nJdMn2sHQP5Fndwf2oj0mgPkIw2QzEfMLyhNMNv8Gh5wj1vbCJ+XQ9sAbzhpE0H+0oAluoj73186b/vcs4OILSvc80tbmQvYLw2vmf1sdzy2iSCt3D+5aa6dQqXFHC+PY3vkfJkX6YIrx5DtNeXkyGUSC4xqk1SXXNbu8b5su62Fg1zDJ5K3PJu8LGth4ck7VCy3ReZHguvCZfmcj4yh1iDxUgqAlipDZAMG8FJ4us/9SP4md81bWm55UL6sQegeZ7+w/dYuxvsv62B2ESyDdCc+jqw1A/uU969nG2Fj8Jbe25hqjGlgn/ucJLukfh0cH2vJwntsKBmDtbQ/5qrJPBf+HxpM4Rnh9OTypoEpeXaE8vyuCaenLvIlgfAGo7o78EEuRFD3B3/DQTk+Ywd98VEoFAqFYhNHiJTq+IwRNNWlUCgUCoVii4F+8VEoFAqFYhNHPQpQ93VNRlCGQl98hkRUD2LujmjHBGX3A1kkOeGoYJLlgeSUQ7kuoI4Ey6E+RHXghzZKQtQaRYeG+WVqwLAIEeewXABK+0u+3nJEWDd/epwgIOY82LKsfgnrGFza3WoMedojBDkBVt9mEP0iW6QnxT/AooBVhM7piDw7iezrGee35R/5+khI8AhoscAYqFvkcSDIOyHnKbJjRXsNsTAok9vj2WcMYlFi9ZtkDHw9o2qz2ea6uHXl8/OrRYumJNwm4e3wN60/qMECAGEu5bVPrukXntAK0TMh54PtLPICKSftcjp8TRp/DMzJUhY5ZixLyqAWVqrm8qMIlhnwete5JD4+COUirsMr09fKYllsv2+34HG2fK0sn4+XjDPg/LZ8GvnN8R9kngJAxrv/ybcawDNi+5P36hD2H377rE6VryHk/evg97HPx3N4dEPEF2sDSXt63PN8rhJ5V4HHv+PWxjKIlUfk6fnw+ZzOmmDqddFdKgunp+QV4k8Abvn8rqSA/iE8RDYA6mOwqquuqS4AmupSKBQKhUKxBUG/+CgUCoVCsYkjjFIIR7mqK9RVXQD0xUehUCgUik0emuoaO+iLzxDIrcog6DeJZHq9kLthX7qzwonwvV+YOydPh3Ot7nIlzD7Z+j5fNj/v8kSoKePrfZAjQo4PuSPMfZMDkpz3dp+A3kWx9gi9jFiXcICy1PtwuUCVlrRzHmOgzkcS1h/MS5HXGuX4EPd3yve/Ctz+sfsjtsmtz6mTvBOpkxweRuvzJsgrYJmWy5RxvYDS/SZ4yyVK3GVWW0V4FJajQM6C1EmPLY5rrei2M111+Vc8Xmley4PRe+alLMdHttTl6TKVVJsyEqsps16g7o3wcDiGnn+S1YNKwHrGMRRysCrc4XqvEWHW087y9FysLs5g/Bqv6CB0+9D6P2U5wNKujLt/qLJD6w8m5Q9ynq/T43PXLL+GHZNyz7N3DuezxzMLvX5JJTzKfPDZYGPxuD2+xlDs4eWW43O54GkUAQOfUxy/who4CD3dJhujx93yOT3WA4zP5qRXF5/HDSQ2uh5ctYoJJqLeVlV+s100OSPfLOc9m+3zPIgN0RSbFfTFR6FQKBSKTRwhRr8qa+PJLW7a0BcfhUKhUCg2cYyNgKGuZwL0xUehUCgUik0eY2NZoS8+gL74DIlMb5wvr8rnRfIwrPeL5JJTGXq5CPelItwefle0AhlmQw4IkOCRMN+cpv6K+0mTZWV7JT7hgMQ6PuQfufwLy7epub/dfRJ/2s1h23x6zfV2yvSHsvU4Qn1uOTy/Ijn0apLrI/ocPk/E5+gQtaJ7Xuz1EznH6XVG/y2fMwAAWesx5Nbha6T42iHWy8nzMqPHUd3TFuJ16QTnhT5WVrcncn9brRnPy4rjzthKjUHysK2z7vVPkp/Bsunnlba6QyxbOD1F6v0Ip6eR/CGp0xubmFfmzkFHN4cclT43PnoyUa+Ic9JygvKuZhD90OJ5I3Mu63rcJWPkvRWUWabHZRvAu3GPc875+kQRPZzEoyyg3leiPN9bz3KVPE6P5fp488HnF/mcuJTHpXHg86EYt+cfZk/zdLksh8fzDbTnRe422ecp7x6gr5sNjfy6ojsHMUR/2fuD84acR88XDwBq8oP6XOT6hFVOGi9dRH4l+1bGP+Iz2Ht+s85UOUBQVo7P5gh98VEoFAqFYhNHiMAS6kdThkJffBQKhUKh2OShqa6xw2bVC6+88gr+8z//E+PHj0exWMTb3/52PPbYY/Z4FEU4//zzMWXKFBSLRcyePRvPPvvsGxixQqFQKBSKTQmbzRefNWvWYN9998X73vc+/PKXv8SECRPw7LPPYty4cfacK664Atdeey1uvfVWTJ8+Heeddx7mzJmDv//97ygUCmspfSDKW0VICZ/A6kLwK2HKzVeHFS93zMPMlZMDIJoPmZ74c6PVZbH6HB63x9OQsboXlvthYquJxor126LGCHPtlhsQl0/9HdZpdXtYp3BX+Hbsczji3L7LiSDnhecxRvJvgJg3Qm0Yco9ifoyrEUR/KPJsyOmxvCRBcSWctoS5gbwUyzvoFu8e6rpQvoN6NeKXFXrcCGrPkK+S7zAHqFdkuS0etwKINaHSnBOUGinD+R16Gis1cqI8TkhoNWfMlvNoMI4INWB8HhXHORS+VLlVOBJenxMDuC4SI8cy9DhSAJDxNGTSnW6ZHM8Bvm9DPaHkvEyPbwpFranErpp7LCZGeXUMOB45McdkGPd+trEWBxJt7Dnk93m8Ksub8bhJtk/pA0adKl8zx+PXJPvc6vOkB7/GzkvLK3Kfa1kvNs4T/1+N2Dcwvp51pa1Okxs/uWjxHHSvs2WS21Nwt2xv2vK24ngyvdLH4r0V9ooOVbtLmAqyrsdiWriadeqvkXcoXK66GCqSK1TvzmxUJeSxETDcrL51bDBsNi8+l19+OaZNm4ZbbrnF7ps+fbr9exRFmD9/Pr72ta/hsMMOAwDcdtttmDRpEu6++24cddRRGz1mhUKhUCjGAmEUIBytjo+6swPYjFJd99xzD/bcc098/OMfx8SJEzFz5kzcfPPN9viSJUuwbNkyzJ492+5rbW3FrFmz8Mgjj7wRISsUCoVCodjEsNm8+PzrX//CDTfcgBkzZuBXv/oVTj75ZJxxxhm49dZbAQDLli0DAEyaNMm5btKkSfbYYCiXy+jq6nL+KBQKhUKxKSGUVNdo/qiAocFmk+oKwxB77rknvv71rwMAZs6cib/97W9YuHAhjjnmmBGXO2/ePFx00UUD9qen9iJFvR7J+UY2aW42uYaqsz8Sjg89YSri9YWSeDeVqYMT15PvkCpEU8ZyUZgTl9w+r2FOO1Py+DnMladdHZ+6EBMyZXJlEo3Mu3wDq3kDLxbv66jlmYhPVtp6c4VODFn5bbWFMnFB5JvUhYOT6zb59lRZNDdyabeutKuRQu5OqU00gpoklrLrL2a5A4l2W20VaokUggHnmLKkDBkbjoHvVcRpkeuQ863GkPxOlEtuDzkt1TaZK21SRqe0w/O7ouaQ1cyReUH9m2AQvyQTc8xB8NvN+KivRE2VWH9K6vJ838g3sho0Q/BTkrGQy8JxJ8j/4smWy0HtHM9ijvpWkZTnc0jo3ZbpievwOS7kWcWkLZfbFuv0uDwsC8v1chtOfS5nrnk6O77HHry55HOzBmjvwL0uZXXAMAApT9trAKeJZVh9HpdX53OCLIfHm/c2hiTFydP84ZY+b/494vePbabnH5Zif/B6T2onWWa9UZ5H1GUqy/jIb3I4J7Z3AwAyadMQPs+rdVNQuWa2NfldF8/FbFsf6n1lbCyMjTu7vvgAm9EXnylTpuBtb3ubs2+XXXbBSy+9BACYPHkyAGD58uXOOcuXL7fHBsO5556Lzs5O+2fp0qVjHLlCoVAoFIpNBZvNi8++++6LZ555xtn3z3/+E9tuuy0AQ3SePHkyHnjgAXu8q6sLixYtwt577z1kufl8Hi0tLc4fhUKhUCg2JdQRjMkfxWaU6vr85z+PffbZB1//+tdx5JFH4tFHH8VNN92Em266CQAQBAHOOussXHrppZgxY4Zdzj516lQcfvjhw65vQksP+uS7ai1r3g+rVdNdNVm+Xukz31tTlDinLH/OfDLNN5rv1hX5lB6VzZpLpncAoGea2TIdQjsBpsByXeba4mpTZqbHfENOl8y2XhSbgbx8lpXUj//pmOmMVOKTONNCA5bf22vFqkKWlqeYsuKq1n5+SpZUnqzZTZdd6wouLU+X48p5DZf71sQmIWwx7cl216Q/2E75zCxjkZa6i0yz1c115RZJs/VFzja5LJrLcv3UlgVTmd1u+618vqSh/BSQD6ob1JvjfdVmKVM+w6fbzKdy2p1UI5Pr8a1H/DGy1hVbma21MJEv7/lBqGrsC1qUhNKXTHXYlNwQlgUcx5Skfmm/YdMO8M5Ppi2YZpFz474LBj1u06w157BNs9jYPLkHP7WUvNhatHg2B7TFsAg5p9zdNi3DcqQNTF/a85L/nWTdlK3od8/xLSdsGtKTThgwJkMtTXfide/XoVLXft8xJU2JCStPYVNbbjrZXzafrItp5Dgmr07PFsbKNsj9apezS2q40iL3c4NcWGDeLVEHKQdVl2Jg02F5eXY0mMK7S+a5HHpWFqmU+1yXLCraGs0gNubKqKXKeBobB5rqGjtsNi8+73rXu3DXXXfh3HPPxcUXX4zp06dj/vz5OProo+05Z599Nnp7e3HSSSeho6MD++23H+67775ha/goFAqFQrEpoQ6M+ovNIFSwLRKb1evfBz/4Qfz1r39FqVTC008/jRNPPNE5HgQBLr74YixbtgylUgm//vWvsdNOO71B0SoUCoVCsfnioYcewoc+9CFMnToVQRDg7rvvtseq1Sq+/OUv4+1vfzsaGxsxdepUfPrTn8arr77qlLF69WocffTRaGlpQVtbG44//nj09PTgjcRm9eKjUCgUCsWWCKa6RvtnOOjt7cXuu++O66+/fsCxvr4+PPHEEzjvvPPwxBNP4M4778QzzzyDD3/4w855Rx99NJ566incf//9uPfee/HQQw/hpJNOGlVfjBabTaprYyObqqOlaNbeMgdcLpk1tlGXcHvKJAmYTYbL1XvNb+bzG+U3v1JauXYkrAaEm1HoMAnlhtcqUpbZBsKPCWomER90G1JHWvgIaDRJ8PQkQyipNZuC7RJe8jk8WXpzjvBsCu6yZt8+g5L2sa2C8Gl6zY56gQl8rn+V8vJc9h7fdDa3L5dYPgFtE9rN1OyblJVrXT5SYJfQurYC5C1ZKwfyNwb7Qlx35QkYA+0y2Hdcgl1tNNsK+e9eV0aefQTbFibGu7BS+myJOZiSdeoV4cvUpI6qcBlya9wl1aUJEmObcL3WmEpTYpthl3cLaMeRjCtKydJxjkvZHVc7Tz1uUyDjmZMl6JkSeWOu1QX7KWmX4S+3Zt/2jx98fPzl3vY6v0+HklxIPtm81evwlvNH5HJYWxjhpJXY99JPJbctgbfk3HJ+Ekv2k2MPDOS2EP5va6NCCwdPrsDe155cQ7KffbsPf9l54P92lQXi+8DjmYWB29msJ2kLE7juEAPOsXIF5CDKPVUr8mbkhVI17y3aguRl6bmMTao3JhilQkpCyNL5HMdXyhbZgb5u81wPZPxDWbbOZe/ImrpSUhctLfpl2XtjbuMtZQfeGJPSgw8+GAcffPCgx1pbW3H//fc7+6677jrstddeeOmll7DNNtvg6aefxn333Yc//elP2HPPPQEACxYswCGHHIIrr7wSU6dOHVlDRgn94qNQKBQKxRYEX7S3XB6bl7jOzk4EQYC2tjYAwCOPPIK2tjb70gMAs2fPRiqVwqJFi8akzpFAX3wUCoVCodjEESFAOMo/kXwanTZtGlpbW+2fefPmjTq+UqmEL3/5y/jEJz5hZWGWLVuGiRMnOudlMhm0t7ev1VFhQ0NTXQqFQqFQbOIYy1TX0qVLHc26fD4/1CXrhWq1iiOPPBJRFOGGG24YVVkbA/riMwQq9QxqVZOQz1kpc3MsVRHJ8m7hPHSY/flO0Y7pNVvq3GT6RLOl5CW+EfNorBy8IKiJhQOvqQrHp0+IQ71mG5HzUzEEg5xclx5nSCPVNslj11zeDZDgcFi+gG9ZEDn7Q8v1kMNpys+TryLl0gpjEOsCgnwh8kuqTWm3Do+7wRjStOqwmjMuT4UxWf0QcoISHApfsn8A38LTVmGs1i5B2kMbCfJy6t6zgzHmOuN91GkqrBEOj1h11Aou7ybmW0kMwhtJC48sXCFzs4v73bGy/KS+uHGZPpI6XO2kesEnyMjW4/rw+zD7g/O72ijleLybMDHugTcXyHWx1/gcLJ/LxZg87ou9LnLPqw9iUZJK8J2SvwNazlAzxrPL4F/Ytyny0wpuObTboL4RkOBccS4xftoq+Bo7jD/rxhrK3GLdLI9jYu+95HVWp0i2spuaT4HHTfKtTKzOkfQHOULW4sKfNonxjry5YMfdcvrkt5xHPmSm1+V8sS9TwpOs93Ng0855SW6Ttd7hMdEKS8mzoS5WFWGv8CDzLgHNtwehLlA6bTqoXDHXlfJZ1Grew2MzwViK9fKl58UXX8RvfvMbp9zJkydjxYoVzvm1Wg2rV69eq6PChoamuhQKhUKh2MQRRsGY/BlL8KXn2Wefxa9//WuMHz/eOb733nujo6MDjz/+uN33m9/8BmEYYtasWWMay3CgX3wUCoVCodjEQYf10ZYxHPT09OC5556zv5csWYInn3wS7e3tmDJlCj72sY/hiSeewL333ot6vW55O+3t7cjlcthll11w0EEH4cQTT8TChQtRrVZx2mmn4aijjnrDVnQB+uKjUCgUCoViEDz22GN43/veZ3/PnTsXAHDMMcfgwgsvxD333AMAeOc73+lc9+CDD2L//fcHANx+++047bTTcMABByCVSuGII47Atddeu1HiHwr64jMEXnthK6SKkrRnjlhSwdku87vwuvldXOXyNegjle0yyeZUH7V4BuH45MRbi7nikiSoSaTpFy5P1STFI+rWVFzBliAjQykcoHRGyhWeTmmCIYuQSwLEGjjckn8Q0E9IimSO39cQiXP6gXsePa3oxyRnkSORBH3LqB1EPoLlRtD/TLg9YZOrV2M1WIS7RD5KzFOSCEnQAmLCiecxFMl+n+NDzhaJGOWWVPInAvowsU4pNyf9SD4PEPcxuQ4l8Vbj3GIf2q30B3lJGWpDLZG5Jr5o6YpojojeE3lXtcaY7BLm6V0k54r+TlQlV8uNn1yOdMrln4XkSshYlNvEZ0y4ToPyL6mzJFylOueWcJgij/vBMng+2235WR63xx/LTEJLJ/agkjp4i9FPakAMnpdXwdWYIqfLauswptCbe4kyfP4M44u888jRsfwjOZ7ydXzYFq/cVJLLxmvlXiGfxo6zxydie1I+583jH1kOTDj48eSxAc8M1pn3yuCW9x7ve3J7fD4V74tBdJH89tr4PP0iS3pig4S7GfCCsvAOhYhFa8NQ9r/yehFhf2KibWCMRapquNfvv//+iKJoyONrO0a0t7fjjjvuGFa9Gxr64qNQKBQKxSaOECmEo0x1jfb6Nwv0xUehUCgUik0c9ShAfZRffEZ7/ZsF+vqnUCgUCoVii4F+8RkChVfTCJqFJ+Plq3NrzJZ6GOmSmxS3+fqi6EQI3ybdY8gFQW+cFw66hXAg3J766g4pxJQZ5Eyi2nJ4eF026+7PZd0teSzCHcr2VCWm+F3XaghVpS7f06juchasHkrN5dX42jvkhvj+PNZvCwkNoYx7LlHzNHHoG2T1SqwHUuBeT66HbLN9rgYLMNCjyPIEarzG7Q+WaT3HKq6nV0aGMGV5R27s1ca47swq4deAPmZmf2m868mV6xbeVUXq6Hd1jzjnMn0m6Ei82PonmgK7thOOT0McBzlphY7QKTMQrk+W7Uq7fcp2VZs8LzfPw8l6WXnaLeYaKaNZyvS8uPz/iLIsn9NhuU/k5ZALJGNATkjK8ywDgEj6lvywMOufMMRv4e7QJ4pcn5igEzh1pipxY2y7OM/lp2X7Be6W/COrFUT+GcfC8zyDvSflvESfp8gvIq/Mu3dSvkaSoO5xvXw/QfscYHvL7vlAPKcsN0vKoD6V/4zg/Ah8jhP1fyTmSqvwrBo46URjq5zkLnpcPa/PqIUViNhT1Cc6VI0yvnkps9fsT/fw4WK2WfEACyKgXtp4/4S+ERyfNyv0xUehUCgUik0c0Qjc1QcrQ6GpLoVCoVAoFFsQ9IuPQqFQKBSbOOoIUB/g7TL8MhT64jMkak1ASvQ7mLMn7yCynBbhSHieT+RbWJkI649liAqZcsI0qMeQEsIOY+gU1cyxVC4HB2nhG2WZ7JePdUVJjueFT5RyP+JFedGJER5P4fWY/FBup9CF661lq7QaMYN7epHkEAQuJ8RqdqSTZ7kIPZ0ay0XxNEEsH0N207vH5wRZzyrybKRu8lEG0xghyJuhXk+uRzg+lsskJ7aKroe0n+dbfyyPr8G2Jfkm1C0irH6R9Eeu22zJvynKeFFjiLyibK8hMGQ6KLrEWIxPTnGlaPYk+A351eLrRj2SHPlDoVN2YNvhcryyPfRVk+ulofkO1g2n/GRbreaNjIs9t+5ufQ4LuSGRx3Uh2Lfkn8QHEn8ln0T2VVq8mDzfL1sXY83JPK+6c8nX6Ak8LyvnmM/FSXiJJdth4c1/v598HSP7TErMbZ9rZTl4HsfN1yPifl9rh3N0wD3W4MWGWKeIvLC6P47es8bnAlG3x3K75Flcb5FK8hJUn9yT+bjhlTbR46G+VoX3DvlA8jyXOcP7ICpJR8k4c7wjb65afaAw5o1tDITR6Dk64bpld7YIaKpLoVAoFArFFgP94qNQKBQKxSaOcAzIzaO9/s0CffFRKBQKhWITR4jAppdHU4ZCX3yGRJSOENRdbg+3hdWiUSH+UdS1SZdMwpecHusfladIh5STjRP81ONJtRriQSDeL6Ho+kRV0f6pCj9DdHpSTWIYlDaFhg0uXycsuCIlQZ0aJAM1RsgzsVwlq/fheVp5XAjq2vh8Bavv43F+kropVkOH+XOpk9pIlqvg8y48Dy9fa8dqz3g6IUmOT8rT9yAfgb/ZrpTUme01B7I94knVJH0u3J5ctwk21+Um/PsnZJxygZg/FHNyTCXU+unfSmLqpzaM6P5UTCHVFjPOHMcoI1yeLkOSKD5nxHoyfW0AgEpb3OnWk43zNDDxVUWvKky7D8WYnyLzvUJPN5fzRVgPJ3pgFeLy8p1w4i63uHOEPJHIGy877p5ej43R574IkjwbxkUeCe9jqy1juWtyXi8Ll/P7Xa5HzNlzY2UMToweV8fqT3naVz4XiO2lno3VtQldXpnlm3gcKic8ti/tnuvfO4yVfZfy+taW7fGV/HvVtNN9prBPqOXFZ6KdMz5Xxj6bZCv3RzkwQdTFVwtZqbw2CJ+M45t1Hxb2uZRxPdhiYzTZNst9Qj2zCjWI4t9hZuORZlS5eeyg370UCoVCoVBsMdAvPgqFQqFQbOJQjs/YQV98hkBQD6xsfFY+fWd7zDbfKZL/sgw608M1qpL64qf+BtO9EZd/8xN4csl5wazXjNpkjbCkqtJdptKo21RaXyO5Ai4lrZhv34GUFWW5rNPUGUoKhEvu67LcvdISfwtnKsJ+Xmd4Ns9gNlzmzE/ETIlwqam/rJd2C/zkzDROcgm6TRt46RFbR2LJaLIOa3EhzbDL3eU3+77upQCSqQ8uXy+uMgcz/WYbVPkNn+2Tz+o5U3lN7D4qkuqKl5ybscj/4zUTY7/kVGbtCADomRqnm9r+YcY19boZz8yMSdJeE3B6pSmzealpWOZ1c37A8a6anFDfNDNfmDpKM7Up7a82ydxLfNlOVSnPIDYmUU36Q1J3HOe8/E5zftDKwpST7ndTuki7aQsrdxDElTNl4WsbMH3CdKM/bv7csikvb/mzb68Q9MR15ER2gPcrY+D8ZztytGTw5iLrrnGJtbSFzwOmcTjvkyk+206mrvio8KQP/NSWXXouv5lW96U0WIBNmVXiDo4lENyybF02NRc57fTtL2g/wfSUPxb+cwIA0jX3GRCnvFyaAFPcTIFlu8yOWiNTwKaSvoluejkcHyWrtjYVyZ2sm1YU9uEg6alMo0hFyGCkM3JfZMyFoZRZrYr9S9lMCKbZ0lFm4y5nxxhYVijHB4CmuhQKhUKhUGxB0C8+CoVCoVBs4ojGYFVXpF98AOiLj0KhUCgUmzzUnX3soC8+Q6DWXI+XvXpLRO3yTeE+1BrMCWnhTgRl4Y70mXx1KBwRLimvteTjwuTv1VZZpizJx/zrYm+xwgxRWq7l8vWg2XA8auPNtjLOXF9tdIMlJ6baILnx5JJlm8M3W3JWfFsFe6/YXL6UKSvqycfhMmC7fF9gJe4Ts63C5cvesl7LBSF9pOTth3t+Wcqxy37JGRDeRYq8jYSUv89hqGe5NJYdYjal8eRLSfukf7h8neeRG1Tf2qxFT3WZoLPC/cqU4oYHfdIZNeEV1V1bDHIYuL86Uca5KHyjgjmxd7L5ne0zvxuWC+9I5hwlFshfMn0h87LDaAaEwvtKCx+s3iC2J2JVUi+kndjIfeI8j6ylhXCALBcq416XgM91IQbYnbBvPdkDuySddgOkNnm2AvmumOvC8UqXRBqgZrblVnNRabxpZ3mc1CHz2C739pak+zYS6ZLLgUr+2xJ5S8j9JeGc36m6yw/ifCb3hcfJR4m5Ty6XhueZOFxCFecW5wb7lrwbWtSQq5O2nCh5LnAOZt1xJ/eN88IpWzhHOeHuWB6dgFY6Vp4hRRsVc5wcH8pccIwisRHJjaePUFxmpU8eSH3eg1uWvqdywlGTvmwomgGd2Gz8YjJC7swJCWpN2Tx8ylUzX7r6DdmrnMsh7Pe9RhSbA/TFR6FQKBSKTRy6qmvssNn2wje+8Q0EQYCzzjrL7iuVSjj11FMxfvx4NDU14YgjjsDy5cvfuCAVCoVCoRgDMNU12j+KzfTF509/+hNuvPFGvOMd73D2f/7zn8fPf/5z/M///A9+97vf4dVXX8VHP/rRNyhKhUKhUCgUmxo2u1RXT08Pjj76aNx888249NJL7f7Ozk585zvfwR133IH3v//9AIBbbrkFu+yyC/74xz/i3e9+97DqSbVUUM2bXG621+SKqYNCrgARSc67mjPdmWGeuodaO5K/Fg5JrRDnnqsNwq/Iu/n3dEmsKYTEkiLHJyv8iaLJY9eaXH2evgksT9rh8VlC18nCFCl6JOQAkIdQp/4HtThCd38odVgZfk+TJyc8C3JBUol0OHP2vKYuGimRp53ixx0WXP2PVNX9H4zVCvJ4SdRiMmWTmyWFF906OQZsF8eG2iOF14WvQB5Oqwlu5fZF2W94OY3LTYENy6u27kjmSH3aBABA13RTSaXZHC+sMtuKlEk7Ef8/aoyluMLEkl8m+kBlU1e20/AVonLsnxA0CCGqyWyr7SZecnOs3hRh9VtSTr9YnRSQK8IxIa9IeBtJvSorWGM2VZGtsuMqW/Jn2B9W58fyx9zzsr0u74pzNdlfjC/bLeNACw65H7M9aScGf77bcrz9dg561g203wAS9wYYL+MX7k7V5dvkO0Lnd+RpJCFNTpjLw7GcqShBdvGQsVwkc222py5lkNOV8mJydZ9odULweL048J8ROxf6TJ+n+qvSDto9kIxHOx/R6SnI/ZEyg5HrlBilv7L95rzS62bMerZtlNjjdmfkHPLAOIcqE6RdRVN3c5PhB7UVDKGoLW9+56Qza0LaasyayZaSB1t7g3l4vZppRT3reahsQKhX19hhs/vic+qpp+LQQw/F7Nmznf2PP/44qtWqs3/nnXfGNttsg0ceeWRjh6lQKBQKxZhBU11jh83qi88Pf/hDPPHEE/jTn/404NiyZcuQy+XQ1tbm7J80aRKWLVs2ZJnlchnlxP+Ku7q6xixehUKhUCjGArqcfeywXi8+//Zv/zasQoMgwD333IO3vOUtIwpqMCxduhRnnnkm7r//fhQKhTErd968ebjooovGrDyFQqFQKBSbLtbrxefJJ5/EF77wBTQ1Na3z3CiK8I1vfMP5ijIWePzxx7FixQrnJaxer+Ohhx7Cddddh1/96leoVCro6OhwvvosX74ckydPHrLcc889F3PnzrW/u7q6MG3aNMNFaDD5ZfJnMn3i6SOcgFynq01BfyxqU4Ti9cT91aa0lBdnGK1+CXkw8rvSIhoyaUMYyDSJl1NJ6hQtEnraVJrpt2SuJ8/AehcNkvonb4KaIeRPMAHK3Lh/acrnPnj6PjXR98l1e9fFVBfkmX+Xuqo1twzyLBhTmCe3QfL09CES352AXl3C+anlyZUihyCumzpF3LLObB85EB5PyvpGCZerWcZV+Ank4ZBTYH2IhCND7ysg5tWU27NOmYXVUlfN1YSxmkGhOwqZXtNhueXSybYDSWrKSAwJXobUFTaKPxw91wquD5KNu8H18LLcqAINtdgvjF1C4DxIeFZZHgznCueWbC3PzB9/PqE8fR9ywuycCjim8jMxRyPqDAmnh/cQNY4al1OHRjRjSh6XyXp1Bc7Wcp4ITrXEPCcvaAC3zppMBYMet/5Zddf/L93l+qTF9x75eck+d3W5LHdHyvSv9TlNnN+h6PeQC5SqmhhSwvlJC4+HfoGmTHkWim5V0N0vdVLgRzSiGsxcDIX7Rg00lpRZY3g3tVZzXrpZ7hu54YMlck82xe2O/b8kFplD2W7zl/I4s+1sMJOoI9UKAHghww7hJPO8yUQ7CA2x4VrYv/HYIvrFZ+yw3qmuL33pS5g4ceJ6nfutb31rxAENhQMOOAB//etfnX3HHnssdt55Z3z5y1/GtGnTkM1m8cADD+CII44AADzzzDN46aWXsPfeew9Zbj6fRz6fH/K4QqFQKBRvNPTFZ+ywXi8+S5YswYQJE9a70L///e+YOnXqiIMaDM3Nzdhtt92cfY2NjRg/frzdf/zxx2Pu3Llob29HS0sLTj/9dOy9997DXtGlUCgUCoXizYn1evHZdttth1XotGnTRhTMaHH11VcjlUrhiCOOQLlcxpw5c/Bf//Vfb0gsCoVCoVCMFSKMfjn60GIHWxZGtKqro6MDjz76KFasWIEwdBPDn/70p8cksPXBb3/7W+d3oVDA9ddfj+uvv370hb9eAITbU2s2eedSRbg+vdT/EH2XLpNMZl66Ti0K8fCqNJnz+yYJ1yeh81FtMVtyVcgjynbTF8lck+sSzy7JW9ckO9c/kTwTKcfTDak3MEEt/KQ1iVw4uSsyC8irqPj8INHcCajTU3OvrwunJ/A4EfQHo29S0vOM59apR1J191tPI69Ocn3CduEOyAX1Xpo2mU262xRAP7GkhhB1eazmD2k0Wer1mN/UiPG1kKw3keg58bzCGuEhpV1OTJDggsR8GvM710PfKzh15YU/llspnS/3WSj8mkB4FvU2M1g18dlK95vr0uRWVGKTsyiTcrbkemT66k5s8LgfRE36LfB4Y1bfybNGSnJdyJeyWknkvnC8U+42oPea9TCT/XKd1QESXlLo8VjSifHO1nmOS15L95pK8lavxlRC7z2fb5Wq856MksXYrd9fQDyufvx2jlgtIHeukQdYbXR5JoXVfD4I14e8LE6xBBfMeu5xnOr05HK1gMg95A1ufdI87h6fTZl+2XaaGyUoJQZakBKdMepW2Z4hF022UauZv5V2M0GyXRx4iSXjxgavDWlqiSX0vHw+o/VYK7vbKHDnuz+ffX6W5ZfJ/Kg2AaGn6bYhoamuscOwX3x+/vOf4+ijj0ZPTw9aWlosyRQwhNON+eKjUCgUCoVCMRwMm5L+hS98Accddxx6enrQ0dGBNWvW2D+rV6/eEDEqFAqFQrFFQwUMxw7D/uLzyiuv4IwzzkBDQ8O6T1YoFAqFQjFqaKpr7DDsF585c+bgsccew/bbb78h4tlkENRjIhi1YXydklK7yfXW864uCv23SuMD2Zrzy5OFt9FesvVMajU6LF39RlOiv2Ry4z0lyY130LPL06MhR6aJuX6Xy5PqJ59DPG46hNeRSEnTN4i8IPImaqKRwlx4yuP0WE5Dxj3Pz43zt/XZSVAByP+Jik7YsbeRx+0gn4oH6mnqHJFHI7yDbmqOwEE9prqgRt0Zto82aL3cmh2+ngsR81FcfgW5Q5UmVycoVY8LoDYK96U8blOG/kn9JBhwXIWXkRNPtmkNTmzZXuHpiG+S5X6EsVRDqiy8CmpGCU8oTKWdusn1oW4L+9zycxhzSD4N9X3c68KE9xf5MdxneW6eFpD1cGOX9cOB5dWwaG4lNvKzkp5Vlpsl3AxK3YQ5enS5eka+R1WUd3lZNmZyYmT/YBpC5JZZHhSHgzwaGWbqTVVahEdUGrzM3snSx23emHgcISDBk6N3HuOmno/sJ2fN90tjH6asHg55SXJ9v5zYb4KNxjXbuivjzQCTcxZOaTPnZKiR5RLC7P0gHl70eau1mg6oF1y9sqpoZ1kOVOIepT6ZHUdy9Oj7xjnFuRMxBvnpcZzYx+UWV3MpCGHnnWLzwnq9+Nxzzz3274ceeii+9KUv4e9//zve/va3I5t1lbc+/OEPj22ECoVCoVBs4dAvPmOH9XrxOfzwwwfsu/jiiwfsC4IA9aRSrEKhUCgUilEjigJEo3xxGe31bxas14uPv2R9S0CUAdJ9ImHfz9SAOVZt5lY+28oy2VqTLK0uyifWCeab6sRxJp21fesq8zsfezmMk2/7a8Rj4l89WwEAVvSZvFNHk8nRVGSpbSRy6qm0GZOGnPmOW+ozn4TDuqS4cjJm/e4n5UxP/PfiKndce6cwv2Q2dhkoP9fLJ2PfLoDLmFPe+QNSZAkqvV22Lvchl+PbtBGtC7i61S5JlbREr0gGcDmrLHOn9QHTWLTPSN7vNiUn25xcU1htAs1wqaws8+YyaBsrU5njvHSDfK5nyqtKiYHEMmfbntCdU1yeW22UMmumA3KSbqjIJ/+k/QUQL0VPi30A0621BtM/+VVxWpVL4CNZ+s50Q6XVnJvh0lxaVmSZluAyZqa2xLqAFgZy/sAUQZx/yHW76TCmcMKau+TaLme3KRxupR+apd94nPOiylRJ5LYlWSZTO2LzwuXdts+KtJyRWNvce8emzGjFwfnAOSjpu1QizZrjPcB7iiksWrEwleUtneYS+uJqN93KdA1tUig9URnnzqdkXbwnAmmAb4PCuZfy/s/Kdsb9Z373T+JX/nEAgPxLZlFL0BPPtTznWl7Old9BTe4xLnfnqmBJgVXE0sUusffA9hX7TRsaV/CBEc+1ZGoZiO/f0KboB7cc4X6msCmRwNQ/txznWjFCOJgX0AZCiGDUOj6jvf7NgmGv6rrtttsG9eGqVCq47bbbxiQohUKhUCgUig2BYb/4HHvssejs7Bywv7u7G8cee+yYBKVQKBQKhSKGLmcfOwx7VVcURY5oIfHyyy+jtbV1TIJSKBQKhUIRQzk+Y4f1fvGZOXMmgiBAEAQ44IADkMnEl9brdSxZsgQHHXTQBgnyjQKXqZYnmUR90CB2ADmTp85mzfYtbeYL2NSGLgDADo0rAQBb50zuOyUJ+rQk+tvSXLMLpIRQs7hvO3MsZ3hBFUlIb9diymjOmPTipLypY2XFcICe7TLmsa9G5qWzXJLl78IBqnE1dFpk+BN5fPIFmOPPdQpPJqYgAYiXddtlnWlaNkgbyFMRvgWXi/Ie45JTckTMQbPJ9ZAQ4i4VjaSseCmyXEe+gcdHSFVcuX22jecll/naEGR8uYw/U3LJIJQlIOejLpyHstgJlOU9nyvG42XRMt7CDXOW1pPjwyXhPq+CdhrjMxKba59AxPYDsuQ6zfaLpUGPaXCqN668MsmQ08rjTCeTT1TokGXsEn8o7Wbfs/12yTQtG8gBEkkBciTICeIydwCo5tyl32y/rcNbjh2RLiLjSYkALne3FhjSf7kusQ/hkvxizBFhHfUMORuB227pO/LKqlze7S0lj7y5Z+cWq+L9kLDLsJIP5PZQKkLO4byuTJLjUmfhdTnOvuQSdM4X2kmwH8iFSsw1y5uTY7wvyU0jeP9bbpY3J618g7VVEa7PRNNh2S5DpEutSjw4esxABd3UW6Bnh3DY5LRQLCuq40xDSu08jzG7cy8QTluu03RgSnhFQTlxg4vNRZQVuYIGWRJfJC+QS+MpRyJz03tmcOwsR0/6gWOZyQSol/RFYnPEer/4cGXXk08+iTlz5qCpqckey+Vy2G677XDEEUeMeYAKhUKhUGzp0OXsY4f1fvG54IILUK/Xsd122+HAAw/ElClTNmRcCoVCoVAoBG9Equuhhx7CN7/5TTz++ON47bXXcNdddznyNlEU4YILLsDNN9+Mjo4O7LvvvrjhhhswY8YMe87q1atx+umn4+c//zlSqRSOOOIIXHPNNc7Hk42NYZGb0+k0PvvZz6JUKq37ZIVCoVAoFJstent7sfvuu+P6668f9PgVV1yBa6+9FgsXLsSiRYvQ2NiIOXPmOO8IRx99NJ566incf//9uPfee/HQQw/hpJNO2lhNGBTDJjfvtttu+Ne//oXp06dviHg2GYTNNTS+xfBp3jZhOQBgQsHksFtEFz8ryeApuQ4AwM75VwEAk9NGOKNByAF9kiTPDqL5sFrICrsUXwEATM+vABDzgLbLGo5PQcr6a9mQAe4rvwMA8PKaNgBA+TWTZ6f0PfPTGfndsMz8blwW65tk+4QfIq+/2V5Xh4YgH4H/WSisET5FH+0HXF0My2mhDQW1SRJ6NtQSYZld25kEe3mGyN+LHhHKJBjAiTUQCwRaeVBzqSA+uWx/1ZPtd8ryjlGSnvFa3ozVTjHbSov8bhS9lyb6JQgfQexCcmtc+wEg5mSQkZC18vpmmxeuSn6NIcEEtXi8ACBVNb/TK83cBAVDA5Jl6McgsYlVAABU2kzDSu3SV2vcMRigf5Jx+SWWP+X9d4njSjuBWsMg/6v0rBUGyIl4uk6+nQDnFPlYvhYTby2rKVSO+426Pb6eDzlN1BsKQnKU4GytNg55J+Qn0QJBxjeirhVtVxBzbnztK/Kmcl2u/k653d32TZPx7nPvA8aS8jhjDp/MWnOYLbV/yGEhf4bWKvH96v4mV8v/WJBlXZyjfTF3EWmKe0ncFQkwS0sVsfkR2xDaYBRWCZ+SHLaScNXI4aHdCvlEFZKlkl4dMp4N5oYNJIaoyeW28Tlnn1u9nAfufUB9p0C8bvomQ66PEEYDn+kbCtEYpLqG+8Xn4IMPxsEHHzxEWRHmz5+Pr33tazjssMMAGLmbSZMm4e6778ZRRx2Fp59+Gvfddx/+9Kc/Yc899wQALFiwAIcccgiuvPJKTJ06dVTtGSmGvZz90ksvxRe/+EXce++9eO2119DV1eX8USgUCoVCMbaIYN7pRvVHyvL/3R5Mm29dWLJkCZYtW4bZs2fbfa2trZg1axYeeeQRAMAjjzyCtrY2+9IDALNnz0YqlcKiRYtG0x2jwrC/+BxyyCEAjCdXclk7l7mrZYVCoVAoFJsupk2b5vy+4IILcOGFFw6rjGXLTBph0qRJzv5JkybZY8uWLcPEiROd45lMBu3t7facNwLDfvF58MEHN0QcCoVCoVAohkCIAMEYWVYsXboULS0tdn8+nx9VuZsbhv3i8+///u8bIo5NDs3je7HTVoars22jIY5Myxuvraok9wuByVs3p4xARl1IBCvrjc7xgghpcLtdptnWM0Gu3T5r3n57xRctJ1/TOoR38Lu+HQAAN/3rPQCA158xnl651eZ4o8eryYm4dsNK4eN012Qbm/lE4o9TbTTTICt1U6eDHA/mzMn1oO4Hc9/kFfm5cebQw0aPXIGYF9Q/3hzr31riE20keuCEoq2TKrl+O+nxpsH1ktlRfM0QGfId5C2Y8zLCQ6IWkTlGLx5pntUnkTDpq0TtFEsXcTkg9GwLWkyfpjLmxHqV5BAMAHVbUtQIkRgaDLUL2W7xMuo23IWgIpyHEo3iJMhQvqzWJbiKiLS0GXGhytbmodYzrWDrtj5XUgTHL1dzv9KSJ8Mt5wG31SYTfLrkjXeOXB/zO0raLVn/NzcGG0vG5ZVYfzfPssnyi+iTRd5VE+ei8DkywZDXWA2cnMt54Thn++hJJuMtY0QNrHi++P0zMOa6xFeVcScHJ1XlPePGSA2gynhzIBQPurBF5kO3qSS3RniDQnWJ/dHiutMyJdKk1/TSx2xwXkqZ3oMyfcntY39lrF8e+UnCv+k0RLUoybPpp1GYiTdo4MQnp8d0ZkrmdSDzmJw2O+/7pMN6hAyXcm+qiCmaetzwoNVMwKiVAl3yDCmL/lqvzJUKdak8zznhyVVaTOzU7SqZR6697+stdYTZjZfhGMtVXS0tLc6Lz0gwebIhOy1fvtxZ5b18+XK8853vtOesWLHCua5Wq2H16tX2+jcCw37xAYCOjg585zvfwdNPPw0A2HXXXXHcccepcrNCoVAoFBsAYRRYo9jRlDFWmD59OiZPnowHHnjAvuh0dXVh0aJFOPnkkwEAe++9Nzo6OvD4449jjz32AAD85je/QRiGmDVr1pjFMlwMm9z82GOPYYcddsDVV1+N1atXY/Xq1bjqqquwww474IknntgQMSoUCoVCodjI6OnpwZNPPoknn3wSgCE0P/nkk3jppZcQBAHOOussXHrppbjnnnvw17/+FZ/+9KcxdepUq/Wzyy674KCDDsKJJ56IRx99FP/3f/+H0047DUcdddQbtqILGMEXn89//vP48Ic/jJtvvtnaVtRqNZxwwgk466yz8NBDD415kAqFQqFQbMngyqzRljEcPPbYY3jf+95nf8+dOxcAcMwxx+B73/sezj77bPT29uKkk05CR0cH9ttvP9x3330oFOIU++23347TTjsNBxxwgBUwvPbaa0fXkFEiiKLhdUWxWMTixYux8847O/v//ve/Y88990RfUsthM0RXVxdaW1vxqQc/gWntJk89TsRW0pLsbhBxjs66yVv3CVFjq4xJuFcj932S50/OGuJNNohz4d1CAvhXRTy3SuMAAKuFFLCszySUn19qmPOFJaaugrEDs5wB5quLq8XLZpU5kBavpnqTSdyHuYSHEb2Vsi4vgpwF6tjQP4u5ffJQrIdPmlokkbO/LL475PEkNUbIA+l7i3ByGly9GqRkWlbNtflVoqUhuyst7rRteE24Tq8J/6DH1ahhjEDMRaJnEf2tyOnJ9LneRdT3KbULL2mStHOqmR/FRkN+6OsxfRy8brbFZYHTH+YgnH3kdBQMfQyt/zKdlF1tCBop4ThQ74T6KGHRDEqtQQZHyiP/hlospfFx5ewLzpW8eLNRG8iOnzcPyJ/xdXDIaSFPh55s5TapL8F14ZTnrWH1d4R/Qh8pn7vpawb52kuMhVyXXK9wYwYZb+rY+L5tMdfD9Y0jSm1uEJbDRK2oZuew5deZus2WfWLrpN8TNYBS7vnkgvVNM/daUKWPmtzfy82450W3Kt9htsVVAzkn1Fmiblfh1R7neLXNPIOod0Q9psjzMCPYf63Pm0FLP7XEnF+Kb/BQ9HVSBXMvpIR7BtHWoUeX7euIc0/4OH3CafI5PnXvOSG+gWiOVYCrU9sAAKXx5llJ3Z44frnP+2WuZN3jfN7x+VAeJ78nmvOL25rJtn37KlR7K/jVwTehs7Nz1JyZocB/k972w7ORbhgdCbneV8bfj7pig8a7OWDYqa6Wlha89NJLA/YvXboUzc3Ng1yhUCgUCoVCsWlg2C8+//Ef/4Hjjz8eP/rRj7B06VIsXboUP/zhD3HCCSfgE5/4xIaIUaFQKBSKLRpc1TXaP4oRcHyuvPJKBEGAT3/606jVuAQ5i5NPPhnf+MY3xjxAhUKhUCi2dGxqq7o2Zwz7xSeXy+Gaa67BvHnz8PzzzwMAdthhBzRQp+FNgkxQRzkyyd4X+7dyjvVLErgqojKry6btubRoUwgBISUEhIIIafTUTH62Uo/JD8t7TXqwo8fkvssdhhRGvyeisFq4LpLTpxZHrovaHPT0cXP85Ukm9838fT3hl5XtkXipR5Ie/KYIPE6E9T6iF5BwQTLijxRYro/LcSm1x2WQ25LpFT2Tmikz7SmnW80UehJJLMUSvbqkLb2DXxdrt0QDjvleVeT4kD9CfY9QSPzUJaqKNlB5jRnPnn7Rtek1baBHF3kng4H8kJzwbFr/Jf5vS1e7J2ZkrlDvhbysgimgNN7MRfJYUp7+DXk7QKzLktxnLnYFbjie1PmxfCRP74b6N7WCzwWTkBMcn4g8kcjdpj0fLBuS1GG1cbwYCM4Las+EJddfLVk45w7vAcvtqQ5eZ7nVbb+953pkHjRKG6S95TbhhtUT/CJvPOpF1xcs3eGex2/w1CdKd4t+VUGuy7j6Ppl+U47v8QYA6V7z97DITpT2Cn8myptB4ZzK9vBGl/kuOkdZ8qjkeVF4xmiORatN8BH9sgYDlfyFmxblPMIQfb7I7ek2nRl43l4QrhCycj01g4rmeVmdEHN8eqfKffkW8Y6TvuT8pIZSvoPaT1KkjCefU5V2eT60mljeMnkNAGBig3gxZiqoVtfSdsUmixHp+ABAQ0MD3v72t49lLAqFQqFQKAbBG7Gq682KYb/49Pb24hvf+AYeeOABrFixAmHosuz/9a9/jVlwCoVCoVAo+OIzWuXmMQpmM8ewX3xOOOEE/O53v8OnPvUpTJkyxTEqVSgUCoVCodiUMewXn1/+8pf4xS9+gX333XdDxLPJ4A+vbo8G4Wz4hLBQ8vO1uuSQhZ9SqwpPRfLw1RINmYR3UB/4kpiSOlLiC5QvCx+Bvjiib0Kdk4yv/8EqLPdD/LeaTZ67nheOAPVTEm/8zO2n+kUrhN5MzWmnzMDjZfC/DXFZ0j7yccjfEN5R8XVXDwYAMqIJlClTbwYSr1Th6bWQR1Fc6XJZiFy3qSsjHCdq09Rzov+T+DCZqrgXR6IFYv2x5CsmNUXSwvUJxLSpYYWJodJCbyNDHqDeCccm3+lpjiChIdIreiydps70KtFWqVLYRjqA/mH8zb4XTk9BOB3kI9UL4oVUpzBMQscn5c4/y9Fi0XauuLpMnIv5zppzPJ5brmcbZAyDRDenPA6Wz+nx+UG+Pxa4ZZd6OkjZfvpruTwtIL5H+L/lbC8JUy4XrV4kV8nVdSLXpTxO7vuCG7PlAAnfptKaqNzXJUqzT9nHcpqMZ7WJfBupQ+qOpOxxfzQd07Wdy1uy925Sk6aJAULqlOeS8GHCvPD+8uQyueOeFs5eYakIE60xW+r1RHKfBDS4TPhopTLiwZWTgaTeDqdlWRpOvlinDDznf5PhTfIeDITLA/rKCdcn1rOK/ymjXlNdLuF48JkSewtK97S551FTjB58uaLp5I4+QxbqKeekSRHqfR4pcQNiLL26tnQMezn7uHHj0N7evu4Txxjz5s3Du971LjQ3N2PixIk4/PDD8cwzzzjnlEolnHrqqRg/fjyamppwxBFHYPny5Rs9VoVCoVAoxhLRGP1RjODF55JLLsH555+/0RWaf/e73+HUU0/FH//4R9x///2oVqs48MAD0dsb/1fy85//PH7+85/jf/7nf/C73/0Or776Kj760Y9u1DgVCoVCoRhrqI7P2GHYqa5vfetbeP755zFp0iRst912yGbd5Ykbyqj0vvvuc35/73vfw8SJE/H444/jve99Lzo7O/Gd73wHd9xxB97//vcDAG655Rbssssu+OMf/4h3v/vdw6qv9FIzKkWxeWDaJecuf7bLVvn5nV/Z6/xUzrSV92k18brJT/VMG6XlfZKfsJniKnTIZ2r5jFtq45JaBsMYZNkov3Iz/cSVqonsS77LBFJYlUpeaj/18/N5pt+VeCcoBc9Py3yPLo3zlgtL3c2vxuviQ7vcmukiSdHJqtQoIxYcYvvQ9ry79D4tsQSSrsh0cq22dEfVnJ+VbfIzPC0qAi61lXYG/IzOZfhc7ivXFleaOphOYsrE2mJkuXyf426OZ7vjJcaZDjOgVoqfy3b5iT8vqYHA+z9JT58TcwZGR7/eYM5n2pIpk3KrpDFycREcV6biOD58GHK5dn6NGadUjcv5aTkiYyDtCyWNyPGlJcKg/62081DShE0cb8oZwLmWZdq+zbhbpsSY4uJY2Hss8Xyvp91ULNO+XN7P5fg2vcZl7zmmaM3vqij8V5tpbWE2mR4u/5d0U1Mix5eVgCrShz1yf3J5u2SJcpLa4v3OZ0TDa2bb8qKkXVaZwWt9ytRRbZe12rSPSXIuZS7Ui5RjkPu1wU1lUwqD8zXTK3YTpZpTZiBL0n2bCbtN1J0qSlxDzWcB799InrXROLOmPJR7j8ftPSrzP5JY+qeKDEhrrF/A51Fgn6GD/2NfmuCOYyjPHMg2qskcFcpCucw8vNmkezIIS6VBy1Zs2hj2iw9dV99odHaafDPTbo8//jiq1Spmz55tz9l5552xzTbb4JFHHhnyxadcLqNcjvO0XV1dGzBqhUKhUChGgLHIVW1Gua71zdbceeedwy572C8+F1xwwXqd94Mf/AAf/vCH0djYOOyg1oUwDHHWWWdh3333xW677QYAWLZsGXK5HNra2pxzJ02ahGXLlg1Z1rx583DRRReNeYwKhUKhUIwZxiJVtRmlulpbWzdY2SMWMFwXPvvZz2LWrFnYfvvtx7zsU089FX/729/w8MMPj7qsc889F3PnzrW/u7q6MG3atFGXq1AoFAqFYmS45ZZbNljZG+zFJ9pASkmnnXYa7r33Xjz00EPYeuut7f7JkyejUqmgo6PD+eqzfPlyTJ48ecjy8vk88lyOmUDhtQCpBlmuK3yZepG/3SWz5OekyoPJ5cdLVolMYgUk5dKZ22e+mflpchjIQ2D+mjLs1WaJrcHrb4aY5TJX2RHGb/zVTtOevolmm+seKia2y7WgqDS5nBZaOpBnwpjJHakV4jw/l4hn+8gfMvtzsnKWsvINy5nbF87PS4YMwWWsqYrwUUSGH3VZ1t0qy2FzGYk9rptLX8lhscvYe0rSHjlX+EFpKZvjy2Xt1pJDyg6lY7hcPtNXdWMDEFCin3wIscOwXIg+dkTgtMcuBxYukB0LcnuEO8Ol5JbzlfgPHm0NfAuSVJ28KWlvmTwKGb8+Em5IbhDphVVmIuc63OXQgcQc5uIbIRR+SanN5bhYjpt3z5Crk+QomQvd68h5C0KXQ1JL3NLVZpeLlxUeHZfbxxYegVNmaYLZ6yxPB5DtcTlBNjRKRjTEHRzIwyHsd61HyGWzy/fl3mFs5MDx/rD2KcIvC1tN5bmV5oLSZPNlnfwdAKgJt6ewuu4cC7Pu//ppVZGW+VqeUHRiKKw0Qaa5tJxL1JuL0m6Z96+sjAvNeFYT1rLC/SeHPVtvEo5PmpIC7nj6djqcT/3twsNpjI/7NiccZy5vrxc4iYTLYymKsl94h0GFxClpUpn3g3AYy0C9vPG+oGzJys1RFGHVqlUIggDjx48fdXnDXtX1RiGKIpx22mm466678Jvf/AbTp093ju+xxx7IZrN44IEH7L5nnnkGL730Evbee++NHa5CoVAoFGOGLXFV17Jly/DpT38a48aNw6RJkzBx4kSMGzcOxx133KikajbYF5+xxqmnnoo77rgDP/vZz9Dc3Gx5O62trSgWi2htbcXxxx+PuXPnor29HS0tLTj99NOx9957D3tFl0KhUCgUijcOXV1d2GeffdDT04Njjz0WO++8M6Iowt///nf84Ac/wMMPP4wnnngCTU1N6y7Mw2bz4nPDDTcAAPbff39n/y233ILPfOYzAICrr74aqVQKRxxxBMrlMubMmYP/+q//2siRKhQKhUIxxoiC0ZOTN6MvPtdccw3S6TSeeuopTJgwwTn2ta99Dfvuuy+uvfZafOUrXxl22ZvNi8/6cIYKhQKuv/56XH/99aOuLwhjngH5J8zHp2quLgh5FAPmFBOJTClXef3g9SW3cW5fODAh2y98CmsrILF1eDnwjBsreQpBwjaDOfDY9kKusRojwp+QvqfuB9vD47UGt33kr9Buo9Qe58SJmvCn4LWb/BNuaw0kPYkVQ2je7i0voVcK7ac4jViA9IusPjk++VhvynJWpE/DvJyTaZC6JRga8DI24ROlU9Q9crkj1A4CuRAV1hPrH1mdlSL1TaSP+4W00iD8iqaiW5ZI/AfCnUj1V532UeckLW3L9IuUf4JXVW5xLQlyPdRZoqQ/+WPsazhI95uyyeEhtyklWkTsN8v5qMQFhGLrUqjTmkHq8O5rctjIs6FlhS2Jc1P4GuSj0UaC9w01hoB4nlO3h+dYPh2ldoSz1jdF9svw5VeR2yHlsctlCMvjJEbh0aVScZsC+fv47dYAAFY/3+6UWffsLxhLg1izFF7nQ8Ns+icaLgzvn3KbuTDXSe2luG6OL20vsr2unYuNkRo5Mn85Z7i/2mIaWhMLjIKcR62d9BoRIaKtBGC5PWGjbGWecrzreY6/Ob3axIePcHwy/tYcjvmFokkki4aTfCvL7SHP0VpVSBVVcrSk7DxtZHhfu89KPsdSvtZUFYhi+t4Gx5bG8fnFL36Br3zlKwNeegBg4sSJOPfcc3HzzTeP6MVng3F8tt122wHihgqFQqFQKBTrwj//+U/ss88+Qx7fZ599BthWrS+G/cVn6dKlCILArqh69NFHcccdd+Btb3sbTjrpJHve3/72txEFpFAoFAqFwsMWJmDY1dU1QJcviba2thELDg/7i88nP/lJPPjggwAM4/oDH/gAHn30UXz1q1/FxRdfPKIgFAqFQqFQDI0tbVVXFEVIpYZ+RQmCYMSyOcP+4vO3v/0Ne+21FwDgxz/+MXbbbTf83//9H/73f/8Xn/vc53D++eePKJBNDZkSkCYVgFQPT2skJE1Dcr++vxA5BOS2MNecnHu2bKa4hdNgeQlVV8eDfllF4QgwH19tcP3AbO5c9udXB06MyTpiryXhiZSp/WP218jlKQ6uU0QCBs+33CFK0eQZS3wJ+RaVdomXXA5PG6XSxvNNYf3tpqO2+pto0pBHU5WtcH2CsmjzZITzk7xBUl4DaFmSNWWH44wpE7WCoixz/yRkeN5E9KEqCTeCnJ6saJekEilf3sfk9kj8kegOWT4QeUTClwlzpm5GXm8qyH7G5nK/OFaVxIKHmBdD7haca8nRyvaQw0FuFiel95AJyFMhf0N216PBz0es8ZTrIpnL5ctRj4daSlVqCQk/g/cJ51RFxF3JZSPvLNOXqFu0q3K95G6Y3bw3+idQO0ba380y5Xo2x+PCcdypf1XnEFbjh3WhyczDXFq0kbLkYkld5A3JwLa8IDwy8c/i3KuITk25lVpivP+ppWWCop8cAGS6zLwmv4b8GepYUQsnVTZ1pekXJlyg8jgTVLVR9IBWyVyld5voXoUtwksrxjdvIFpWVndIOD11T5+n1ujeiz7Hi3OKfU79sjq3fAYnaEscX+up1Q8XfO5RQ6rb9fYaOCfd89MJrmZ9I3J8TFAbub43EFEUYaeddkKQ9J/zjo8Uw37xqVarVvDv17/+NT784Q8DML5Yr7322ogDUSgUCoVCoQA2MeXmXXfdFQsXLsShhx6K+++/H5dccgkA4NVXXx0TRUWFQqFQKBQuxiJVtTmluo455pgNVvawOT6XX345brzxRuy///74xCc+gd133x0AcM8999gUmEKhUCgUijFENEZ/NhOsWbMGCxYsGJTA3NnZOeSx9cGwv/jsv//+eP3119HV1YVx48bZ/SeddBIaGhrWcuXmhUx/ZCkczL8z18tcv80RczK5lj8DPLp4fboazz7qugShOyOZ07YcnRo1YyKnrIxwAciNYDnUv4j1gVxdICDW/CCnh/yQ0Or4kKMiZXieN/zPA7U0bLnSbqbd2U9RYraxfZle71jg7iesVhClcnq9zqV/ELVE6HFVIwEr8T8dcnmEmxAI+YhaOqmSbPuEIyE+QrWWglOW1a2h9kiO+jXSpgJJXYk+r5DMVEcS1nsr7xtAeRo7ba4/UqUlI1uXK1FqG8jpqtEuSqqw//mz89edg+lS3Y2Z8Lzb7I0Ssj/Mz1QpJl6kvAcu532tiRw1s6W2Sj07MH5Tlxs7eTlsU2G1qSjbG1dYoZ+dnEPfJ97XlqMjZdH/zpZNDy7vPrd+Yp7VX6oj5nSVO83fX2uhFxXjM8cbVgh3T3g22c6qtMcE1zNJuDF58pGkDumX4go4bak2xzdZSrhZLIv6TNQA4rzNkpMl7emfaMpI+l8BQMj7JmeIVeQb8tmS6YnvSfLcwqzp9JB6VFJVpVnaZTlKZj/Hn8+Dmnc7VFtkPyWDPB4OkNBLky3rpB5b4PEo/TllOT0ed5PPToeHWdmM3iQ2M1x33XX4y1/+gtNPP33AsdbWVvz+979HV1cXvvrVrw677BHp+ERRhMcffxw33ngjurvNUyOXy72pXnwUCoVCodh0EIzRn80DP/3pT/G5z31uyOOf/exn8ZOf/GREZQ/7i8+LL76Igw46CC+99BLK5TI+8IEPoLm5GZdffjnK5TIWLlw4okAUCoVCoVAMgS1Mx+f555/HjBkzhjw+Y8YMPP/88yMqe9hffM4880zsueeeWLNmDYrFot3/kY98xHFGVygUCoVCoRgJ0uk0Xn311SGPv/rqq2vV+Vkbhv3F5/e//z3+8Ic/IJdzk6/bbbcdXnnllREFsanD5o/5lVByvJbLQv2ajLt/wPXRwOOWo1N3fXWsZ5Xkz6nXY32VaHWVdjVIEIjGhpSbitxynLg8z63Yq0l8cEiXoacNdUxIXSGXQ9pjOSOe/xZfr5N5eJ83FNBzjJZbwpOhbgfz7FaDRfyDrKZIb8X5Td+hyniTfq02xxwY+vxUWlx+AVFcZTpm3P+9bOrulzrEB6wunkVh1vWbIufH6vhE5P7EddcZH8+t+uNvzqPuCfeTy8OxYV+SA1Zpdj9hU/cm+T888l5ibRTyaMyOhmVlqdP14iIXJKCmlGgkpXrkvIIJul50HyfsJwCoC/8pLXpU1G9hDOmKyzerNpLzAxdZ+iuZn+XxFNkxm/wamcP5uD/IweEcCr2nnu0rzy+L99SA68gFqbvbbDcFrBLhCveS87VeNAebXjMXFVaaPk8JnyrdbYgolSmGzMK+75ss5TSLDlIn9Y2EX9Mv/def4FWVzE1FjlZQF5+3WsbZT52mnh1Nnf3jRUtH+DQZ6vsIR6ae580rHCHxzUv1sCNhdahqTe44Wy9CidPyj/KeJxc10OQ5wHmQol+i592V9AHkeHBf2tfa4XNYxjXjebexzxlDqu7eN/Z5sbHJwlvYF5+ZM2fi7rvvxrvf/e5Bj991112YOXPmiMoe9otPGIao1+sD9r/88stobm4eURAKhUKhUCjWgi3Mnf20007DUUcdha233honn3xy/B/Peh3/9V//hauvvhp33HHHiMoe9neiAw88EPPnz7e/gyBAT08PLrjgAhxyyCEjCkKhUCgUCoWCOOKII3D22WfjjDPOQHt7O2bOnImZM2eivb0dZ511FubOnYuPfexjIyp72F98vvWtb2HOnDl429vehlKphE9+8pN49tlnsdVWW+EHP/jBiIJQKBQKhUIxNKJoUBeYYZexOeGyyy7DYYcdhttvvx3PPfccoijCv//7v+OTn/zkqHQDh/3is/XWW+PPf/4zfvjDH+Ivf/kLenp6cPzxx+Poo492yM6bPYKETxa5PF6On/nSXLc7myxnhpo0JVd7JxiYKbT5Y8uXIYeHuhaSd/a1NYbiLdSbyalwxYXI1wFi7Q9bp+clxnaEvv6L/52QlJacd54XWzIP78P2CfVZvNj4m3o+a2YYAkauR3yiRFyIfc2xKa4wlSZ1gfrbhT9DvQ6Pq9XfLn09exoAoHmp+C2tNmWl+8wFtWZpKLke1HXxvKuSsN5awuGxPIuS611l+9TTyrFaUqSTsJ8oD8TfwtuhHg4QewxxDpDDVWozheU7zMWZbuGEkBsifKnAe2qSp4SycEmEv2T5VwntpP6tTJ9k+1xOE+fYAO6B1dByeVgDPJsahGeUMQV0b2tOaEi453DecTysd55Xlq/nQnB+0PMpRT0uzmeP+1FLPAat/1kf4zeFF143cyqzRg7I+IaNhpBUbssOKAsAsuIrVVhpfmekPy1fqxpzfOgDV6eXVpaCZBIvPejkGstpkZjzq8y2uNrVALPcQPIRRR8oNS6WM6k1Svx5eou519BrLPL4f7HfG2MR7pLl/pnrqL1EJHWbyBPzuZmcjywz9DiZnA8BeZTeM5V9HP+Oy94o2MI4PsRee+015uLIw37xAYBMJoP//M//HNNAFAqFQqFQDIEtjOPz7LPP4vzzz8eNN96IlpYW51hnZydOPvlkXHrppdh+++2HXfaI1oJ9//vfx3777YepU6fixRdfBABcffXV+NnPfjaS4hQKhUKhUCgsvvnNb2LatGkDXnoAo9w8bdo0fPOb3xxR2cP+4nPDDTfg/PPPx1lnnYVLL73UrvAaN24c5s+fj8MOO2xEgWxqyPRFyOTkk6h8bk95Uuf25dl6W7hLcq20Py0N4tW9AxDUveWcQ6ShQpv6MJu6l36K4pXTAIBa0f2knExT2Xg8qw2WwWXA9hqvjKHSLtbKosE9L9n+WAbeKToOJeUe51JalsEUQLWJn6/Nb34Kb3tO0i/y2RqlOL9YXGX+Trl8jhdTPrUG19KgexvTydnxZnDanuoEAORXm/xZdYqR8C+3y3myvLci9gG5jli/ILvGfLOvN4qUv6S+6qms1Ml5QPkC03lpK3vgjmeqJkvzm8xvP3WU7Yu/bce2ALJDTqWlQ5e0M13JOecVOsRWQdIqjCnTbQYnkOXQlVZzQbWJFgnxZGMfJ/cBcWrOX57PJcSDzVvTTrmuKueX3WX+yf/Y0mLFLnOmpYhX5gBrCmYfOVe9lKZNx3jWL/nOZJmUiJA4pe7eqdKAqa7fRblFxtNMKZQmuDIH+VWcs27sHHfaVJiLGC/z6O7vKiUFvGcK77V8lymAY2JlDaTciqTdA4k5ObZ+mtzeU6zKSzPb+9Tex+4zlDFbWoGlEcj9kVjGny67XIJqoxlYWvL46Sm2v+4dt2lESQkyRWZtZFKBlXjYGAiiwdPnwy1jc8Hvfvc7/Pd///eQx4888kh88pOfHFHZw/7is2DBAtx888346le/ikwmfm/ac8898de//nVEQSgUCoVCoVgLojH6s5ngpZdewsSJE4c8vtVWW2Hp0qUjKnvYLz5LliwZVDQon8+jt7d3kCsUCoVCoVAo1h+tra1rtaR47rnnBk2DrQ+G/eIzffp0PPnkkwP233fffdhll11GFIRCoVAoFIq1gOTm0f7ZTPDe974XCxYsGPL4tddei/e85z0jKnvYHJ+5c+fi1FNPRalUQhRFePTRR/GDH/wA8+bNw7e//e0RBbEpIsoEdumlz2kh/KXk5F8wR0wZdvJRrB3BWrg+1hbCO8eXS/eXvVtuj/cp08/pJsuNr/WWd0q7eI9Y7k7GXc7KEwKPh2Sl/EPyVUg4ieuus4xG2UosmV6XC5Fiu+wSe2kH+9JbKh90sDwuC5e25eOpXhFOAvkHaVkCTy5LSQhG5GewDlpddL7NEDAalol1Q8Xl4ZD7wmXvScsKLgFPd8nSeOHy0GqD/IF6Q1ba65K24mXd7tzMWF6ZbEjrqMcTINNDnoSUkXUlDiyPTMaJy9/LrbJMvdHl0dSEE9T8ctWrU+pL2ieQB1NhHbKEvk/4VnnaY7j/F8t1u8vfrayDyDVUyDuRe6/xZbf9QIL/JFymgizTzkp/kCcWevdQtt/9bdtCXkqV/UmLj8Bpq4nXbCmNQQ5P30Q+VOQ8TlfaZkgf0pqC5WRpHyHjne0xJzY/a4hFQW9sGxG2GpJdqt8EnJXl7WHRjFupXXhl7NMG9x9Fxlpl/3ncMM6jrPBuklIZfPZxSbj/763/PCPfDh5v0FpykF9W4VJzc35F5kHUkrCFyYmljGe1w+dwzI+TWDwpDXK6cj3Cp6rwPJd3VM8GqKe9hm1IbGHL2c8991zsvffe+NjHPoazzz4bb33rWwEA//jHP3DFFVfgV7/6Ff7whz+MqOxhv/iccMIJKBaL+NrXvoa+vj588pOfxNSpU3HNNdfgqKOOGlEQCoVCoVAoFMTMmTPxk5/8BMcddxzuuusu59j48ePx4x//GP/2b/82orKHleqq1Wq47bbbMHv2bDz77LPo6enBsmXL8PLLL+P4448fUQAKhUKhUCjWgY1Mbq7X6zjvvPMwffp0FItF7LDDDrjkkksQJYRMoyjC+eefjylTpqBYLNp3g7HAxRdfjPe///148cUX8ZOf/ATf+MY3MG/ePPz0pz/FCy+8gA9/+MMjLntYX3wymQw+97nP4emnnwYANDQ0oKGhYR1XKRQKhUKhGBU2cqrr8ssvxw033IBbb70Vu+66Kx577DEce+yxaG1txRlnnAEAuOKKK3Dttdfi1ltvxfTp03Heeedhzpw5+Pvf/45CoTCqUC+66CJ87nOfw8SJE/GRj3xkVGX5GHaqa6+99sLixYux7bbbjmkgmxr6xwdIk/tg9Xrcc6xFQc7d73MlQurhWOn05LmuxobN9eepi++eZ3Pj/G11XeR3hQVJBRnmxOV4JsG7kL9ncibJnU2b3/W6yz8IpQ5PrmgAItGUqdfc620syUQ/96VcEaG6yN8HNeqSuJ2eLvM84RXkpX3CV2l/OpLrTFvKE0znr9kxnup1yfUXl7vxk6NQbpX2cmhsjt9sy7QDKZkBzotOD/Vrsh3CDegyfIugGJObwhxJSZxbcm6POTcsUENH+rLg8pHIxyAnws49iZWcCPKRaoW4/8qiDUO9GTvXvHnOMiJv/KwGC1xQ/4d8IuokFdbE+kX1Aglg5ur8GsNxCjy9nvxq4WVYSw8Zx3GmD7unCbenheWa61v/aa5rWWoIGrRKAIAwLeMl4RRXe/o0ElqGPDHaf5CfQn6NuEvQHoHt5RjlxOojaW3gc7J8axmCz5IC7SHII6J2mBRJfRvq12T6xU6kS1bUJiRGwoLps5RnPZIWm4yM6E5ZG401rv5N97SM1ClFC32IWjoVq6Hl8suAhK2FZ/NgNZDII/S0pcjDyZRc/SOfl1f37XES/Wq5PNRC8+7fmKMoW09Lio8kti+203C5YFEaqJf9u+HNgz/84Q847LDDcOihhwIAtttuO/zgBz/Ao48+CsB87Zk/fz6+9rWvWf2+2267DZMmTcLdd989aupLtAGNxYb94nPKKafgC1/4Al5++WXsscceaGxsdI6/4x3vGLPgFAqFQqFQYGxWZcn1XV1dzu58Po983hXT3GeffXDTTTfhn//8J3baaSf8+c9/xsMPP4yrrroKgJG2WbZsGWbPnm2vaW1txaxZs/DII4+MCec3CDbMi+WwX3zYGH7qAkxwURQhCAKr5KxQKBQKhWJsMJbKzdOmTXP2X3DBBbjwwgudfeeccw66urqw8847I51Oo16v47LLLsPRRx8NAFi2bBkAYNKkSc51kyZNssdGi5122mmdLz+rV68edrnDfvFZsmTJsCtRKBQKhUIxCowhx2fp0qWO+J//tQcAfvzjH+P222/HHXfcgV133RVPPvkkzjrrLEydOhXHHHPMKANZP1x00UVobW0d83KH/eKzOXB7rr/+enzzm9/EsmXLsPvuu2PBggXDtrWvtACpIXjbfp4+8DgQ5NPY3zkmvGVH0i+LGjdpclVcsaAgKzn/lOhYyPFM1nxZK+YNGaCQMUnzTNrsj6TySs0kpKuhqwcDACkJvCacnmxGuD4pN4ZqmBp0P9FXEc0ZOY+p2ZrUTc5QOsEvCqTutJTJl/pK0XRutWS2oZwXVaUscphIgeozv5teNAXkukw/kDtQbk3L/kTAoj/S9Kpwc8SzqGsb0S2R+ywjminsOep+ZPrdp09N+Cv0J+qbZiZOfo3pl3RPzHWJRL/GcljEV6jebIiA1Pzpn5CV2FwtKMuJkN/lccLdIj9BPKsq42RHcj6RDyb8sYD8snLKOc6HY35V2ukHgl5OnMeMje0v8D9gqfh/arlO0TwSTZm+bZrlWpkbwl3JdYrmTGdZ2kv/NPNg7tzVDELDeMNTqfeKP1ij6T9ym5Jj1LjMtJccnPK4tJRNDSA47aa/mdVvCT3Ok0xW1pEWHziri5VL8Is8HRvqTWWt7xnrMFtyd4Kqx+ER/aeUaENFWZlzTWae1Ka0m/NXdMZ1y1xaszNN88ymuCp0YqL+ULXJXeQb63Fxh9n0j5f297GNrtaQaQf/5s1PuRXIPQs9bSD2B7WDUuRdeY+eagvrxoC6Q+H98RlBrmWKvm5V91rrG8jYPM4m54XVbcvGddbXosm2KaOlpWWdqsdf+tKXcM4559gsz9vf/na8+OKLmDdvHo455hhMnjwZALB8+XJMmTLFXrd8+XK8853vHJM4jzrqqLXaVowUw37xueeeewbdHwQBCoUCdtxxR0yfPn3UgY0UP/rRjzB37lwsXLgQs2bNwvz58zFnzhw888wzG6QDFQqFQqF4s6Gvrw8pT1A0nU4jDM0b5fTp0zF58mQ88MAD9kWnq6sLixYtwsknnzzq+jcUvwcYwYvP4Ycfbjk9SSR5Pvvttx/uvvtujBs3bswCXV9cddVVOPHEE3HssccCABYuXIhf/OIX+O53v4tzzjlno8ejUCgUCsVoEWAMOD7DOPdDH/oQLrvsMmyzzTbYddddsXjxYlx11VU47rjjTFlBgLPOOguXXnopZsyYYZezT506FYcffvjoAsWGXdU1bK+u+++/H+9617tw//33o7OzE52dnbj//vsxa9Ys3HvvvXjooYewatUqfPGLX9wQ8a4VlUoFjz/+uMMyT6VSmD17Nh555JFBrymXy+jq6nL+KBQKhUKxJWPBggX42Mc+hlNOOQW77LILvvjFL+Kzn/0sLrnkEnvO2WefjdNPPx0nnXQS3vWud6Gnpwf33XffqDV8ACAMw7VmaaIowooVK0ZU9rC/+Jx55pm46aabsM8++9h9BxxwAAqFAk466SQ89dRTmD9/vn0r3Jh4/fXXUa/XB2WZ/+Mf/xj0mnnz5uGiiy4asD9dBgI/f8tcr+eTxfxzzPFxc95R1eUS2Bx08pycSxQKRFuHnJ5AxCXSorWT8jgyoVxXzJjgMtyfc9/xU4n/MtSEk1Oz3JzAKZPn9tdMR2SkoTUJur8qOiFWi0f0UYTbw/0pESNh7AAQio9XRvaRZ0TuT65o2lGXskLpvEh4QhG5Pv2uf1RpvJnS5BDQpynfFbe7Ybkpi7o71JJpes1se1Lu+NGTiPo21G8pjZO65UTLERDtkVKb4aWMeyZud7rbkB/Sve64hEX6C0lZNXIjqNtjzquKekStRcZ3nHBiCoaAkBaeVrP0a2O+Yutg35Zrpo/KVbPt6zZxpqj1JONfbpLzumWcZR6HWZeXFsj+tGiv9E0010UJjk/Qwn2GENQz1fR931RznHpM2R7T0PanRM9IxrFjhvCH2g3B6N1bvwAAeGqV4RZ05c11VqMo4aGUFi0gzg1qwHDcyf8iZ4fjS+81gt5m9ItKCw/HcoXI0+mLV7amK944Z9xzWYd/n/J4SC834ZGREkiuVEAeXaP071vir+y5l9cAAIqtEwAAndtzDOSeyrrtZt/1b0VelTneu51w/9aY64r8t0ZCJg8tybOJuUsyrqJ9ZM/1NZJEG6jWwD6Gcx75RNY30Hp8mW2Y4OVYzzRS6ygzxK3ElvZ0m3yPQuvd5fGLeD1SQFDGxsMYLmdfHzQ3N2P+/PmYP3/+kOcEQYCLL74YF1988ejiGgQNDQ148cUXMWGCmb+HHnoovv3tb1s+0YoVKzB16tQRrSQf9hef559/flBSVEtLC/71r38BAGbMmIHXX3992MG8ETj33HPtl6vOzk4sXbr0jQ5JoVAoFAoXI7Wo8P9sJqAROvHQQw+hv7/fOWek6bBhv/jsscce+NKXvoSVK1fafStXrsTZZ5+Nd73rXQCAZ599doBOwMbAVltthXQ6jeXLXUne5cuXWwa6j3w+bxnu68N0VygUCoVC8cZjpAToYb/4fOc738GSJUuw9dZbY8cdd8SOO+6IrbfeGi+88AK+/e1vAwB6enrwta99bUQBjQa5XA577LEHHnjgAbsvDEM88MAD2HvvvTd6PAqFQqFQjAm2sC8+GxLD5vi89a1vxd///nf87//+L/75z3/afR/4wAfs0rexYHSPFHPnzsUxxxyDPffcE3vttRfmz5+P3t5eu8prfZHtSXj3kMOT8rbUnhgixUidCCuhQ2+khH9NmCdvgt5Mrv+PZc9QM6Uguh7C/aF2Dnk5nX2FZFVoLLpJ6HSC48OvhMWcSYaTJ0SOjq8BRF5OIVtzziNXhBwh6gHVrcfXwLuN/B9yfBokht5yzqmbfJMMPXqqooNDHhX1f+RDHTkCNn/Ptib4Jhw/8mioP0POR+F14dWIphd5CtzSq6smfBtyBKzui6f3sWrXWBCqeWnWqTvTa9qd7jUXk1bG8WfZdfGesrwy+UutKlyYrGgpTTANTzWY8tIJ7SWOL/lUpX5zrdVI6nU1klLCowqqbCf5GcKjaRDNJCm/Jh5nfd2m3HxnYp7L/O7aRvhPE4VX0i/eXatk3KQPeye7PBPqErXIPFnWbwY8K7pVtSZ3LNMxtQnVRimLnnlpV4eHmjqZXuHVVd3xtlyPHuEAVTgo8rtkKqO2Dj2ygFhLh+3n6mDyiNjX7FuC88JqCKXJJ5PYKqbvsy+LR1coMeV8ERqg8UFjKp3rnAEAWLOTy4ciF4a/2ee8txpfEH6RZBn8+c3fuZ74Pq8Kz63aLOM9TuZeI+sy24ZlkZQl95znb2g1dzy+JWNhOdXEh3qfD+RLmGXJ2fM1grzHFJ/fvk6b87uCjYaxVG7eHBAEgfNFx/89Ggz7xQcwK6UOOugg7L///sjn8xt0vf1w8R//8R9YuXIlzj//fCxbtgzvfOc7cd999w0gPCsUCoVCodg0EUWRY1nR09ODmTNn2g8so1nuPuwXnzAMcdlll2HhwoVYvnw5/vnPf2L77bfHeeedh+222w7HH3/8iIMZK5x22mk47bTT3ugwFAqFQqEYG4xFqmoz+uJzyy23bLCyh/3ic+mll+LWW2/FFVdcgRNPPNHu32233TB//vxN4sVnLJDpj5CTT+EDLCnIjLJ5FPnpSbvzEys/udpJl/xAxi/eGaa8uHxZPg3LZ2e7bFPSEUw31NZIasiuc5Wt/C5lCs7+ILGknJYFtL/gcnOmrGg1waX09Zr53ReYOsM6c36yCWmJMPgXQKbKknVWJf/gW20wRZMRewXGwlRXWpZvh1lZkr2LWCK8bmLL9nCJNZwYAaB7a3MNl6dTXp/LnNnn1oohR3l92cp42hSXXJ/vNrEyZVBuNbGW2+J2r5wpFgPyyT9Mm0obXzU7tvqz+Yaf6zDf+Ctby1JzLsFlusHWTbsBmS+BOb9Ptr1Bc9xw2ld41hQp6dNsp2fhIOCS4qqkk9Bm+rq5xTScqTPapxSnmO2aerygoPVfpu7ml+Fso4BjYLYdM0xZ3TMkiALXGstyaEmBrug1OgX9ZUnxSYqYlhUNKxONCJgm5FJyN5XF+5rpxfiG543NJdYiLVF377V6zkyUep5prcT8D2g5wrLNJmMtK9xt6FmaWKuKCuUcZD9jYwq3z+RtwuXxatpUk5lTgWxzf3sRADC+ahae9E0xz4b8ajet1pqmFISkrsXCo+UfZt1/ZYK5QWoNTL+Z+mrsP8T3CGkAFUl5ZcX+pLBK7hG5N5iqjpenyxjVRKZjhVsel7tzmXy2z1aNkFIGHFdJm9l0mfd4svIEUiZTXEyjDVD94/RIAUFlI75JbGEvPhvSD2zYLz633XYbbrrpJhxwwAH43Oc+Z/fvvvvuQ2rlKBQKhUKhGDm2NI6Pj8ceewxPP234arvssgv23HPPEZc17BefV155BTvuuOOA/WEYolqtDnKFQqFQKBQKxfDx8ssv4xOf+AT+7//+D21tbQCAjo4O7LPPPvjhD3+IrbfeethlDns5+9ve9jb8/ve/H7D/Jz/5CWbOnDnsABQKhUKhUKwDVG4e7Z/NDCeccAKq1SqefvpprF69GqtXr8bTTz+NMAxxwgknjKjMYX/xOf/883HMMcfglVdeQRiGuPPOO/HMM8/gtttuw7333juiIDZFpMsRMpHLBUjmds0B4Xxw2SNpBczj13m97CafJ7G8kktro5S7rBMio8/lnVyma5fSp12+iR8LQSn3enFg3bTOqGRdzoJ9HU657Q4qLqeHsFLw5AaxbbSsENl+Ll02lcumKLl+2y7GLSc0uTryQTeXzkudwhtKrTQNLb4WOO3l0tV04mMkx4ncHvYJrSbI7bHLdeX8qnB/8p2m8pzYYGRlGTStEapNrm1GKlF3QTg6FdnnW1F07mB2NC4z7fb5ZeQyRBI7+6uwir+FCyXjnpwPaRk/ch44l8g34jJgzl/2Q61R5ma7CbqhyZAfClnh9DSa7YSiWVqdkgny2qTYZ6dhmbvMnJwk9m1ZlsLXaPHDhnNiyHzo6zRBVRvcecC29EuV9WI80XMyXumqy+nhPcRYOA8YY6bftZMI6iTtuWurKU2QtMkgfPsDjleqxrqzXkxubP6zhfyxnMyxbI9YlXQJF6whlk5AmmvnhTfUbDo3s6wDANDcKVy9RpJgzKbhNfOXovCHuLSe3J560eX2UC4gXYofDA0rTMB8nmX6acVijue6zPGWJWZHXSw5uraVmHKupATHxFphyJb8o+QziVYiljfp2WMQvC/t8yt0H2zkhPlL6eMxDYCNmeTYwjg+xO9+9zv84Q9/wFvf+la7761vfSsWLFiA97znPSMqc9hffA477DD8/Oc/x69//Ws0Njbi/PPPx9NPP42f//zn+MAHPjCiIBQKhUKhUCh8TJs2bVAaTb1ex9SpU0dU5oh0fN7znvfg/vvvH1GFCoVCoVAohoctldz8zW9+E6effjquv/56S2h+7LHHcOaZZ+LKK68cUZkjevFRKBQKhUKxEbGFpro+85nPoK+vD7NmzUImIzSCWg2ZTAbHHXccjjvuOHvu6tWr16vM9XrxGTdu3HqrM69vxZs6ct0hcqFJJGd6zGe2VFm0Y0SS3lpP2Fywy4Gh1kY9Jzn2rJfwx0BNIPKBrJYEJdHlVd3mrWW3zVUylJq7tbYZomwfJUbc5rDJYYglftx21N3Y/N+2Da7Cv/M3v3yrcdTt6hVxG4gVR00k/4MMNVSEN1N2OSI+l6ewRuwnVpvrKi1xVpf6JPkO4UuUzDmFDnO8v10sO0R7hGXmO8x5uU5TaX41SULSlixtJky5zcIZyHbGn2kz3a6FSLXdcFbKre6tGGVcflC64nEZqBVlz6OYitmQVxUk1U0p8USuFTkaMsd8/aJag8vtoXYSLUkIWmF0VYRnInP1re98yZ7z6vPbmbpFv4XjFnlaV9ROSfWKjUazWLT0ZqSdwo3po86NtF/mRf+OpjGlrrg/W/9pxiXT5+pykS/D+7JGHh3tUaxNiOznPSbjG3qcHmtDkUC5RTguMlVy3cKraxY7GFqsVFw+oNUWylIbSwok/4p8I3L75BmTSXv+DABq4wy3p9ps+qS6U7MTPy07istN59M+pd4kmlBbNzqxkNOULsv90E19qCTRRjg6EhfPsXYgtPsQPk62w3RQ8RljMB22mxhLk03dvB9qeZdflOnjRIqrzpTExqQxIzG442TvJbk/M/2iKSa8KY47Y8yVXG4YkaqEqNV0JfOGxvz588e8zPV68UlWvGrVKlx66aWYM2eONf585JFH8Ktf/QrnnXfemAeoUCgUCsUWjzFIdW2OX3w2hJDher34JCs+4ogjcPHFFzuWEGeccQauu+46/PrXv8bnP//5MQ9SoVAoFIotGltoqmvZsmVYtGgRli1bBgCYPHkyZs2ahcmTJ6/jyqExbI7Pr371K1x++eUD9h900EE455xzRhyIQqFQKBQKBQD09vbis5/9LH74wx8iCAK0t7cDMHSaKIrwiU98AjfeeCMakhIO64lhv/iMHz8eP/vZz/CFL3zB2f+zn/0M48ePH3YAmzJ8XYcwZ7orvcYInlDnJ8wL56dBfJhEmyNMuTlxy5FJcF3oPRNrTkju23szp+6H9QliwpkpZloB1bxGWD6D/EwIGPDvvoeNjZP+UBVumRN3g2Oun/n7WoPLX2COvdo0sG4/hnqj+IU1CrfDEjKkr9tMg8N+U0eqJNyGfpeHQdDzrLA65qVQz6ZGfkXV7duG1+vOefSRKqw0nZjpMGI8gfgjRQ1CwBDeUVq4QFlDV0BQSfAAqKki16T7TCfnhKtR2srMMav5RC2hcPAt+RkcK+s/xbmX4F3UrYea+F6JblGmz9WI4jiFMgaZoom/VpL5LZorWzUa4lhGfNX6a+Z4qSrnhfFks3o9Le4AkU9ELhO39FoLQpezQk4Pgw2L0v6tzFi0NBmuSFcYTzZqG7HPOCes/xk92+RpSK5PvejOKZtmqHFeu22gplTyHrNcJmomsc/73Xup2uheazl6npZUaRzPkzlcJH9J+iMTV15tSss1Li+G3B7GXRpnzqsVDBcoXRExpch9blEHKd3v6laR25i893jP22cfJcLkmmynGSd6kSGUbb/sf3YNAKChZxIAoLx1m7TPnT/k/liuD2C5O4HUnam5zyve59xGcu+lS7y54FxPDqfV+xFeUq0xjVp1IKdqg2EL++Jz5pln4tFHH8UvfvELzJ49G2nhr9XrdTzwwAM4/fTTceaZZ+Lmm28edtnDfvG56KKLcMIJJ+C3v/0tZs2aBQBYtGgR7rvvvhEFoFAoFAqFYu3Y0paz//SnP8UvfvEL7LPPPs7+dDqNAw88EN/97nfxwQ9+cOO8+HzmM5/BLrvsgmuvvRZ33nknAGMY9vDDD9sXIYVCoVAoFIqRIgxD5HK5IY/ncjmEYTjk8bVhRDo+s2bNwu233z6iChUKhUKhUCjWhg9+8IM46aST8J3vfGeAD+jixYtx8skn40Mf+tCIyl6vF5+uri60tLSsd6Hd3d1obm4eUUCbEmKdG+GTVEQfYiujLWHz0zxf8uvUpmCu2f6m5kY2zsOzjnqByf3AuTayehi81tWWsXl4pqPpAUVNEtEPGdwnzGzJOyC/wHKQIm8L7zc9ycTTKFUWTkiv8Fak32qNsu2N8/P9401llVY3PqtjIh5NET27hD8RCAcKeeEXCBmqUjN1WG4IuRXUPSkkuA8Nro6N1RQSzRGrT9Jjtmlpn+X2rBHRIBnPICu+UcIBs3yrXiFW9ffbulEUYgUMx6deyEg/CH+sRM6HKaTU7ukV9bmDYbk8kcvtIdcnySfL9orf1QTT4P6tXK0g8kmstxh1a6SPm9sMt60uY9FdNlyQ/oprZkQPr+7egt2XF/5htkfqkq6yvmGUpZF4U8Iry1VcbR3yUuLKTMcUiuaCSc1mbLo6YsJjwwrXu6kkh6jnxHG088Hj1VgeHmOM3NhtP3k8JSDm1lkOm+UFDe4jFdKbSnzTstTfkrqzPdTQiZzrSu3mL32T4huc8ZVb3Rio5ZUuuTH2C2+osDpyjwsvJyOedKkqhbxkrqUZU8yzKbzShyTqrabTqYUWVEhK4/hK3JMMTzTokoanyL8x5+fXeL5o5G3l4/ubnB56jPG5HOuSyX3dJ8fJuyvKfewZOZHrQ60k6iGFGaC+nvp2Y4ItjONz3XXX4ZOf/CT22GMPjBs3DhMnGiO+FStWoKOjA3PmzMF11103orLXW8DwtddesxWvC295y1vw5JNPYvvttx9RUAqFQqFQKGJsaRyfcePG4Ze//CWefvpp/PGPf3SWs++9997YeeedR1z2er34RFGEb3/722hqalr3ycCghmIKhUKhUCgUw8Euu+yCXXbZZUzLXK8Xn2222WZYzOnJkycjm82u+0SFQqFQKBTrh83oi81Y4Te/+Q0efvhhvPbaa0ilUth+++3x4Q9/GDNmzBhxmev14vPCCy+MuILNFdWmFCIR9og9qtxZl+syOe1Q8su51SZZHngciXSP6L1IrjmoxHl4eilluyBlSf5YeEDWN0YSzympk/l06yOU8nLN5AxILpw+UknfGqsBIvoVvl6J9eSir4716JLfnn8UuUzMv/N3xqb743bTJ4v6ROQjBHXJo7dIXl00dqIcjaXkvEYKvphNPWuO94uGTNMr4rPTabgB5O0AQHGFp+vh6X7UxeOnIrn8rLQjLBiCRqqNQjdslscVITgm+cTKBCnDjrvomdREc4VaIvQWI1/Ecrio70I/KfI2WLcNIXCOO/C0nepCxaFXV71AEospo9Kbc8rOZ00Qa7rNBdU+U0mQFq5Xm+icLIsJOfx/kNWpkbmU6/ZCk+NWO0pipE4RY+yZJhcI/6iQMyd09Bed2E2Z5u/lVvHzMtIwmPxvrzl1v/akUYKlH5jtB6vrIts6eSnkwrgcoXpiuKuNcsjjB3Fccx1uO61WjnB4qCFlNWfYPx7HJ5AK+raK210SWTV7L42rOO2p1oRHJ+3JdFLPh9pXcqKNkbw64TzKMyjbIc+9Eo0FgaBHeG0F8W8Tbk+1RW70lNlmXzfnpRLXAkDUIh5dwr/JrDAPyFC4QlFWNF2EI5dKaPVkekxZQVk0v+Sei4RzWG02k9FyMsXbixpIvmch71Xq91h6UcYjA21obGEcnxUrVuBDH/oQHnvsMaRSKYRhiJkzZ+LOO+/El7/8ZcydOxdXXHHFiMreyCOnUCgUCoVCsXacccYZmDp1KtasWYOenh6ccsop2HXXXfHaa6/hf//3f/Hd734X11xzzYjK1hcfhUKhUCg2cZDcPNo/mwt++ctf4tJLL0VLSwvy+Ty+8Y1v4Ac/+AG6urrw/ve/H/Pnz8cNN9wworJHpOOjUCgUCoViI2ILS3Xl83kECfpAKpVCvV5HrWbSpvvss8+IaTj64jMEMn0hgkZ3X5hzfXYqLZLrFr4Cc8fZLpNbTvdK3lpyxKluw+eIsnG3M39Mj5qU5MSZl85IHplaQtSgSPVXnbJB/5kaRUcoiEI9nLRs47rpMcacf5g35zB3TR0McldqjdS5cHV/mCsvS+yxn5jZZOhHVY2T56ma6NZU6DFk9jesMNtys5QpOjal8cJTyAu3QXRQcg0SY9HUUcmYOlYIh2DSn9JODMn4mLOvtuWRBDlK1EyqtJl+yltukykronZI5D5NyMcCxzkXE23ITai2iS8StY+SXkMAMn0uh8NqxEjs5GpVmslHkQs57NLceiylM8AfjbyTetHtW9sO4V9RU6lcNYVV8p6PmvBsIiGJ9ZfM3M11xB+UyeHiNiu8L+oW+R5k1hfO47hY3lzF9G0nTF0dWcP92HriGicmAOiZInFNkX1vMbwS8sEYd73JVF5vEG2gprLTH2EYDPq7Kn5NlT7hm/TEXDb6oJHDk7K+d/Jbhj3fJdpR5KQJ78R6r8k9NpR+jZ0fCa8+n6uSKZiDW7UajRzqMa3uMg+6uugy8Z6L9YjkHpX53LzE9F9adKroWYdM3O6o2YxHvcmUWW0Vno1MCWp9DUBV9st9YnMS1AwSDSH2R3aNaGv1JzhC1LQSviSvoU4P+9bet9Kl2S7hYrIueYbynrX6a/2cB1n7DFGMPfbbbz+cf/75uPXWW5HL5fCVr3wF22+/vTUrXblyJcaNGzeisvXFR6FQKBSKTRxbmo7PlVdeiQMPPBBtbW0IggCNjY34n//5H3v86aefxmc+85kRlT2iF5/f//73uPHGG/H888/jJz/5Cd7ylrfg+9//PqZPn4799ttvRIEoFAqFQqEYAltYqmv77bfHX/7yFzz88MOoVCp497vfja222soeH+lLDzCCF5+f/vSn+NSnPoWjjz4aixcvRrlsPg92dnbi61//Ov7f//t/Iw5mU0Kus4p0xXzrLUuqo552l8Xyc3xV0g6pBqaEaJ9grsv0mHJSOaaK4hRAUJdP2kxByefVQPKYQafp3xTTUvwU3GM+V0dlfjuXT+EhU19SLtNPsp44aIiXGNNygymvQD4fp6VuLkG1S0pD99NwrclcV2swx7kMNtvnWj1EaX6Oj9M5XPqfKku6wbPLyHWbHY0rJJ0gFg60uujd2nw6rxblerGwQFb6b3vTPy9PMOdN+L+43W3Pms/jmaWrTZw95rN8bZzZliZ4qS9mF3JMO9KiQlKd/MxO+X35NF5rNZ/568VEejFHnQHTl7UGdzku02v8XVgtYySf2auN0h8NrgyAXYrO1cKeDYWJz01pBZQKkKyC3S9SAVGNgyJlShoxkhRJFEq6oWjOD2gf0m36vG15sm6zoUWJTW2uNNviapmvVffJzNQepRHqko5lujkrNijlVabhr70wFQDQtAYDUC/IHCmbMlatFFsdtkfsUYqS4tphq9ed67urpo5qXcZXpBd6SmY/06xRf5xfTInlRkGKyonlBOOP5Rbc9AuXWNsUNSUXpNxqk6RxpH+yPZKeSzzRed8xdVObJJYUGTNe2bSbXl0ly9pDmUTVZspdmOM2HUmrHnlW1ccbeYd6QzzZmC7ns8H2R5VzUPpwnPQVvTo8SQim9nlP2VSupPqDkkz03oRFBp+dzSauqMlN0deKpChISizLZeyRU7ZNeUWmvGyn7KdcR6WAWq2EjYYt7MUHABoaGnDggQcOebyvrw8NDQ1DHh8Kw17Vdemll2LhwoW4+eabHZHCfffdF0888cSwA1AoFAqFQqEYDAcccABeeeWVAfsXLVqEd77znSMqc9gvPs888wze+973Dtjf2tqKjo6OEQWhUCgUCoViaGxpy9mJQqGAd7zjHfjRj34EAAjDEBdeeCHe85734JBDDhlRmcN+8Zk8eTKee+65AfsffvjhDWZK+sILL+D444/H9OnTUSwWscMOO+CCCy5ApeKqff7lL3/Be97zHhQKBUybNm3Eqo4KhUKhUGxSiMboz2aGX/ziF7j44otx3HHH4ZOf/CT2228/3Hzzzbj33nsxf/78EZU5bI7PiSeeiDPPPBPf/e53EQQBXn31VTzyyCP44he/iPPOO29EQawL//jHPxCGIW688UbsuOOO+Nvf/oYTTzwRvb29uPLKKwEAXV1dOPDAAzF79mwsXLgQf/3rX3Hcccehra0NJ5100rDrzHaWkZZli8yjczl3tehyH+zS4zQGhc1nN5rUYJiJ89hpLodk/pxLLJlvbjbcFC6hDvppeyG5beH4BGmpnDHQJoHL2UsmF03uEAAEQYv5C3kydhm3yMELN8VylCrkYci2Ti6P8C6KQ0wnj78jlZtreqvOqYwhLalz1pmXpan5ThNrYQ3l9YX70sStua5/uimndUIPAOD1vVpsHYUOwyfIrDLLeIM+w/kJJxnOB8eHEv0ZcpUk5jp5OeSdNIoNhZ0nwgmT2MptCYsSchSE65DvEP4Al9KmyCNipwkvoUHGhLyimrtMmsvWrcWD1JOck/y7tSbhVqgetCxAl/Azmt2lulbOYY07zvWUaW/qLVyj7nLBAKBhufRVzh0ncpbyHdIe3ge0B6CdgFyXEn5JcVVdyjOxNCwzx5teNf1Zz8aV0/6jMk76sCT2LcL5YV9igum8unB3lvWa+cDl7ly+3y+8tJpwfeq0fhCuUDAxXgZfkvswkqXekXDWaHeTW2n6LCVLwsnpCYtmjsZ8EuGueRwgPlt4L5KnAgBlWUJebZZrUuacUs3E31sxx1d3msEIpd2cF1lz66BhBa1npM+F21eXeV5tMWPAexGIOXuUXbB2N5SSkHHm+HMOWmsPy/WTMaKVh1i60OIn3S3WGElJCT4L5b5OiWl2TiwsUm2GExIWZPzytLIQSxrKeshY0JIjCtwl+EGlZjmaig2LU089FS+//DIuv/xyZDIZ/Pa3v8U+++wz4vKG/eJzzjnnIAxDHHDAAejr68N73/te5PN5fPGLX8Tpp58+4kDWhoMOOggHHXSQ/b399tvjmWeewQ033GBffG6//XZUKhV897vfRS6Xw6677oonn3wSV1111YhefBQKhUKh2GSwBZKbAWDNmjU44YQT8MADD+DGG2/E7373Oxx44IG44oorcMopp4yozGGnuoIgwFe/+lWsXr0af/vb3/DHP/4RK1euxCWXXDKiAEaKzs5OK2QEAI888gje+973IpeLHQLnzJmDZ555BmvWDLLEQ1Aul9HV1eX8USgUCoViU8KWyvHZbbfdsHz5cixevBgnnngi/vu//xvf+c53cN555+HQQw8dUZkj9urK5XJ429vehr322gtNTU0jLWZEeO6557BgwQJ89rOftfuWLVuGSZMmOefx97Jly4Ysa968eWhtbbV/pk2bNuS5CoVCoVAoNh4+97nP4aGHHsL06dPtvv/4j//A4sWLUa1W13Ll0FivVNdHP/rR9S7wzjvvXO9zzznnHFx++eVrPefpp5/GzjvvbH+/8sorOOigg/Dxj38cJ5544nrXNRTOPfdczJ071/7u6uoyLz9RZPUcsiXR2miUvPtkw7upFcnH8Cwc0pQ8N7/TTENnqasR11+XfDT3ZfpdTgMT7pVx8ZcsAAjqhrOS7ZG8M3Pc3hs9ZeUh3Igo+arLXHjg8ghYBnP3iEwuPy3aHClyn0R7JGV5K558O6XjqVuUihtOTgL1aQLRraHNh9XAES2StIxBbhVz/O47O20lyM/p7jC/O/dskHLj82si6WPtPaQfaqL3URH9klhbSHgU0rx8l/BsyuRdwDmf3J5SG3kpcZzkaJDbY/lTfabd9WYh66TIt3I5P5xb2V5aObh6PjZmiSmf+NhJnaVqk8xXGd5MH9spJwpXJSvttNygAXMVTt3VZdKxzaZfe7aJJ2PLi2LJ0EV+jXst9YvSwuWwfZr25yY5cGbT9Jq0c2U/kgjz8aMt22v+3j+enBTyy6Q9tFHYRsZA9InWdBgOWFiVOSg6P/Uqb3Tpxwp1YMzuVCmea6mI2jGi+dXkEqwsR4S6W3L/swT7zJBtSu6PtNjf+HYp2XRcd6ndiL2F480c++hb/woAeL7H7P/Ly0bzqCb9E2SpayNaO5TOoWqJzMkKnwuBqykVJnhVvLaepxaOhMt57ZVNXSfOi5x8eC+3UrfJ/C6I3lOUNicWX+82BxL6ZOT2QHiQkWjNWbufIjlKGTdGmfchrWiEL1UdJ5xA8utEOyio1m2ZGwVbaKrrwgsvxGc/+1lMnDjR2d/Y2IgHHnhgRGWu14tPa2ur/XsURbjrrrvQ2tqKPffcEwDw+OOPo6OjY1gvSADwhS98YZ3qi8mVYq+++ire9773YZ999sFNN93knDd58mQsX77c2cffkydPHrL8fD6PfD4/5HGFQqFQKN5obGmWFUQUDR50T08PisXioMfWhfV68bnlllvs37/85S/jyCOPxMKFC5GW/wHW63WccsopaGlpGaqIQTFhwgRMmDBhvc595ZVX8L73vQ977LEHbrnlFqRS7v/49957b3z1q19FtVq1wor3338/3vrWt47YyEyhUCgUii0Vr7zyCr785S/jl7/8Jfr6+rDjjjvilltusR89oijCBRdcgJtvvhkdHR3Yd999ccMNN2DGjBmjrpuZmCAIcP755zsKzfV6HYsWLcLuu+8+orKHzfH57ne/iy9+8Yv2pQcA0uk05s6di+9+97sjCmJdeOWVV7D//vtjm222wZVXXomVK1di2bJlDnfnk5/8JHK5HI4//ng89dRT+NGPfoRrrrnGSWMpFAqFQrFZYiPr+KxZswb77rsvstksfvnLX+Lvf/87vvWtbzkfEq644gpce+21WLhwIRYtWoTGxkbMmTMHpdLorTwWL16MxYsXI4oi/PWvf7W/Fy9ejH/84x/Yfffd8b3vfW9EZQ97OXutVsM//vEPvPWtb3X2U2tnQ+D+++/Hc889h+eeew5bb721c4yfwVpbW/G///u/OPXUU7HHHntgq622wvnnnz/ipez1xhzStcGFeSyvRrqvknFz/tSq6NuK3BDhCAzCw0qXyYMxv+lJRW5DXXLg1MOo88se+UNVw/2pSW6cfI2ccEDynSaNRz4KdVDMNfLFTjgpyRw9EOe+I9GhSVdMe7O9Jqhst3h6VekvJjyFmsvHSNWk4QkfHsvhkRgy3ZKPz5JHIueShiQ6RlbPSPLsUTEnsRrNlUDa0LDSbHuXm+PpUlw39UiiPD23ClKnxEYfrBz7wWxD+V3qMUE1vezyUtjH5BllSq5mCRD7mJHTZMe5qSB1uNoiVsdGeBWlNvIpTHn05KKfEnV86PGVRKndjDP5E5wz7BnKlGRFl4rt8PlDJflIW2uUumXOVUN2ILWYEpwuSvvInEiX3blWaRYuT5XzXtpPfo30A7k+6X7OPdkvHCnOveSdmxGtn+ZxJmXfK7o75JVUxbKrb2WjExPbQdRpB2U7TMZXzkuVpX874+uoN8P2c7xqReHLTDALQ3KvyzXSP2GDzOsG8s5EO0q4bLk1wrsTzk+qU4Lrj//BaXnOCPGsekm+xMt/jtty5lyrOyT9kWowZYXyNT3bKwVJ7PYZ5G05F/m8AGIOz1CIOVyyzbq/6enGe6ciTag0mRPyXfSuMwtYWp5aFRdu/1MuXJwMB1r4dCs6AMTzgr5ikTvcdpzr5PzI8z5FvlU1RL2GjYeNzPG5/PLLMW3aNCfjkyQYR1GE+fPn42tf+xoOO+wwAMBtt92GSZMm4e6778ZRRx01qlAffPBBAMCxxx6La665ZtgZpbVh2C8+xx57LI4//ng8//zz2GuvvQAYz4xvfOMbOPbYY8cssCQ+85nPrJcT6zve8Q78/ve/3yAxKBQKhULxRiGAowk64jIADJBtGYzres8992DOnDn4+Mc/jt/97nd4y1veglNOOcUuKlqyZAmWLVuG2bNn22taW1sxa9YsPPLII6N+8SGSL15jhWG/+Fx55ZWYPHkyvvWtb+G118ySiilTpuBLX/oSvvCFL4x5gAqFQqFQKMYOvmzLBRdcgAsvvNDZ969//Qs33HAD5s6di6985Sv405/+hDPOOAO5XA7HHHOMpZoMJiOzNgmZTQHDfvFJpVI4++yzcfbZZ9u3xrH8BKVQKBQKhcLDGKa6li5d6vy7PdjK5jAMseeee+LrX/86AGDmzJn429/+hoULF+KYY44ZZSBvLIb94pPEm/mFJwgjhMIfoZYKdV7INyDnIdfj+hARKeH6kL9gqS/O90pX84c5bmq/UHNmoO4JfwsnICc8k4opr7BKeBZ9Gae8dGwjhJTwTMjtYR2W6yJ1U++F3IVsr8Q8XrxshBOS66w5bYl9eRhj3D/We0l4MRH5JNmc8zukJpJwgizHI3B1W6qS+6dnF7kwRVE4qMULApDrdhPzoc31e5yOnHstOT7sn+5tTF3UGMn0kztCvoppN/sHANL9LkfF9omMQabbDFBW9Erqoh1FPgrHnV5X5Ndk+/jb1Qly2iRh+HwazgOr/dPJ+ezOTavnEpiYu3YwBypT5H6ou5otyYc0tZFalhgeSfc2OScWqx0l40fumw09JRoqwsfI9Im2Vq/L7QF1VRIeStRayXUIH8jj2VS7hRe2XHRdcoxFti2uZhIRit5NvUH6q9XEVEks/IhEV4d6SvSssvcY522zeZbae0fGpNboaifxmVIVvyzq4mSEl5N69XVbd+r1TgDAtN+YBv1k/LsAANvsJDcFeUd9MgfLZq6lK5wXcpocpm4Z4Y9z8rnGe4XPlIzwhfj8sdpJ5IdxGhTc6zhW1nOO55EbJ1y4TF9MuG34h1wknK6owbQrWNUpDZG5s9z8zstA15okaGti5zTXPnvs/V2qIrURST5juZy9paVlnf9+T5kyBW9729ucfbvssgt++tOfAohlYpYvX44pU6bYc5YvX453vvOdowt0A2PYLz7Tp09HEARDHv/Xv/41qoAUCoVCoVC8sdh3333xzDPPOPv++c9/YttttwVg3gUmT56MBx54wL7odHV1YdGiRTj55JM3drjDwrBffM466yznd7VaxeLFi3HffffhS1/60ljFpVAoFAqFgtjIq7o+//nPY5999sHXv/51HHnkkXj00Udx0003WfHgIAhw1lln4dJLL8WMGTMwffp0nHfeeZg6dSoOP/zwUQa6YTHsF58zzzxz0P3XX389HnvssVEHpFAoFAqFYhBsROXld73rXbjrrrtw7rnn4uKLL8b06dMxf/58HH300facs88+G729vTjppJPQ0dGB/fbbD/fddx8KhcLGC3QEGBXHJ4mDDz4Y55577gZZevZGIKiFgPBmag2up0+tSP8YT7dFNEWqze75VgdD+Dn15JzwfJ6Y0w5o4UOOj1xbaxS+TEH0YJrFTywnei91U1Bvs+EAZMRvKdNLz6NE1RnqDrHNZpsWKRDm+KkIY3VfQjfVSf+hei4r11GrheItbluBWPvGchjI5anTJ4g6PvQ6Ek0k4cRUm4z4CjkONvcvW/JqqnK8uCKuuy6crXqL6dxyO7WA3HZZ7Rn2D7ku5P54UjnkxFg+BnVSEufVJ8m4tAg/qle8x0THCORFVV1NJFsG+9D6wrn72fflNvKW4rorLdJuagDVeQ2cuDmf0xXXs4lcpqZXXE5btYV+a+Z4tZkaRXHdPVPMOeSeNawQ77Vus79/PDWvZO54Xl1V8RlLkYYh52VWS7/RlykvHLGGmKwZiL5YfnVJ2ivaVqLTVVxBzh69zMz+vkmuvlXgjbftW44z+29cLNhVLpB7JnUtIwdPTrDPBnqYyRyyzwPhz3XTo060aEQ7K1UhaUgKysYDXn/FrKzJibbPTrcaTsZr+xqPrnB7mVsZ6Uvxs0tbzlrkbDmeNS9Gq0+WIKBw3OD1GcEyLV/Gu8dYFp9/fH5xjsY+elJNLqERNrnN/CVF7TPhh7WI51aHNDBgO4Q31ht7cCURZeiXZ/qW/nphLoOwtjGFfDY+PvjBD+KDH/zgkMeDIMDFF1+Miy++eCNGNXqM2YvPT37yE7S3t49VcQqFQqFQKARbqlfXhsCwX3xmzpzpkJujKMKyZcuwcuVK/Nd//deYBqdQKBQKhQJbrDv7hsCwX3wOO+ww58UnlUphwoQJ2H///bHzzjuPaXAKhUKhUCgUY4lhv/j46o5vVoT5jHVwpTdXTXxzyENhfj3TSz0cyRWLzk9WPJ3K4nVFLZN6QiuKuWryRuxWRqZecDVWwqIktYviVZQxv5sbTR4/LUnvjrQRn6mKU30ouf/A8x8CYj0Xamqw4b52DPlB5HqQGxK4KfGYG+Lp4iR1MayOR9nVEuI7daZfdGyEI5Eue5wXcoFEx4NcIL9u8k5yPfF/dcgrqrTSCEz2510egdXt4V1CHk2CJwUkuFBSHMe3Ipyovklxw4srzTbbnZY6XL5EQK0oaoZkSeYxG3pypTzOD8eA2jQ8j1wYAMh1C3+mJPwQ8siy7DuXT5QWjSWr3xK4+kSF1XKe9Ae5YfU1wstKaCeR18aycl2m0+ibRs4XY/F5YryH2J4U50NZOl90e4KqaEnV4kkZCperXhQOmvBj6CVGDh/nYK9we/pFkLbaQj6N6Fh1uXpFmT7RnKpzAsSPVfal1UySsMgfsn1YZnvhgH2d6fW8ynpMZ0eiGZQq07QtrjvVZLzHaisNoSjdZ27ct/Qajs+ameMBAB0zhNvUynuLvCuzP2csv+yYBZzo3teDbPLvvZ6vV548KZf3lxWuD/uFN18Fng+Y3Is5efZwzsX3XEJjSLg91Mii7x+1j0pbCdfH09TivID4xNEXkNyeetFsqy1xS2s17+G3AaGprrHDsN3Z0+k0VqxYMWD/qlWrHMd2hUKhUCgUY4RojP4ohv/Fh27oPsrlMnK53KgDUigUCoVC4UK/+Iwd1vvF59prrwVglq99+9vfRlNTkz1Wr9fx0EMPvak4PtXmrF3uGtol1O4XrWyPfL7trTr7Q8rq97oWDly6nC7H5ZTGyed2u5TYjSPKUBZfUgJFd/lkQ9F8882l5VO/zOxiwewPZaltXbZRJfGRj/L4kmepNbjL223dkm5L93FZJ9sv2245P802SOqkPLiVRxI2JRW6dySXFqdqbsqHJaVKps8zsk338fM0P2ObM3ummg7tmRKnmyjJz7QC0yo2lSXtp8w+U192eTslB/ylulZO32zrxYFa/tVGNpDnptz2Vt3Un79815c7YIfQyiDtpeGSaUiOR6ZPtly+yyXBtAnJuUuwaw3uMvjIS+n5Fic2vZOIhXOmY3szHuOeM79zHeakrNiIpDODz5WG5ea8lKSRM0tek0po+cG8LBsTz6eUpIUCSVXUC2Zr04ue9YKVjmgOnfOY0orlGZimZB6aOgaJwK19i1u2TR9XzclFpu4oZ+Av529203GRtUUJnTal+uJnS9Bv8otpSQOGfSaXnXrZWFa01/g82goA0CUWLJVWaX8TY3fvTabdrJQE60ucRskLm0YvueeyT9k+pouZRudY1OR+oX0I06f2fEmvsl+cMqVP+fxhipuoSJ9mmGYnhaHKtCOfd5z/LpWhnk/HuXnFZoX1fvG5+uqrAZgvPgsXLnTSWrlcDttttx0WLlw49hEqFAqFQrGlQ1d1jRnW+8VnyZIlAID3ve99uPPOOzFu3Lh1XKFQKBQKhWJMoC8+Y4Zhc3wefPDBDRGHQqFQKBQKxQbHer34zJ07F5dccgkaGxsxd+7ctZ571VVXjUlgbzTCbICacB3IAeHSWy6tDblMXewHyM+xy1z7ZQmulztOLq0moi6zrQrPxvIouri0VvgXZXIaTBndsvQ0O97ERq5PPRROjPAP6hmuUU4QU/qF60DqggSeIuGoxiXhwhMquNL1zPFbi4aql8cX/oq/3B2IeTR2OWoD8+eSX6+SX2HKLLcKh0H6MiN5d/JWrIWBWD/U83k5Lsuhx8WxUQafy69z3YFzbuCp0Fu+hdU3kP3CYalRnsDj4RRWuEuYnTIkHMv5oIq+DA/5NFyezhi43/KNeL4sG6atSGhX3MbtzndI3/aTeMIlw+7yXy7vLrdSfkGWcfcxCNbtcpg4L8i/SPKNShJXaYLE96KddLKDvArXgoGcnlTJFBYIpwtFGcRQ5vtE8wU64j1bjgcxzIt9R9aVL6BkQsil9G3kADnNQrrMZezyu+q2k/1jrTpS8f0deMuyy+PkHP4Wsfuq8E+Kq8jVcnlnNpgCJxAfNu49l8nFFITsGkO+C2TRiZ16rWL3kjdBFFcIT7BTuIzNpuxSm8u3snwicvbS7tgFtbjdua4EDwZxH8XSCLLhs9GTa7AnkAskza01RLJ1JThSlUSfe14y/v1r5yldYigpIc8r3nOpqqk03yXPmCrlHdimFGrVYS+MHjGU3Dx2WK8Xn8WLF6NaNbPkiSeecAQMFQqFQqFQbGBoqmvMsF4vPsn01m9/+9sNFYtCoVAoFArFBsWwv9Mdd9xx6O7uHrC/t7cXxx133JgEpVAoFAqFIkYQRWPyRzECcvOtt96Kb3zjG2hubnb29/f347bbbsN3v/vdMQvujUSlJY2q6H5kxZIisDwE4QTQ4kBy3ZUmV4vF6uGkPH2chJyE5QmQutMXOddYafcuphddLQpaUazpNPn6oN2I04SiQQThGUXC8UkVEoSTJpO+jKiRURGuUqfktldRY4exCl9BZo3lcEjs5CvURe+EOj/kRLDfkrC2CfK7VhC+RGPOqZt9H0qHVMj5qUXONtMjdiGiC1PZweVtAHFuP/Iytsztk3dDmfyU6P2Enj4neRvsj6zo/uSEC2L5Sol2Z0VDh5o5tCDgHCIHghyGmq/74nGjyH3gcfIYao2RcxwASt3sO+F2vJ6ReE2h1SZaFZhtyTgaIL/GbBtWhvK7KnUIF2Sc6P40UHTIbNIJ3kVBOjsQ0XdrC0LNqz5TJjV3yF2JxC6AnJ+oaAYhbJBtlhotpk28J8NM7AvDPmOdtCqglYG1PxGuB20kqAXl9z21edLCy7I6Pz2cUPHEsnMkx/GQrfzmPOibYs7juJN31vovM485nwdo59RJuBKeWlfC8yJHvwfRCBJuT9hmxHF6tzE3Pu+txuc7AAB5sb2ovd0I+lQbhUfY7fKyasI34n2S1LWyFiq+NljK3fLZwPG1Fiyy5T0Fqw1FPpr5zXss152wKMmTc2kq6Ztk+qFvK3Ntvkvau1x4SMJxK41zdYw4jr1TOEfN3uLrcUND/yGyIaGprjHDer/4dHV1IYoiRFGE7u5uFArxvyT1eh3/7//9P0ycOHGDBKlQKBQKhUIxFljvF5+2tjYEQYAgCLDTTjsNOB4EAS666KIxDU6hUCgUCoWu6hpLrPeLz4MPPogoivD+978fP/3pT9He3m6P5XI5bLvttpg6deoGCVKhUCgUii0amuoaM6z3i8+///u/AzAKztOmTUMqtfH0C94IVBsDpLPUryFnxZs1nr+W1VQRnkEfNXl8r6cEzYZ8E1/XhXot1Wb32rTnZUOeTa1H8u2ri875MT9FtCcKVuAF9QZyHaQOciDoQUaPsQ63fayb/AV7nnB6yLdhDFXhznCbvCZTdnkwoeebY8/3+VFSVDVHryvzOy16QLkeU0Gui35jCd6FjFfKtViLeTOUGrFeZhKr5Phz3S4/w/dXY+z0xEryD8inSHmSENmVhttSaxbyggi99E4VbRXJLNc418j1kdOpb0I/KWovJZ907LuKzKlQ+CK9k1weVKVFLhBxFXrSkbNDXlJagggnkOPD66T8cqKNEkZxFXWXzO96XrSeQmpKmfmbqrriT/UWs7+8lblByCtiObludy4nvZtYOc+lz1Ut5/Ll0iVzQrFKnplseR+zXRxvaVOuwykmoaEU/91q/Ujf8lai/x31aziu1JKyvlH0A5QY6g0kHrlcMautA8T+ZTkz4PUmM8CcY7wn6I9FXZ9Inu28X8vtnCem7+mfRf4YY00n6EXWt83T0KGvn69DZXlV8hzgttws/CKJMSv3oH32SH+RhwQApfEmsO5pEvd21IKSufYCn2+iw9YsHB/htFkdp7TLk0v3kSMnY9YP1Msb799B/eIzdhg2uXnbbbcFAPT19eGll15CpeK6Ir7jHe8Ym8gUCoVCoVAoxhjDfvFZuXIljj32WPzyl78c9Hi9Xh90v0KhUCgUihFCU11jhmF/pzvrrLPQ0dGBRYsWoVgs4r777sOtt96KGTNm4J577tkQMSoUCoVCsUWDqa7R/lGM4IvPb37zG/zsZz/DnnvuiVQqhW233RYf+MAH0NLSgnnz5uHQQw/dEHFudNSzQIrWPuRTZN1zrCYFNUfI05EccbVp8OtSiewg8+LkmyS1MICEbovlLphtRvQtqKFBrofNu0sdzImnV0mBCQoANVDqXnyWT1Tx9ksun/n32HtMNILENyuScsmBCZoHqYeSL+RNZF0eReTbolg/MPHqEf5BzMtx+TYBvcosVwIDYLV9PG0R8qwsd0l4CcXVwnnpFc8ielxZPR9yJoSnIHoxSQ8jCohVxBfK+l2B3mJmwBuWGdJHticr5wsfQbgM5OmQb2HnmMSc7+b+gTojbBevYRmc59ROSdGjimVlyPkwk426P1bPSvq+0iblFuN2U3+lKnMh12n254Sblu2lr1vGqYvcDev1JGNW9zzJCqvpizeguVYbi31NzSRqx1C/Z6D3HGN05xznS1X6rUo+XpPrwwUk+C/9gbPNdcpcYV97/mbUDmMsvKesBxnbwns4zxsh8S8bn0tp14uKvCpqZtXy5NU1ytbl2VTqcp48z+g3FjZJZ1MbrJb4f3SJ8Qofpld4NOLVVmuiF58p6/+3d+ZhVhTn/v/22WefgRlmUAYQNSzK7pVMNGoUGQx6MZJEDWHJQ/RKRkExCvw0CCgOgoJJLkQ0BjTRaLwRE42yCYjiSAyKiiKuLFEGIsvMMDBnrd8fXW+drjrnsJ7ZmPfzPDyH3qqrqqubpt9vfd9DNXb9A//RvXaUzo7qJLVQ/hr9Qtd3iOu1DnaS5+oo/YtCpHuTVSuU7Win37/q/s+QdcuzD7BkfsNYtX2PUk7CqA+I8otEq+S4v/jU19crv56CggL85z//AQD07t0b77zzTnprl4RgMIh+/frBsixs2rRJ2/b+++/ju9/9LgKBAEpLSzFnzpxGrw/DMAzDNDoiTX+Y43/x6d69O7Zu3QoA6Nu3LxYtWoSvvvoKjzzyCDp27Jj2CprceeedSafN19bWYsiQIejSpQs2btyIuXPnYvr06Xj00UcbvU4MwzAM09hwmCs9HHeoa+LEidi1axcA4J577sHQoUPx1FNPwefzYcmSJemun8Yrr7yCFStW4K9//WuCuPqpp55CKBTCH/7wB/h8PpxzzjnYtGkT5s2bhxtvvLFR68UwDMMwTOvguF98fvrTn6q/Dxw4ENu3b8fHH3+Mzp07o7CwMK2Vc7J7927ccMMNeOGFF5CZmZmwvaqqChdddBF8vnhCpfLycjzwwAPYv38/CgoKkpYbDAYRDMYNKGpr7URLkUyotFgUfyfdAcXhKU+MK2LHgMlzglA6BAq/e2VcPju+D3mkUD4k9SmSvGQi2qLSBymfHqlDoIi30jjI7aSJkJIXuJLk06H2kM+Lu0FvX/wA2p80LOQdQ0IkeU66BELfz5kcy4yrU54z0ixRDh9fbUxrL+0X12XobSE9QzBX+ptESY8Ub4bSEclzkVcSoeog+4V0VuQ1RFom6iflPUTeJORjFCU/o3g/Uv4g1Z5c6YFD+ZAO2cvuw3RS0oRIvUKE2qBrmCi3E+lOlBeJc0iS/5L0WIlKDU4sQB4wsn0yR5XnIHUuFWDXzSf1JzS26JxBeYuF8yg3VLzTIzIZXSSH/KTsX9JZ0E2idGWyruR7o/Kmyfaavk61XeWyl/yg4n3ukfoh0mbQPURlkT+TyklHljmUc4/8euRYpHFA6ym/WjBP+ryQDxLkc8R5TsoTJ+tNejK6TmYeuXA25dqTGrAGryzP7gDPQV28ZkUceaT8Ui/lM3RA5Ncl72/y6zlcKHNcyTEXNfLEkWZR9eM+mS9P6bKcFZH3fj15odmrQ0V2fX25dodEw+QZJL2kMu3f8D6pL1MaKLl8SNcTusLymhTENT7Uhzmf2Os88vEezLd/SdNG+eyifvlclloly0uGT7Kj9tmDz3dAPv9lecIFwOFd1OgIoWu4TrQM5vhDXSaZmZkYMGBAo770CCEwduxY3HTTTTjvvPOS7lNdXY3i4mJtHS1XV1enLLuyshJ5eXnqT2lpafoqzjAMwzBpgGd1pY9j+uIzadKkYy5w3rx5x7zvlClT8MADDxxxny1btmDFihWoq6vD1KlTj7nsY2Xq1Kla+2pra/nlh2EYhmFOUY7pxefdd989psIscwryUbj99tsxduzYI+7TrVs3rF69GlVVVfD7/dq28847DyNHjsQTTzyBkpIS7N69W9tOyyUlJSnL9/v9CeUCAET8czRNJVehjMN6KCNKYRfZm/Tpn9JFUHaPWFifPgk4Qj1Gagoqg2zTVdoEGRpzURkqzQTtL89lTHOn/YJZ8XOrT/sqlGf/0qdcrwyfKDv9GLVbDyfFPBS30qcLCz0jgEplASSG11Q6AZdlHCP/QodSCICmYFPqC2lpb4ZEhLx4zlCXmvJO4RJ5+VWIQ01B1vejKdWUmkO1xfjsTu2nkEEkYHQE4ikGAt/IqfEyXEIhL5qeS31G4TYVpjOKNEN+fmlfQNcOiPcNhaQs+Sk/TNdL7hfzyGnM7ezCQoX2csNBGTqo16d9Uzgi+9+y/DoZxmqIf1CmKcIuGdqgulAZFDZUyxTCO0B1sn+pH0x7gnjIiOZ/x8eRCvfRL0VeZR9SqFOFo2h8+HWLBArxUMqSzN12JT31dqX8++X1zoi3OyTD3+FsfTq+GVaj6+Q5pIeHKVRL6TRo/EdkSIh+3RTyOeyY5i3vRwp/0ZAhGwv/PjldO9cj62qEuIxnBz2EqD8pPQpdOxoHQHzsU9+G82XaCL/9G5VT32M0BV6GsmKZ9vagfGjG5NR7Gs809T4o7SCoXxvaxa+3CvN6qL16Oyi0FfPJgSBDW5ZP3r9yjFoNeohU2T/I8l3RxPuwUUnHrCz+4gPgGF981qxZ0ygnLyoqQlFR0VH3+81vfoP77rtPLX/99dcoLy/Hs88+i0GDBgEAysrKcNdddyEcDsPrtUfoypUr0b1795T6HoZhGIZpDVixRJ+3EymDOQFxc3PQuXNnbTk721bZnXnmmejUqRMA4Cc/+QlmzJiBcePGYfLkydi8eTN+/etfY/78+U1eX4ZhGIZJK/zFJ220ihefYyEvLw8rVqxARUUFBg4ciMLCQkybNo2nsjMMwzAMo2iVLz5du3aFSDItr0+fPnj99dfTcg7/AcAlp6LGjF5SdvqZMm4v9SaH5cQ2igWbOgSl0zkcX2dqWGjKKE3LtcK6zoam3lIcOyqnJlsyLh+wjbTh/Ubvn3CWPpXXWYaaWp5iii0tu0O6ToHaR9N4CVWOobcJ7HNMMSYrAFlGPPWEvny4vT5tm6YKh/KQ9HgzRYVqA6WngENPRNotwwJA9ZGRgqRBTltvyLc7LLDfLohSIrgipF+ROoQ8Pd0CEJ+OHtgflfXTp+fTWPOSxiNCGg9d60Vj8GBHqQnqpOsWXA16agS7DP2X+sYrvQ7ouqlfmU6Apr1Hc6Q+o53UQkitV0iO1YZv7H7xynN6a+PndoWoUFmHkF4XlbJFXgs1zn36L1klUNYJl7G/0nY5tBehbL0MpVkhzR65MZAmxKdvV9o3spKIUeoOewOlJiEdjjucOM7j9SENkizbq9dBafS8+v7RgLQ7qLMbSFKmKE1VlzoyWnaeg/Q/yl6BtHrkYqBSz+hVPFgor28+aYVkm0jbc5jaCG0ZAHxkBRCj8S1TrlC6FH9M205jzQrruhq6R0mXRuNeePT7RTie0fS8oqnmEfmMVGkypIYNGWQZIa+RPLfngLyuUk9JY0s9H0hnFgJEklQ4jUU6ZmXxrC6bVvniwzAMwzBtCvbxSRsn7ePDMAzDMAzTWuAvPgzDMAzTwuFQV/rgF58U+Gti8NVS4N3+iQbIv8b+UNYgNT0UQ44GSLdC4hFovxGfsd1RtkpRIWPg/r2k0bCXM/bZG8jH4lCJjL/Lc1Is3BUiTZBMoyDj+RSndmofKDZP2gfSFVDcnLQtZLtP/j4q1h3Wf5VOwdBKKD2SQ+uSZad7g6+OYv1UlozhkwaC6kaxfGqnPCf1PbXLW6fvp9rk8E4inRCVoXx5DK8ghxWMvSyvEWk9IhmkTzD8XkgL0aB7sth/19tL9QrJvlF6qL32XwLVtjmK65B90ljA7pBDXcn4Sa+bq0g3xDlc7PioWyc9Xw5JvUi94XFE11HWja6X0mmQFoa0MX7yPSHdBaWL0K39AcC33/51G5osGjOkkyN9RtiR1gWIX1/lOUXjgnQsdL3piea4dqaPi+k/pHx9aIwpwxtZd6ldofao/lH6I6lLkR5MlNLCLot0cTRWZFmkcZJlks5G6Yy8NB50bZe6MegaUNoMr/GwcWwjLxx6FkS9uq6MUlaoOrv0Z487KPcjfzLD7yqWoEsCIlJTGCX9IPmNyfQhsSDVSR5rPBvdh+U5c+UYk9tDneghI8em8paKj3OqVyRT11eJfLviFvkRUaUO2Z3u2yfLMnSU5EVk+ncJt5ESprHhWV1pg0NdDMMwDMO0GfiLD8MwDMO0cDjUlT74xYdhGIZhWjo8qytt8ItPCoQLcIUo7qwLcXwuirPLOLP0lCEthJmHJ56XSG53jD2V/4vyBFHMP6T/kjcMxa8zq0m7o2sHSCNAXjsqb5YhO3IeQ741btJw5NKx8hjSYZBnEPngGB4aKu8Q5bgijyJDhwLE8wJFMt1aHWhfOielf6M+pHNT2TEv6UpkGw7pegXlSZRE20Qk2LjTOQy/F7WZyqLrL/1RPFLbQXmKqA3ukEPjc0hqFpRHkkfWT/aHbEc4S56kWAor3LbopaHAXl/XSWq9SuVJsu0O8bmlhkiOUbcn3h9UDaueBDKyaDnm1PWkcRGm+tu/QakNsYKUYI521HM4RZW2In5un+Gv5Kux9yGdFPlR0XUM51M/yb6VGo7Mr+39/Qf0c5K/i8qnlKFOHdfmHNbrYF535fVEXkC65U78Pgnr2i26/oSzXKU9I42dkVONNE/0DxLpS+i54JbGN5b04okaed+ojylfnHBcb6HuHT0PHOmHlDbR8O2Ccc+Zmj36Je0f3YuhfGfF7B/yvCG/JtJJWm4ajHI/qU20KGeX8S+Tt51dQGGeLbQJRe1+2LvdNvhxegjReIXyEJJVqiHBkTwnXbao/nCkcUDPWmofPZvVNaTnG9Pq4BcfhmEYhmnhcKgrfbC4mWEYhmFaOiJNf06Q2bNnw7Is3HrrrWpdQ0MDKioq0L59e2RnZ2PEiBHYvXv3iZ+kieAXH4ZhGIZp4dAXn5P9cyK8/fbbWLRoEfr06aOtv+222/Diiy/iueeew2uvvYavv/4a11xzTRpa27hwqCsFoRwXLCnmII2G0p1IPwyK23sNjxzSBCmPjYDu5aFyyTj2UboRwzumgXLU+HQtj68Wsm7y3KbnDHnxGBoXla/IcS6Vs4e0L6QvMHxLBC1TeD6ib1f+JhRKp9EV048D4voAUwuQLLcWAHgMzxXC3aDH56kcpfkx2gQ4fHgC+i/5dCR4xShvFWjnIi0T6a9oPfm4xAztEwBEM1zynNILKl/+tre3B9vbxx6Q2g1vnX1S6tugzJOFAvti+DLsysakTiESlmPWY++XEYgnZwsH7QrF/FJfEyOvFBrflrad9DXkz0P6C+W1JMeUu17X+tBgdDk0EG6Va07X/5BOhvqSNGsNRVKPQnmy5Ngj753M3bLdftpP+lpl07VwaF0MX564dsnweXHp15Gg8azy6NGYo/uEygsm/qtC7TP1fuTxZOaNU749EV0DQ7hVsiv9XCGZP450PEBcy6PuKVqWfaqeZ8av0rr49TrHAlJnlG3vaMkxhsOJ/4xYUrND2h2lE6I8WS59TJGGS/VTQB+ToVq7Ervq5QOxwb5o3v0kRIyfm54tpDWjfIfeGsM7iO5nuo5yjJrPswRNo0NmFUu85KccBw8exMiRI/HYY4/hvvvuU+tramrw+OOP4+mnn8all14KAFi8eDF69uyJt956C9/+9rebq8pHhb/4MAzDMExLJybS8wdAbW2t9icYDKY8bUVFBYYNG4bBgwdr6zdu3IhwOKyt79GjBzp37oyqqqrG6YM0wS8+DMMwDNPSSaPGp7S0FHl5eepPZWVl0lM+88wzeOedd5Jur66uhs/nQ35+vra+uLgY1dXVJ9nYxoVDXQzDMAzThti5cydyc3PVst/vT7rPxIkTsXLlSgQCgYTtrRl+8UlBOBsqARDFmZWvjdQukFbEX2MHgT0N0nNDxucpxm5FzQ9rRuAegJviyYbWReW7MtYLIw5v5qYSRv4cinuT7w0ARPNIzCLj8YdlDDyi+w1RnF5pVUh+4DGWaX/aj/xMqM5J4uGm2E55btAxbr3+Kr+W1FUF9tu/pKUgHRXpN0j7oels6B4mSYesA2k4TN1UjJ4JRl2DefrxDUV6biuVn+gwEogZHkjKU6WdfU0sr33BgwH7ApKOhq5F7IDdUaEImYrIH6m7cJOfTxI1I2k1lJbHS14xhlbHR4NS/uyVdZE6HNJTEa4g9b297MzVRddH9S1pPOQpSPMSOGCv8B+Q3jPZ+r1H/RbKJ/8n+7iwzA3V0F7387H3kfUhTZo55tz6OZSPEe1PO8q/qPxwUhMUdOvtjvt+OdZF9fbHz03b9WNdEfIxsrQ6xjz6s4Q0Y3WldseE8uLb1D1vPOVVri1ZF+U7Jpc98rr59+u/5AcUybZ/SW8Wy7Ir7/LFB4SVY7cjKjVnQj5DyV+KxqmQebLC5iPSbejKDrm1ZdODyam7UdocI2ei8ikS+n4xw6eIxi0tK88w8oZSecfi+euaAgtpmM4uf3Nzc7UXn2Rs3LgRe/bswYABA9S6aDSKdevW4X//93+xfPlyhEIhHDhwQPvqs3v3bpSUlJxcRRsZfvFhGIZhmJZOEzs3X3bZZfjggw+0dT/72c/Qo0cPTJ48GaWlpfB6vXj11VcxYsQIAMDWrVuxY8cOlJWVnVw9Gxl+8WEYhmEYRiMnJwfnnnuuti4rKwvt27dX68eNG4dJkyahXbt2yM3NxS233IKysrIWPaML4BcfhmEYhmnxtETn5vnz58PlcmHEiBEIBoMoLy/HwoUL03uSRoBffFIgXPHYb5T8OwxNCHnLuCIUOZU6DKnxifqlB4XKkZP8PHahVJbUXUDXpph+Hypu7da3U93UfuRRQRqJQHzkWw3y5LRNxuopFxPF0039UDxGruekoromeOjQ+RzxcBU/p3VULcNrhUL5ykPD1DpR2qgcvS7hTMphJMtz5FOyDuuajLBMh0XaH1o2/U6UL43h60E+L5EsqZUhbyappQmF4gIG0h2oXE2ki5F95d7plWXrg8UytARCHhcNeWXdpWbCsi9mg9T+hP3xW9wjNRhRWUEhrx+kDkNpekiHIXVCotY+B/n3mHUyNW/KD8XxkCWtVcTQSJr+Nm55DvJGorFEWhg6p/JOUuXr5Tr1Rd46qjDVU9cXWVJf5DF8qygHF3njmN5TKfV1rnjdaMyQPxHp3UxPMNrPLTVqngaXtj2q8mvpz5JQrtQZSW0PeTIBQDRbXj/Sy6ixp+fF8hy0f3019nGBA+StRH5O0H6DeeS5I7U++fKadYgLb1yGXw/oGSnvBUGanah+HQkrRM9SaHVU2h7j+eaUTdJ4zJDtUc9EQ/eofLboMUjPCuOZS7opej6Y92KT4ZiVdVJlnARr167VlgOBABYsWIAFCxacXMFNDE9nZxiGYRimzcBffBiGYRimhWMJAeskxc0ne/ypAr/4pMBfA0Q62H+nT7zxaZL2b2Cf/kmYPrcGc+0D1Od6ShNBX38dVv6EOVWcvsWpac7ys7qLPuEbn3otmv5uTI8101EIV/wjXzRDfsqmlAT19nBQ9vkhczooTcnVwzUqDEd1oLBUhrHdafWu0j8Yn9MpDUKDEeqj0JAMp1B/UOjEbaTTUOEHCqE0OMIPlGKA0gaQLT59RpchDWFYDKhP3DTdmcJxlFZB2gFE8uUF9stQQ7zZsKI0Z5raYTyIjCm3ZlhRpZGg6yyvhTsmQwj0GZ/SFDjiTZYMh2Xn2IMhGLYrHpRhBCFDF5ZMB2A12IV5GnR7AzUejAwPdE1ijuuszk3XxQjtxtOeJJ8KT1YA8euvh4bMe8p/IPHB7qEworSbUKFoOT1bpVNw6w2i8JwZolbT3s170Ph1tjecY+wrx5avjs5FR+jpPszUFrQf2TYQqr+qHeNcjjUz9Qz1OYV/vfVkIWBvcIUpRCZDWAG7HLqudA08crz7Dsj750DcC4bGgp/qJe0n1BR66gcjPYwZuvIelOeiayen+1MKH3rGOvtDyQVkyJFClGH5PDJD8YF90DCtQtQzNKgf56sFooY9QaMSQzz2fzJlMPziwzAMwzAtHf7ikz5Y48MwDMMwTJuBv/gwDMMwTEunBczqOlXgF58UCCse6zWtzj2GtoOmrZNtvpk2QlnEmzoexGPWqfwVVExcahxihnW/acdO53YZ+wvjF4hre2I+mvOun5umYxPuQy6tLqocY4ou9Y/SQFD/OYqjc8e1PUI/B2k/jOnuKu5Omg+jb5V2wKijc7oz9UFUpLheQaNdpK8gCYOhtyCtVDTHrrQ/T890HPXHO1bN3k2YGi61HSFDu0EaHkp7YRnTetVUXX19ROoyQu3iZcVkmgCl7amXwgrS19Tbx3hq5VRimsZP03wjdC65TFopuZ2m9ZvTh/X26MukRVJyGUpRQlOHSZdC8hvzuvqNdBFJdDbkVqvsJXKktoemMdOUeuPeEeY5DfsCpfUy+kfT8BmaHnMqvdIoUUqLoL6dprHT9fVJzYvbvMeSoMpSOij9IeM5FNXKiFFKCpoy79HHFPWfKj9EaUbsZX9NfFvC80zo7VJ9JfVEdM5Qtn5t4gXKOss2kTtFwnMCcQsA0kfCSBFEeiPSj5GOiOoczNV1Vt6DVFf7V2l9QkKlTGkSmti5+VSGQ10MwzAMw7QZ+IsPwzAMw7RwWqJzc2uFX3wYhmEYpqXDoa600apefP7xj39g5syZeP/99xEIBHDxxRfjhRdeUNt37NiB8ePHY82aNcjOzsaYMWNQWVkJj+f4m+k9JBD4WsaKDc8MijN7Dtnx6WiAfHvs7UGpq6DYcDzlQeKgC2VTDF/ua/jQkHbBMrx/qEYh6Q+iUjqQZsbwa1B6JWdTyBvGQ6YiMuWCm4LdMt4ul4VcJp2N2/DoUOcy20JaD0edyFcn5pU6IyniEF4jnYKRDkFpWkhfYegqvId0i3+avkkaCWd9lN8M9Q1Z2If17cpjRBKVKS1ChbrghLxoQgftA4RMG2H5HPuRtom8kqQXivItChraH9JnGH5GcY2EUTdZV9KGeesdQpsdGdq2QIJOSF9WVTa8dOKVs3+UL4ph9W85rrdKOWFuM9IAmP48Zt3iehX9OBoPdK/q/7Mlz5fk9Se5FR1DPi1xnxvykoFchixP95oyU5wADo8vCaVSUVo1tZk0XvK4oO5XZPpzkTaQnilxzVD8fDGvnt5CWOTLQ5pEGnv6w6KhwD4Z+d+Yv9Q+SgWitC8O/ZYwtIiUssPUMjUUeGRd7P1C+fIcst3ZX9HxJDSiZy+1P9GYxpJ9Esm0KxH103OMtDs0qGQZsj0N+W5t2SU9lPwH5HPR8CuLBlyINVf6CuakaDUvPn/9619xww034P7778ell16KSCSCzZs3q+3RaBTDhg1DSUkJ3nzzTezatQujR4+G1+vF/fff34w1ZxiGYZiTw4rp/5k40TKYVvLiE4lEMHHiRMydOxfjxo1T63v16qX+vmLFCnz00UdYtWoViouL0a9fP9x7772YPHkypk+fDp/P/O8ewzAMw7QSONSVNlrFrK533nkHX331FVwuF/r374+OHTviiiuu0L74VFVVoXfv3iguLlbrysvLUVtbiw8//DBl2cFgELW1tdofhmEYhmFOTVrFF58vvvgCADB9+nTMmzcPXbt2xUMPPYRLLrkEn3zyCdq1a4fq6mrtpQeAWq6urk5ZdmVlJWbMmJGw3ooK+GvsAG72v+2As6fOFrVYIXvZarCD27EcW6jg65QNAKiL6jmv/DXS72KvPM7x0u3Lpji01LwYupMEfRDpEjLsv1DsPJ5fyP41PVSUj43j3BGpNxA1Hv3cruTHmDlrlIYppu2WAGkMYvFUPnF/ooiubYhk6bmoEjyCDunnVP0T1X2BolI7QjoMpy+I8nwxtBnKv8ej79fQ3v4NF8iTZZLARBZIDY/p18LyypxHIcfFsPT8YORnRAepczfoZZO+Qmk+KH+Y0jbJ48jXSOpyfHXxq0KeI9RXBOWoUjox5Q1laCKoSg69lN0WqdPy6loap+9Lwid28mU5pJ8z6td3i+fuMnxuqEqyjnS8x/DBAYCIn/Ql9jKN65jRXtpOfU3mQTR2PFLb4zsoc1vVUJ1iWp2scGI8IZwjtSyZRv4vcwyRX5WsFHnRkAaGdHK+OkvWwV7hjsqx5nJo2eiZQNeX9F9KH0U5t8hcx94v8xu7I8hTJxzU71EzP5pbt63S9lHPDNIkhfU8WvHrau/nPUjeQaSrSryeQHxsqfvIcX/HpLYn4tf/X++V7SQNEGkzQzl6Gb5ayl1m94OpgSK/I+G2VHuaBDYwTBvN+sVnypQpsCzriH8+/vhjxGL2wLvrrrswYsQIDBw4EIsXL4ZlWXjuuedOqg5Tp05FTU2N+rNz5850NI1hGIZh0gbl6jrZP0wzf/G5/fbbMXbs2CPu061bN+zatQuArunx+/3o1q0bduzYAQAoKSnBP//5T+3Y3bt3q22p8Pv98Pv9KbczDMMwTLPDGp+00awvPkVFRSgqKjrqfgMHDoTf78fWrVtx4YUXAgDC4TC2bduGLl26AADKysowa9Ys7NmzBx06dAAArFy5Erm5udoLE8MwDMMwbZdWofHJzc3FTTfdhHvuuQelpaXo0qUL5s6dCwD40Y9+BAAYMmQIevXqhVGjRmHOnDmorq7G3XffjYqKihP6ouOricIbkdqeWltw4aqVwokIBckpr5QdivMdsAUWeZS/Rb5duxtIkGFp64F4LJvixpQfJ+5DY+9HugnSUahYvqHtUZoX0q8YeZWSaV2UBsfQBZk6IZfh06K8dEhXYuRhUl4eUf0XSMy5RXhrpXapQT8X+aHQr4r5k92P9CahXzPXj6/O0Q7y+aBjZN9GpI4iInNvxfxSjyB1OBYZvtTYHRbLsitvye2+HLsDMvz2r89tb6+pV0mDEA5K/Rf1VUjmR8qRGg2pC7Lkepf8dR/W20WaCB95KBl+NzQeKO8Q4NDLhHR9hcoXp3LJ6ToM0gSRVkRpw2RdwjLPUtwfBbLu6tTx623KX4xcVaQzScy1Rnm2LO04df2lLkfl0XJg5q1T49dYjhi5ukw9BLVBSF1dzENeMpa2uysW73OV30/mxco9aP/SfRwJkF5E1sVot8r/J9sftmWEaJB1CeXK8RFMVC2YfW7msaO8cHQOlYNK6aTonpP7G15iMSM/nFMLRvWF8vghbZvcLvvaU6975JAWiPKpkT4r5nEnnMNuI+UPjK83NWjqXvC5tXZRO72yDgGp5fHUSy2m1E1ZDfaykDn3olLD6bUAK9yERj4CmhfaCZfBtI4XHwCYO3cuPB4PRo0ahcOHD2PQoEFYvXo1CgoKAAButxsvvfQSxo8fj7KyMmRlZWHMmDGYOXNmM9ecYRiGYU6OdGh0WONj02pefLxeLx588EE8+OCDKffp0qULXn755SasFcMwDMMwrYlW8+LDMAzDMG0WgTSIm9NSk1YPv/ikQHgtRN1Sd1NoCwhcOXbQPDHObMd+zdgyEc61A9rkH6HlEZIDmWLZVAb5fSRoWfyUb0cebugUCJXDieL6pBVKInfy1VL+KD2/lXmTkOZD+Zo06N45Sn9k6I6oHKffh69W36Y0HoZHSMwYoZEM0jpIjYRsD3kEmdoe8sMhbYSzng3tScMj1/tI/KH7vrhrqZP1ukWkliOWZ3e2JTvZ77EP9EqNT0lB3BTzYNCuaE2d1P3I9kTDLucpVN60WJ1dOUvm/QrUkH+TrLOsO+mTTF2H25FHzSP9WEiiRron6mLSYUSl3oy0EFEXjTl5P8juIG2I8i0irQdJ2hweJx557UmDQ+M87mdjegPp7VHeO6RH8+nr6ZrEPYjiZcUM/RP1icpnZuQiI82T8pAxZBxxXR75Flnacc7ngJl7T/3DpXyHZL4/L/UH5fLS9VRKu2Rom6gfzOcBkHjvmJ5B8brpGh/S/hDKU8vwPTLb5gpbCcfQOYMh0kPqVbEi+r1l+pAp3RHlT6PrbGgcnX46Zj44VU+XfqzSUdK9Isd3MM+uBF0bN/n/KB0amgee1ZU2WoVzM8MwDMMwTDrgLz4MwzAM09KJwfFJ+CTKYPjFh2EYhmFaOjyrK33wi08K3MEYBOUakjF94ZUaB5euiVFx+QB5r0gNQED6RkT1uL5wvLVH5T5xfx57vbdePyaq8g3JsilHjeG1o3L9BKgd9Cu9KxzeKkqb49bPTR4cVgo/E4qZk97ClcKrg7x4lJ7hsEPzIePmlOeIfIxILxGR3jCk6QkWyHaRlsfwLaJft3FOlbvLoW0iXYTK8+OWmo6D5PMhj1X6Ab3dSuNAviYNMjdQwK7UAWHrdzIDdmdHo/GIcjAsfXxIHxSWF/CQPDflLmvQNQzuBv16K62L4Vtj5k2itgKAPDW8UttDGh3l9RQR2q8aByqPlD6G6NxxbZisQ0j3RwHieh/Sx0RkPqWo9FIyxyB5LCnvGFW2XKQcX6TbcOu/TmhMmD42Zh487yGpafIb/62msSTLjvjopLJ8Qbmf5HPAcYMrrZGR90v5cnmM62o8kWOGvobGovO6OuuitH0OzHWkbYpr8/RzqOtt6Auh+ksvL8GbCXFdVYKHktxO3kDUXtIwqTxiyfJ/weEPZOjK6PkJOPN70Ximsun5pGuxaOyp7THytUr+kkBaTU80CkSa0seHNT7pgjU+DMMwDMO0GfiLD8MwDMO0dPiLT9rgF58UOMNRKsRF337NaevGp/5oBk37lfv59M/czumxyhbe+DyrPulK6FOuCunQ1FPjM3Z8Kqcslz4Zi8Ry1TRO+emXwkoUFkv4BCz041T6BPokrKaty5BIg95fzpQYFNKK+j1aWfFQl/17WKZyo+naqn3G9GX6dmnu55Ltd4aE1HWgdAL1yT+fqzIo1BXR14cFhSlkmK7OPgmFPCMhGcYMJsZfKNRlHba3UUoKj/x1y1CAqpO87ircIlM0xMzwhGEd4AxDuIz6xy37ZUhAXkdvXUQuyzQaFNnxyHEt74fAXlluSKbuoBCBChnET059FJPWD3SuGKV/kKkHaIqxO6ynalDT9jNSqDuNa6dCno52qmnMMgzsMqY5h7L1c4psY4q9GQIywnLxkKHjGOoTCq8Z4TZPRN+eUBYNHXk9abzT9TVTXbiSRV6MECT1sSuq/yNI97sKo1H/UJnGWFQpSahOoXh5ZvhLndOwAvEY4TS6Vqoco9/M50R8R2c7ZP0EXU8aj/r1VajnmrwPjHOqMJoRZoMAIuEksdXGgl980gaHuhiGYRiGaTPwFx+GYRiGaenwdPa0wS8+DMMwDNPC4ens6YNffFIQ87rgMizNSYdAsXDStpjpJkiHoLQiajo7aX3ig0+47DJVfJx0I+aVEXqcmuLzKrsE2c6H9CnJpE9RsXXLeW6qp73Od1BfDxGT56L19m/U1CzRdNGoPh2Ypuqb+zuh2D8FXWlaK/WdV9aJNBtmagplcW+kxyBiSVJ0EAn6KJp6K+vgqdf3ozrR1Hiqk9KOxEjTQ+OERAKO/6aR3sBlVNRojyXPQRqlhLQQsk4eIwUArTe1H05oG02/jmcoIEsBuwPUdTdSFBA0ruM2DtKaQN4nmm0DTQE3bAbi09Et/VzU11JvQlPvIwE6udko2QJKJ5IZ30SpJcx96DpSWoh4w+R+si/VmNRP5ci7IM9jpM+w22Fpx5DFA10X72HSH9nL6pli6OLUmDP0Zk57Cr1y8Xqp6y3vS8uYjh4z04fQekPrY/a5ssyQdUg2rV3piwwdIGFqfnwH6WEr+4U0Xm5d40jHxVOUOLSL6nrr9gtWTK+DupciuiYxQQNEZZvHi5P/AMM0D/ziwzAMwzAtHRY3pw1+8WEYhmGYlk5MJH52PZEyGJ7VxTAMwzBM24G/+KTAHYrBkm/X4WzdXt/UqpBOhYRjpGmJ62vs37jdusPSXsbfQ+QFZHjkWIbPRfxAuZo8J5T/Dx2v+4FELNIGxYtwqTQC+jGW4e9B2g1h+BcpnyL5E/cgsX+Dubp2wJlOwPTnMPUX1H7TU0NpV4z+MfUJZgoA57lJY2WmAVDnlB4y0Qy9rqbOhoh75sj2BknjpPsfAYAIH1kVoK6X1E/QDZqQPoR0J6T1IL2R2W5HagNTo0QaDrf00mkoIK8VeSyNcyP9AKFSVxhpFY5Ewrg2+lKNRTOFg6nPCejrqY9J2+O8RmpfOsTQvigNl5GSga6BKpv0YiTd8unlK28dR7oFl3l9SMsjtXh0z6j71/QIM/qL6kR1N9NxaHeu+d9aU4NjGfezcf1M7xyFofmhOkUdaSNobKg0NsZzTPktkf6GNIvkjZSRwh/H0vc31wMO3yZjX3r+eutJvKYXYXpJmX5fSl8pn4dWVMR1Q00Bh7rSBr/4MAzDMEyLJw0vPubbXhuFX3wYhmEYpqXDX3zSBmt8GIZhGIZpM/AXnxQcKvbC7bO7h2Lf4UzdYydq+lyA/H3kdvJiieixdC1mTnFoU9tieMeYxlPk26M8RFJ468QMr4qo49xxPYGuLzL9WyKZdoPJz0TlMvLQsl5X6hdTI5LU58NA+fN49WVhSmOMfEnqeEv/jXnp5PF9lL7goOFf4iYtAHkg6Sc1cxOpaxXRf2PUBr+eZ0qrPml0zPxPRj4k04vFhNpp6ljouHB2Yv4kapfqI0Pr5Fb53eR6wytG+R+pHFD2b4TqaPSP+XcAiGToZZv50UxNE+lpqN9omfpFGOfUdFVGjryYX9eAEO4Gef9Sfjca3zQ+TO8l8mdy6XodkRXfz1cry5RaHMrJ5z0ktS/kR6O0eXp7yPeHyo6a7TbaH0syTuh+pj4zfYzoGqj72aELc2Jek3jON70uQPz6kkeSS2l+9Pqq+92tP4MIepZSu8xcZ6otjtxd6t5S95DuiRTOoue67FPqB3rmGrpDpeNR96ZL1T0aSpYcrZGIiXilTqoMhl98GIZhGKalI2IgU9mTKoPhUBfDMAzDMDqVlZX4r//6L+Tk5KBDhw64+uqrsXXrVm2fhoYGVFRUoH379sjOzsaIESOwe/fuZqrxscMvPgzDMAzT0iFx88n+OUZee+01VFRU4K233sLKlSsRDocxZMgQ1NfXq31uu+02vPjii3juuefw2muv4euvv8Y111zTGK1PKxzqSkEwz4KbdDOGpwjFr4WhbVEeFNDXx7129GUAKfMgeQ7ZvxTDtqK6IIH8MSj/jvL3INmBrBvF36OG547dILlvVM/rFYO+r6nPUBonw58nIZeToQWwtBxGyY+hOLzSHahcTvpxSvth5O5S1iSkV2lIbLdqD+koVF/rGg9ab7ZfaWHCuvcIXQvy2BHyOrudMgChl63aYeZJonYZmg3qn4Q8SlJnEs2QdaI8YY66WyF9PMf9WHStk3m9VF2MXGbmeDa1Xk69hrpHzFxcctzS9Ta1O/EC5P603WP4VtFyZlTWyXnBdS0O9Y0V0i8stTMij3UfJi2HvD8iuj9XvC36vempjy97Dtu/voNS21NPZem/kGMu4tdzmqkxRXoq0g9S00y/K0efqzxfNFbkvmHycaIxJ72PEnLX0bOHxqihBaMxTG1MpuEjr7CEdhg5ujxB6NA/0JSDMKzvb+rTnDq6qPncNvKdpeozeq6bOjs33TcJ+eWAaLAJs3U1scZn2bJl2vKSJUvQoUMHbNy4ERdddBFqamrw+OOP4+mnn8all14KAFi8eDF69uyJt956C9/+9rdPrq6NCH/xYRiGYZg2RG1trfYnGDTfPBOpqakBALRr1w4AsHHjRoTDYQwePFjt06NHD3Tu3BlVVVWNU/E0wS8+DMMwDNPSSWOoq7S0FHl5eepPZWXlEU8di8Vw66234oILLsC5554LAKiurobP50N+fr62b3FxMaqrqxulC9IFh7oYhmEYpqUjcPIGhPLwnTt3Ijc3V632+/0pDrCpqKjA5s2b8cYbb5zc+VsI/OKTglAO4Jb6AxU/NjxilIeGoTdQOW50mxyHL0o8Luxy6F6cqPw/DXSMXjblDTO9VMzcRaaviTMWrrQZhsbD9DeJ5xqT20l/YXgOqXbSdkPr4cz1ZPoWkbbD9K+hsiOGxseMxxNmHZW8I8m5TU2CqX1J5Z1D/US6BaWVMDx1TP8YZ9mmtklpFkiPYfqyGP4upFOJ+aRuxUcDgyopd3THGxnXpEnPFLoGcvxSPaldLqM/lHeK6TFltE3V3emdZLRTjVvyzJF9qO4H5c+in1tVSeptLMNrx4pKjxZfvN2usH4TKG8n6lOPzL1EuZgaXHo7o8l1HC7ysSGPHtK6OK63r07XgcUoD5TKyUbLhk8P5dqj40xPIeMZFMoytju2RWmM0DZDX6f6g4qO6lomumhK22RoZkL5SER1v6WdK56jzV5PPkWJuQeNPreSXwNTd6NVIYUvET07EvyczFMojzVLq5saowKINqBVkpubq734HImbb74ZL730EtatW4dOnTqp9SUlJQiFQjhw4ID21Wf37t0oKSlJd5XTCoe6GIZhGKal08SzuoQQuPnmm7F06VKsXr0aZ5xxhrZ94MCB8Hq9ePXVV9W6rVu3YseOHSgrK0tbsxuDVvPi88knn2D48OEoLCxEbm4uLrzwQqxZs0bbZ8eOHRg2bBgyMzPRoUMH3HHHHYhEUnxSYRiGYZjWQiyWnj/HSEVFBf70pz/h6aefRk5ODqqrq1FdXY3Dh+1Pm3l5eRg3bhwmTZqENWvWYOPGjfjZz36GsrKyFj2jC2hFoa4rr7wSZ599NlavXo2MjAw8/PDDuPLKK/H555+jpKQE0WgUw4YNQ0lJCd58803s2rULo0ePhtfrxf3333/c5wu1E/C49c/U7qCegkCFuOhTsotCBvIzNYUfLGPas+M8KuQRos/rZPFuTKHMkfsZNvHq0zB9vZfr6TN8QroIxwu/CocZ0z5NW3jarkJe0JdVHWm9Md1XkeSeUyEulVrD/qXp+nELfzltPzN53RSqTfrxcKQNUWEwVQf9k3c4x6h/qnQI1E/0KTzFFH1nP5j1Vp/bVQoC82C9DjQuKDyhpmZTGgoKW9G1cYRpVMiG+oimJ4f0C6VCGTQeKDRIdTbDUgZmagMNMwWJEfoybQvMc1jGlOt4ugXjfnEnxilpDLk8xtiQf1EhHln/SI4ZC9X7T6WwiOqhEGWhACCYr/etZYSAzPWmfUOClYTRrGjACKX5450uzDHioYeHXKbnkmyXJdsTi9iF0cxnNYZoP1qmcZ8khK+eS0bfmKFsNZaMMWO2P9V9nhCecu5ihMHI6kH1tTqHHi5Woc+oPqboHrMc7Y41NKETchMnKf3d734HALjkkku09YsXL8bYsWMBAPPnz4fL5cKIESMQDAZRXl6OhQsXnlwdm4BW8eLzzTff4NNPP8Xjjz+OPn36AABmz56NhQsXYvPmzSgpKcGKFSvw0UcfYdWqVSguLka/fv1w7733YvLkyZg+fTp8vhQJaBiGYRiG0RDH8JIUCASwYMECLFiwoAlqlD5aRairffv26N69O5588knU19cjEolg0aJF6NChAwYOHAgAqKqqQu/evVFcXKyOKy8vR21tLT788MOUZQeDwQRPA4ZhGIZpUTSxxudUplV88bEsC6tWrcLVV1+NnJwcuFwudOjQAcuWLUNBQQEA21PA+dIDQC0fyVOgsrISM2bMaLzKMwzDMMzJwtnZ00azvvhMmTIFDzzwwBH32bJlC7p3746Kigp06NABr7/+OjIyMvD73/8eV111Fd5++2107NjxhOswdepUTJo0SS3X1taitLQUVsQx/VOOlUgGiTrkatKRUJxZaV103YXawdRvAPH5ucpO316keHSMrN5J80BajhR6HItSAEgthMvQArkcIekoXX2K0Rt6irgGIvmyqR8iXY7S/pjToZOkMPDKKcAJeiBD++E5rAf1SRsU8ev7mVYC8XQSDu2DT98pQZtlXiZ1feU1itE1kDvK8ujaKB1Psqm2dAydy2NMJY7oZZv6G7VfTNdbKE2PV9ehOI9X9SBtSkzXC6l20i9pllSqAqmBIa2XkWbD1E5YR5hXkJDewBgjpN1x2hBobTCXVYoHvQ7OstW05ohxDxnT9Gm9p9al14HKUZYJ+jWk/nF+R1d6MepzNa09+bMkfm/RXGq5gvQ6NFZ9pv5IFu9xrI/pzx/LHL9RvTOFkdqDULeioc9RdU8mtDFu6ITp5nQKet5RnxrPUrM46jd1ryX7d9x8JtKYqjWOUXoi0g/aK8gqRGn26FJQOc40FU2ZsoJJG8364nP77bcrkVQqunXrhtWrV+Oll17C/v37lffAwoULsXLlSjzxxBOYMmUKSkpK8M9//lM7lrLEHslTwO/3H9W8iWEYhmGaEyFiEOLkxNQne/ypQrO++BQVFaGoqOio+x06ZGfDc7n0/wa4XC7E5PS8srIyzJo1C3v27EGHDh0AACtXrkRubi569eqV5pozDMMwTBMixMmHqljjA6CViJvLyspQUFCAMWPG4L333sMnn3yCO+64A19++SWGDRsGABgyZAh69eqFUaNG4b333sPy5ctx9913o6Kigr/oMAzDMAwDoJWImwsLC7Fs2TLcdddduPTSSxEOh3HOOefgb3/7G/r27QsAcLvdeOmllzB+/HiUlZUhKysLY8aMwcyZM0/onJ56C27yfqH4srL8p71krNwI85q6BCKZrXoqfwo6F5VlhvxVDQx/DBWXNvxO1CuuQ3fhSnGsWTdhxLhNXUV8f9kfMUOvkATlY2OmYpBW/ZT2gcoISXd1YWgB1H4S5W9D14ra6+h7M+1DXJtiaBtMvQWM/QxL+1T2+Vq/hgydQZg8ZPRzCpVGJHmdXId0nQrhOiSPN71qnPVQ2o/k600Nj+mJRDqaZN5QTkQgcZ1KraJ20hdVGgXDfSJBA6YOoDoeuVxtkznm5FiJGuek+4PGaNzASp6afHtCen9qZQTpHIauiMaMuk7Gsj8m99f1WKoN0vfLMq5lTDge6UZ9U3aJsUF4pY+NoQmzSI+W8ByT2hiPo45KF2XoZQxNWlyjaD5MkldV6aj04nX9oPk8I5lUvb5s6iNjVH+ldZLrjVQ+8VQfQLQpNT4iDeJm/uIDoJW8+ADAeeedh+XLlx9xny5duuDll19uohoxDMMwTBMRiyWZFXCcsMYHQCsJdTEMwzAMw6SDVvPFh2EYhmHaLBzqShv84pMCK5qouyBvERihYHWM6W9DsWOvdlg8X43zGML8EmnqRlJofOIr9ONIt0D7OXUMCbFwMyeV0X6qm6mzSfQU0juG/FFiTvmBTz+XOqfhBRPPiyaXDc1LgrbD8Kgx6wY4cu2oFVRvWSadw8wzJBusvJRSeI0cSQul/FwM7YOZ70w1R9Y15tGPM32OzC/gphbiSPVM0K4Z/WHqSJTGwbzuxvjX2m347KR8fpseMobnjpn37pi0IWZX0D7GWEnYz8i9pvpLr0pKbdeR6qA8s8L6uUnbZUkPIdOPSjXBYz4IaEPiqdWxhlYrQTdFmrdgioaYPk9GXZL5NiXkraM60Jij60e6QGPsqXvN0NekfO45/07PbXr2Sc0Z1dP0bUrItWfki4uQZo0kQGFAmFrKRkTEYhAnGeri6ew2/OLDMAzDMC0d/uKTNljjwzAMwzBMm4G/+DAMwzBMSycmUuToOA74iw8AfvFJiXN8xcwYsPFr+t0kaGXM/FGOXhemTkDlRaIdkpel9EM+fX0qX5Rk3/aozJgZ6zdi5Kq+hgbE3F9pZPz6ssrp5DgupnKU6XVR8hAz3i7j7O6oZewoyyPNAGlnjPxKmsZH+dbodSCUzsK4bma7zZxcx+Lo4TJ9fNQ5E+vpXO8JJ293KkzNVLJ1KsdaLHFf5/4JZVNdjX4x7xORTHdhLhuaHVM/R/mlEsakGjdSX0LXIommi64z+e1EfXonW0aevPi4l/oScwyZ/ZRKQ+Q8xrhuCX1r5IVS95T5rDE8hVQ/kW7N6Wdj9pVKOmX/KJ1RijGlNHlK1GUKlYRWB40U90wqL6T4w1H+kBaIdEeGlsvUIeo6OvlLOkLjelnyeRTJogPkevM+MO9FY4xaMXuGeZMhBBJFoCdSBsOhLoZhGIZh2gz8xYdhGIZhWjgiJiBOMtQl+IsPAH7xYRiGYZiWj4jh5ENdPJ0d4BeflMQ8gGXG/Cl2bKxXmF4aZgqfZJ4rZq6ZiH4OU/tBL+xxTYtcb2piDFLmOkpWb2O1qZdJ2MFcbfoCmV47TlLoSxK8ZFJpI2SdzBxQCXorpwbA6NuE3FopdDaprm9C3Q1NiHZu8iNK4QEVM8sk/UyqoHSykyTbrhWe/NgEjYOqtF4X06cqVRVcyZ6x5vVwpah3Kk8g00PGPDyJr4qpA3E3JNdZpSRV+1PkfNLKNZ8FR7tnUmj0EjVgyQvSxnKK+zWVFUz8mtg/SocHc9wYByTR0R3rszE1un9Pgigjld4wdVEJY4o0Tgn6slR534znhXABsSTeRUzLh198GIZhGKaFw6Gu9MEvPgzDMAzT0uFQV9rgFx8DeiOOBRscK42dUtnDH+1z7hFCXWY4LWFa79GmPyf73Jxk/6SkCnWZZR1jqOtYOGJ9jlD2EdMCJCv/GKbaNlaoK+k4SBHySAhppEgjkkAjhLoSnq0pQj1HCulp5WkrjX1TtesYQ13HNAbNKc9HuVdS1uUoxzdtqCtFVRsl1KUfn3hgkrqddKjLqFMqy4ATeQYZz+FkqWWOeLgjfRD9O9EUX1IiCCf264mUwfCLj0ldXR0A4Iv5M5u5JgzDMExroK6uDnl5eY1Sts/nQ0lJCd6ofjkt5ZWUlMDn8x19x1MYS3DQTyMWi+Hrr79GTk4OLOtE/jtx8tTW1qK0tBQ7d+5Ebm5us9ShseC2tU64ba0TblvjIoRAXV0dTjvtNLhcjWeL19DQgFAodPQdjwGfz4dAIHD0HU9h+IuPgcvlQqdOnZq7GgCA3NzcU+5hRXDbWifcttYJt63xaKwvPU4CgUCbf1lJJ+zczDAMwzBMm4FffBiGYRiGaTPwi08LxO/345577oHf72/uqqQdblvrhNvWOuG2MUwiLG5mGIZhGKbNwF98GIZhGIZpM/CLD8MwDMMwbQZ+8WEYhmEYps3ALz4MwzAMw7QZ+MWnGZk1axa+853vIDMzE/n5+Un3sSwr4c8zzzyj7bN27VoMGDAAfr8fZ511FpYsWdL4lT8Kx9K2HTt2YNiwYcjMzESHDh1wxx13IBKJaPu0xLYlo2vXrgnXafbs2do+77//Pr773e8iEAigtLQUc+bMaabaHj8LFixA165dEQgEMGjQIPzzn/9s7iodF9OnT0+4Pj169FDbGxoaUFFRgfbt2yM7OxsjRozA7t27m7HGR2bdunW46qqrcNppp8GyLLzwwgvadiEEpk2bho4dOyIjIwODBw/Gp59+qu2zb98+jBw5Erm5ucjPz8e4ceNw8ODBJmxFco7WtrFjxyZcy6FDh2r7tNS2MS0DfvFpRkKhEH70ox9h/PjxR9xv8eLF2LVrl/pz9dVXq21ffvklhg0bhu9973vYtGkTbr31Vvz85z/H8uXLG7n2R+ZobYtGoxg2bBhCoRDefPNNPPHEE1iyZAmmTZum9mmpbUvFzJkztet0yy23qG21tbUYMmQIunTpgo0bN2Lu3LmYPn06Hn300Was8bHx7LPPYtKkSbjnnnvwzjvvoG/fvigvL8eePXuau2rHxTnnnKNdnzfeeENtu+222/Diiy/iueeew2uvvYavv/4a11xzTTPW9sjU19ejb9++WLBgQdLtc+bMwW9+8xs88sgj2LBhA7KyslBeXo6Ghnjy5ZEjR+LDDz/EypUr8dJLL2HdunW48cYbm6oJKTla2wBg6NCh2rX885//rG1vqW1jWgiCaXYWL14s8vLykm4DIJYuXZry2DvvvFOcc8452rprr71WlJeXp7GGJ06qtr388svC5XKJ6upqte53v/udyM3NFcFgUAjR8tvmpEuXLmL+/Pkpty9cuFAUFBSotgkhxOTJk0X37t2boHYnx/nnny8qKirUcjQaFaeddpqorKxsxlodH/fcc4/o27dv0m0HDhwQXq9XPPfcc2rdli1bBABRVVXVRDU8ccxnRCwWEyUlJWLu3Llq3YEDB4Tf7xd//vOfhRBCfPTRRwKAePvtt9U+r7zyirAsS3z11VdNVvejkez5N2bMGDF8+PCUx7SWtjHNB3/xaQVUVFSgsLAQ559/Pv7whz9AOKyXqqqqMHjwYG3/8vJyVFVVNXU1j4uqqir07t0bxcXFal15eTlqa2vx4Ycfqn1aU9tmz56N9u3bo3///pg7d64WtquqqsJFF12kZUUuLy/H1q1bsX///uao7jERCoWwceNG7Tq4XC4MHjy4xV6HVHz66ac47bTT0K1bN4wcORI7duwAAGzcuBHhcFhrY48ePdC5c+dW10bA/lJaXV2ttScvLw+DBg1S7amqqkJ+fj7OO+88tc/gwYPhcrmwYcOGJq/z8bJ27Vp06NAB3bt3x/jx47F37161rbW3jWl8OElpC2fmzJm49NJLkZmZiRUrVuAXv/gFDh48iAkTJgAAqqurtZcHACguLkZtbS0OHz6MjIyM5qj2UUlVb9p2pH1aYtsmTJiAAQMGoF27dnjzzTcxdepU7Nq1C/PmzQNgt+WMM87QjnG2t6CgoMnrfCx88803iEajSa/Dxx9/3Ey1On4GDRqEJUuWoHv37ti1axdmzJiB7373u9i8eTOqq6vh8/kStGjFxcVqLLYmqM7Jrpnz3urQoYO23ePxoF27di2+zUOHDsU111yDM844A59//jn+3//7f7jiiitQVVUFt9vdqtvGNA384pNmpkyZggceeOCI+2zZskUTVh6JX/3qV+rv/fv3R319PebOnatefJqSdLetpXM87Z00aZJa16dPH/h8PvzP//wPKisr2VK/BXDFFVeov/fp0weDBg1Cly5d8Je//KVFvUAzR+e6665Tf+/duzf69OmDM888E2vXrsVll13WjDVjWgv84pNmbr/9dowdO/aI+3Tr1u2Eyx80aBDuvfdeBINB+P1+lJSUJMw+2b17N3Jzc9P+1Bg5LgAAEVRJREFUQE9n20pKShJmBlE7SkpK1G9TtS0ZJ9PeQYMGIRKJYNu2bejevXvKtgDx9rZECgsL4Xa7k9a9Jdf7aOTn5+Nb3/oWPvvsM1x++eUIhUI4cOCA9tWntbaR6rx792507NhRrd+9ezf69eun9jHF6ZFIBPv27Wt1be7WrRsKCwvx2Wef4bLLLjul2sY0Dvzik2aKiopQVFTUaOVv2rQJBQUF6itCWVkZXn75ZW2flStXoqysLO3nTmfbysrKMGvWLOzZs0d9ll65ciVyc3PRq1cvtU9TtS0ZJ9PeTZs2weVyqbaVlZXhrrvuQjgchtfrBWC3pXv37i02zAUAPp8PAwcOxKuvvqpmE8ZiMbz66qu4+eabm7dyJ8HBgwfx+eefY9SoURg4cCC8Xi9effVVjBgxAgCwdetW7Nixo8nGWjo544wzUFJSgldffVW96NTW1mLDhg1qlmVZWRkOHDiAjRs3YuDAgQCA1atXIxaLYdCgQc1V9RPi3//+N/bu3ate8k6ltjGNRHOrq9sy27dvF++++66YMWOGyM7OFu+++6549913RV1dnRBCiL///e/iscceEx988IH49NNPxcKFC0VmZqaYNm2aKuOLL74QmZmZ4o477hBbtmwRCxYsEG63Wyxbtqy5miWEOHrbIpGIOPfcc8WQIUPEpk2bxLJly0RRUZGYOnWqKqOlts3kzTffFPPnzxebNm0Sn3/+ufjTn/4kioqKxOjRo9U+Bw4cEMXFxWLUqFFi8+bN4plnnhGZmZli0aJFzVjzY+OZZ54Rfr9fLFmyRHz00UfixhtvFPn5+dqMvJbO7bffLtauXSu+/PJLsX79ejF48GBRWFgo9uzZI4QQ4qabbhKdO3cWq1evFv/6179EWVmZKCsra+Zap6aurk7dUwDEvHnzxLvvviu2b98uhBBi9uzZIj8/X/ztb38T77//vhg+fLg444wzxOHDh1UZQ4cOFf379xcbNmwQb7zxhjj77LPF9ddf31xNUhypbXV1deKXv/ylqKqqEl9++aVYtWqVGDBggDj77LNFQ0ODKqOlto1pGfCLTzMyZswYASDhz5o1a4QQ9hTMfv36iezsbJGVlSX69u0rHnnkERGNRrVy1qxZI/r16yd8Pp/o1q2bWLx4cdM3xuBobRNCiG3btokrrrhCZGRkiMLCQnH77beLcDisldMS22ayceNGMWjQIJGXlycCgYDo2bOnuP/++7UHsRBCvPfee+LCCy8Ufr9fnH766WL27NnNVOPj57e//a3o3Lmz8Pl84vzzzxdvvfVWc1fpuLj22mtFx44dhc/nE6effrq49tprxWeffaa2Hz58WPziF78QBQUFIjMzU/zgBz8Qu3btasYaH5k1a9Ykvb/GjBkjhLCntP/qV78SxcXFwu/3i8suu0xs3bpVK2Pv3r3i+uuvF9nZ2SI3N1f87Gc/U/8xaU6O1LZDhw6JIUOGiKKiIuH1ekWXLl3EDTfckPAS3lLbxrQMLCEcc6MZhmEYhmFOYdjHh2EYhmGYNgO/+DAMwzAM02bgFx+GYRiGYdoM/OLDMAzDMEybgV98GIZhGIZpM/CLD8MwDMMwbQZ+8WEYhmEYps3ALz7MKccll1yCW2+99ZQ679ixY1XKiBOla9eusCwLlmXhwIEDKfdbsmRJQqZyJn2MHTtWXYcXXnihuavDMG0OfvFhmDTx/PPP495771XLXbt2xcMPP9x8FUrCzJkzsWvXLuTl5TV3VU551q5dm/Ql89e//jV27drVPJViGIaTlDJMumjXrl1zV+Go5OTktJgM1c6ErW2JvLw8fvFkmGaEv/gwpzz79+/H6NGjUVBQgMzMTFxxxRX49NNP1XYK7Sxfvhw9e/ZEdnY2hg4dqv2vPBKJYMKECcjPz0f79u0xefJkjBkzRgs/OUNdl1xyCbZv347bbrtNhTUAYPr06SpjNvHwww+ja9euajkajWLSpEnqXHfeeSfMzDKxWAyVlZU444wzkJGRgb59++L//u//Tqh/lixZgs6dOyMzMxM/+MEPsHfv3oR9/va3v2HAgAEIBALo1q0bZsyYgUgkorZ//PHHuPDCCxEIBNCrVy+sWrVKC+Vs27YNlmXh2WefxcUXX4xAIICnnnoKAPD73/8ePXv2RCAQQI8ePbBw4ULt3Dt37sSPf/xj5Ofno127dhg+fDi2bdumtq9duxbnn38+srKykJ+fjwsuuADbt28/prYfrV3z5s1D7969kZWVhdLSUvziF7/AwYMH1fbt27fjqquuQkFBAbKysnDOOefg5ZdfxrZt2/C9730PAFBQUADLsjB27NhjqhPDMI0Lv/gwpzxjx47Fv/71L/z9739HVVUVhBD4/ve/j3A4rPY5dOgQHnzwQfzxj3/EunXrsGPHDvzyl79U2x944AE89dRTWLx4MdavX4/a2toj6jOef/55dOrUSYWWjie08dBDD2HJkiX4wx/+gDfeeAP79u3D0qVLtX0qKyvx5JNP4pFHHsGHH36I2267DT/96U/x2muvHXvHANiwYQPGjRuHm2++GZs2bcL3vvc93Hfffdo+r7/+OkaPHo2JEyfio48+wqJFi7BkyRLMmjULgP2idvXVVyMzMxMbNmzAo48+irvuuivp+aZMmYKJEydiy5YtKC8vx1NPPYVp06Zh1qxZ2LJlC+6//3786le/whNPPAHA/ipUXl6OnJwcvP7661i/fr16MQ2FQohEIrj66qtx8cUX4/3330dVVRVuvPFG9aJ5JI7WLgBwuVz4zW9+gw8//BBPPPEEVq9ejTvvvFNtr6ioQDAYxLp16/DBBx/ggQceQHZ2NkpLS/HXv/4VALB161bs2rULv/71r4/r2jAM00g0b45Uhkk/F198sZg4caIQQohPPvlEABDr169X27/55huRkZEh/vKXvwghhFi8eLEAoGXrXrBggSguLlbLxcXFYu7cuWo5EomIzp07i+HDhyc9rxBCdOnSRcyfP1+r2z333CP69u2rrZs/f77o0qWLWu7YsaOYM2eOWg6Hw6JTp07qXA0NDSIzM1O8+eabWjnjxo0T119/fcp+SVaf66+/Xnz/+9/X1l177bUiLy9PLV922WXi/vvv1/b54x//KDp27CiEEOKVV14RHo9Hy2a+cuVKAUAsXbpUCCHEl19+KQCIhx9+WCvnzDPPFE8//bS27t577xVlZWXqPN27dxexWExtDwaDIiMjQyxfvlzs3btXABBr165N2e5UHK1dyXjuuedE+/bt1XLv3r3F9OnTk+5LWcb379+fdLuzfxiGaTpY48Oc0mzZsgUejweDBg1S69q3b4/u3btjy5Ytal1mZibOPPNMtdyxY0fs2bMHAFBTU4Pdu3fj/PPPV9vdbjcGDhyIWCyW1vrW1NRg165dWn09Hg/OO+88Fe767LPPcOjQIVx++eXasaFQCP379z+u823ZsgU/+MEPtHVlZWVYtmyZWn7vvfewfv167UtINBpFQ0MDDh06hK1bt6K0tFTTDjn7ysl5552n/l5fX4/PP/8c48aNww033KDWRyIRpYF577338NlnnyEnJ0crp6GhAZ9//jmGDBmCsWPHory8HJdffjkGDx6MH//4x+jYseNR2360dmVmZmLVqlWorKzExx9/jNraWkQiEW37hAkTMH78eKxYsQKDBw/GiBEj0KdPn6Oem2GY5oNffBgGSBDZWpaVoKtJBy6XK6FcZ8jtWCCNyT/+8Q+cfvrp2ja/339yFUxxvhkzZuCaa65J2BYIBI6rrKysLK1cAHjssce0Fz3AfrGkfQYOHKj0QE6KiooAAIsXL8aECROwbNkyPPvss7j77ruxcuVKfPvb3z6pdm3btg1XXnklxo8fj1mzZqFdu3Z44403MG7cOIRCIWRmZuLnP/85ysvL8Y9//AMrVqxAZWUlHnroIdxyyy3H1S8MwzQd/OLDnNL07NkTkUgEGzZswHe+8x0AwN69e7F161b06tXrmMrIy8tDcXEx3n77bVx00UUA7C8D77zzToJQ2YnP50M0GtXWFRUVobq6GkIIpUPZtGmTdq6OHTtiw4YN6lyRSAQbN27EgAEDAAC9evWC3+/Hjh07cPHFFx9TG1LRs2dPbNiwQVv31ltvacsDBgzA1q1bcdZZZyUto3v37ti5cyd2796N4uJiAMDbb7991HMXFxfjtNNOwxdffIGRI0cm3WfAgAF49tln0aFDB+Tm5qYsq3///ujfvz+mTp2KsrIyPP3000d98TlauzZu3IhYLIaHHnoILpcth/zLX/6SsF9paSluuukm3HTTTZg6dSoee+wx3HLLLfD5fACQMAYYhmle+MWHOaU5++yzMXz4cNxwww1YtGgRcnJyMGXKFJx++ukYPnz4MZdzyy23oLKyEmeddRZ69OiB3/72t9i/f/8RRbRdu3bFunXrcN1118Hv96OwsBCXXHIJ/vOf/2DOnDn44Q9/iGXLluGVV17R/lGfOHEiZs+ejbPPPhs9evTAvHnzNC+YnJwc/PKXv8Rtt92GWCyGCy+8EDU1NVi/fj1yc3MxZsyYY27XhAkTcMEFF+DBBx/E8OHDsXz5ci3MBQDTpk3DlVdeic6dO+OHP/whXC4X3nvvPWzevBn33XcfLr/8cpx55pkYM2YM5syZg7q6Otx9990AcFSR8YwZMzBhwgTk5eVh6NChCAaD+Ne//oX9+/dj0qRJGDlyJObOnYvhw4dj5syZ6NSpE7Zv347nn38ed955J8LhMB599FH893//N0477TRs3boVn376KUaPHn3Uth+tXWeddRbC4TB++9vf4qqrrsL69evxyCOPaGXceuutuOKKK/Ctb30L+/fvx5o1a9CzZ08AQJcuXWBZFl566SV8//vfR0ZGBrKzs4/52jAM00g0r8SIYdKPKTLet2+fGDVqlMjLyxMZGRmivLxcfPLJJ2r74sWLNTGvEEIsXbpUOG+PcDgsbr75ZpGbmysKCgrE5MmTxY9+9CNx3XXXpTxvVVWV6NOnj/D7/VpZv/vd70RpaanIysoSo0ePFrNmzdLEzeFwWEycOFHk5uaK/Px8MWnSJDF69GhNSB2LxcTDDz8sunfvLrxerygqKhLl5eXitddeS9kvycTNQgjx+OOPi06dOomMjAxx1VVXiQcffDChP5YtWya+853viIyMDJGbmyvOP/988eijj6rtW7ZsERdccIHw+XyiR48e4sUXXxQAxLJly4QQcXHzu+++m3D+p556SvTr10/4fD5RUFAgLrroIvH888+r7bt27RKjR48WhYWFwu/3i27duokbbrhB1NTUiOrqanH11VeLjh07Cp/PJ7p06SKmTZsmotFoyn44nnbNmzdPdOzYUY2bJ598UhMs33zzzeLMM88Ufr9fFBUViVGjRolvvvlGHT9z5kxRUlIiLMsSY8aM0c4NFjczTLNgCdEIQgaGOcWJxWLo2bMnfvzjH2tuzS2Zrl274tZbb22SdB7r16/HhRdeiM8++0wTjTNxLMvC0qVLTzoVCcMwxwf7+DDMMbB9+3Y89thj+OSTT/DBBx9g/Pjx+PLLL/GTn/ykuat2XEyePBnZ2dmoqalJa7lLly7FypUrsW3bNqxatQo33ngjLrjgAn7pScJNN93EIS+GaUb4iw/DHAM7d+7Eddddh82bN0MIgXPPPRezZ89WAuTWwPbt29UMsm7duinBbjp48skncd9992HHjh0oLCzE4MGD8dBDD6F9+/ZpO8fxcs4556R0cF60aFFKQXVjs2fPHtTW1gKwbROcM90Yhml8+MWHYZhTEueLnklxcXGCNxDDMG0DfvFhGIZhGKbNwBofhmEYhmHaDPziwzAMwzBMm4FffBiGYRiGaTPwiw/DMAzDMG0GfvFhGIZhGKbNwC8+DMMwDMO0GfjFh2EYhmGYNgO/+DAMwzAM02b4/y2jy9QetSG8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dset.sum(dim=\"time\")[\"tx90pETCCDI\"].plot()" + ] + }, + { + "cell_type": "markdown", + "id": "8a9be89c-ac03-4e51-9cb0-65bb4af02b81", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## What happens if the data get's lost?\n", + "\n", + "Let's delete the data:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "d8731d29-47af-48d5-9f23-ded8d31ad269", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "!rm -fr /scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5" + ] + }, + { + "cell_type": "markdown", + "id": "3147eb51", + "metadata": {}, + "source": [ + "The data is still in the databrowser:" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "34ee1fbe-9a67-4342-93c9-06fcabf56573", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['/scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5/cmip5/output1/mpi-m/mpi-esm-lr/historical/yr/atmos/yr/r1i1p1/v20230911/tx90pETCCDI/tx90pETCCDI_yr_mpi-esm-lr_historical_r1i1p1_199007020000-199207011200.nc']" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(freva.databrowser(variable=\"tx90petccdi\"))" + ] + }, + { + "cell_type": "markdown", + "id": "5d8604c6-a208-4595-b70b-289fd010a4e6", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "Because of that the data can be re-created:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "666b5193-a70f-4e8d-a063-05097c6e5e04", + "metadata": { + "slideshow": { + "slide_type": "-" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd49267695d047eab2d5432fa1ed7041", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (time: 3, bnds: 2, lon: 192, lat: 96)\n",
+       "Coordinates:\n",
+       "  * time         (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00\n",
+       "  * lon          (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1\n",
+       "  * lat          (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06\n",
+       "    height       float64 ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    time_bnds    (time, bnds) datetime64[ns] dask.array<chunksize=(3, 2), meta=np.ndarray>\n",
+       "    tx90pETCCDI  (time, lat, lon) float32 dask.array<chunksize=(3, 96, 192), meta=np.ndarray>\n",
+       "Attributes: (12/36)\n",
+       "    CDI:                      Climate Data Interface version 2.0.5 (https://m...\n",
+       "    Conventions:              CF-1.4\n",
+       "    source:                   MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...\n",
+       "    institution:              Max Planck Institute for Meteorology\n",
+       "    institute_id:             MPI-M\n",
+       "    experiment_id:            historical\n",
+       "    ...                       ...\n",
+       "    ETCCDI_software:          climdex.pcic\n",
+       "    ETCCDI_software_version:  1.1.11\n",
+       "    frequency:                yr\n",
+       "    creation_date:            2023-09-11T20:05:11Z\n",
+       "    title:                    ETCCDI indices computed on MPI-ESM-LR model out...\n",
+       "    CDO:                      Climate Data Operators version 2.0.5 (https://m...
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 3, bnds: 2, lon: 192, lat: 96)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00\n", + " * lon (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1\n", + " * lat (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06\n", + " height float64 ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " time_bnds (time, bnds) datetime64[ns] dask.array\n", + " tx90pETCCDI (time, lat, lon) float32 dask.array\n", + "Attributes: (12/36)\n", + " CDI: Climate Data Interface version 2.0.5 (https://m...\n", + " Conventions: CF-1.4\n", + " source: MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...\n", + " institution: Max Planck Institute for Meteorology\n", + " institute_id: MPI-M\n", + " experiment_id: historical\n", + " ... ...\n", + " ETCCDI_software: climdex.pcic\n", + " ETCCDI_software_version: 1.1.11\n", + " frequency: yr\n", + " creation_date: 2023-09-11T20:05:11Z\n", + " title: ETCCDI indices computed on MPI-ESM-LR model out...\n", + " CDO: Climate Data Operators version 2.0.5 (https://m..." + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dset = xr.open_mfdataset(\n", + " freva.databrowser(variable=\"tx90petccdi\",\n", + " execute_future=True\n", + " )\n", + ")\n", + "dset" + ] + } + ], + "metadata": { + "celltoolbar": "Slideshow", + "kernelspec": { + "display_name": "freva-dev", + "language": "python", + "name": "frev-dev" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "2286aa25721f441b8f22cbdcce4c6bab": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_fb04cb54a3204412a958a0055e186784", + "outputs": [ + { + "data": { + "text/html": "
⛈  Executing futures ...\n
\n", + "text/plain": "⛈ Executing futures ...\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "61acf91180514d5e803f091435c1612e": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_9c18d70ab886442f9112929e378411d7", + "outputs": [ + { + "data": { + "text/html": "
⛈  Executing futures ...\n
\n", + "text/plain": "⛈ Executing futures ...\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "9c18d70ab886442f9112929e378411d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "c7825b1332ed4b48a784b88ef87270fd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "dd49267695d047eab2d5432fa1ed7041": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "layout": "IPY_MODEL_c7825b1332ed4b48a784b88ef87270fd", + "outputs": [ + { + "data": { + "text/html": "
🌧  Executing futures ...\n
\n", + "text/plain": "🌧 Executing futures ...\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + }, + "fb04cb54a3204412a958a0055e186784": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/talks/FrevaFutures/FuturesExample.md b/talks/FrevaFutures/FuturesExample.md new file mode 100644 index 0000000..f1bcc7f --- /dev/null +++ b/talks/FrevaFutures/FuturesExample.md @@ -0,0 +1,1305 @@ +# Registering a dataset that will exist in the future + +## Here we use a freva plugin run that has been applied + + +```python +import freva +import xarray as xr +from freva._futures import Futures +hist_id = 3085 # We can get this ID using the freva.history command +_ = Futures.register_future_from_history_id(hist_id) +``` + +## Let's search for the data + + +```python +list(freva.databrowser(variable="tx90petccdi")) +``` + + + + + ['future:///scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5/cmip5/output1/mpi-m/mpi-esm-lr/historical/yr/atmos/1day/r1i1p1/tx90pETCCDI/tx90pETCCDI_1day_mpi-esm-lr_historical_r1i1p1_199007020000-199207011200'] + + + +## The data doesn't exist yet, but can be created on demand: + + +```python +dset = xr.open_mfdataset( + freva.databrowser(variable="tx90petccdi", + execute_future=True + ) +) +dset +``` + + + Output() + + + +

+
+
+
+
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset>
+Dimensions:      (time: 3, bnds: 2, lon: 192, lat: 96)
+Coordinates:
+  * time         (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00
+  * lon          (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1
+  * lat          (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06
+    height       float64 ...
+Dimensions without coordinates: bnds
+Data variables:
+    time_bnds    (time, bnds) datetime64[ns] dask.array<chunksize=(3, 2), meta=np.ndarray>
+    tx90pETCCDI  (time, lat, lon) float32 dask.array<chunksize=(3, 96, 192), meta=np.ndarray>
+Attributes: (12/36)
+    CDI:                      Climate Data Interface version 2.0.5 (https://m...
+    Conventions:              CF-1.4
+    source:                   MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...
+    institution:              Max Planck Institute for Meteorology
+    institute_id:             MPI-M
+    experiment_id:            historical
+    ...                       ...
+    ETCCDI_software:          climdex.pcic
+    ETCCDI_software_version:  1.1.11
+    frequency:                yr
+    creation_date:            2023-09-11T19:57:50Z
+    title:                    ETCCDI indices computed on MPI-ESM-LR model out...
+    CDO:                      Climate Data Operators version 2.0.5 (https://m...
+ + + +### The data has bee loaded, we can work with it (plot it) + + +```python +dset.sum(dim="time")["tx90pETCCDI"].plot() +``` + + + + + + + + + + +![png](output_8_1.png) + + + +## What happens if the data get's lost? + +Let's delete the data: + + +```python +!rm -fr /scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5 +``` + +The data is still in the databrowser: + + +```python +list(freva.databrowser(variable="tx90petccdi")) +``` + + + + + ['/scratch/b/b380001/futures/6def5135a687932d27f419a3e993b5bd68aa03425ff0378cfb7745c0aef497a5/cmip5/output1/mpi-m/mpi-esm-lr/historical/yr/atmos/yr/r1i1p1/v20230911/tx90pETCCDI/tx90pETCCDI_yr_mpi-esm-lr_historical_r1i1p1_199007020000-199207011200.nc'] + + + +Because of that the data can be re-created: + + +```python +dset = xr.open_mfdataset( + freva.databrowser(variable="tx90petccdi", + execute_future=True + ) +) +dset +``` + + + Output() + + + +

+
+
+
+
+
+
+
+ + + + + + + + + + + + + + +
<xarray.Dataset>
+Dimensions:      (time: 3, bnds: 2, lon: 192, lat: 96)
+Coordinates:
+  * time         (time) datetime64[ns] 1990-07-02 1991-07-02 1992-07-01T12:00:00
+  * lon          (lon) float64 -179.1 -177.2 -175.3 -173.4 ... 175.3 177.2 179.1
+  * lat          (lat) float64 -89.06 -87.19 -85.31 -83.44 ... 85.31 87.19 89.06
+    height       float64 ...
+Dimensions without coordinates: bnds
+Data variables:
+    time_bnds    (time, bnds) datetime64[ns] dask.array<chunksize=(3, 2), meta=np.ndarray>
+    tx90pETCCDI  (time, lat, lon) float32 dask.array<chunksize=(3, 96, 192), meta=np.ndarray>
+Attributes: (12/36)
+    CDI:                      Climate Data Interface version 2.0.5 (https://m...
+    Conventions:              CF-1.4
+    source:                   MPI-ESM-LR 2011; URL: http://svn.zmaw.de/svn/co...
+    institution:              Max Planck Institute for Meteorology
+    institute_id:             MPI-M
+    experiment_id:            historical
+    ...                       ...
+    ETCCDI_software:          climdex.pcic
+    ETCCDI_software_version:  1.1.11
+    frequency:                yr
+    creation_date:            2023-09-11T20:05:11Z
+    title:                    ETCCDI indices computed on MPI-ESM-LR model out...
+    CDO:                      Climate Data Operators version 2.0.5 (https://m...
+ + diff --git a/talks/FrevaFutures/index.slides.html b/talks/FrevaFutures/index.slides.html new file mode 100644 index 0000000..dfaa199 --- /dev/null +++ b/talks/FrevaFutures/index.slides.html @@ -0,0 +1,16336 @@ + + + + + + + + + +FuturesExample slides + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+
+
+
+
+ +
+
+
+
+ + + + + + + + + + + + + diff --git a/talks/FrevaFutures/output_8_1.png b/talks/FrevaFutures/output_8_1.png new file mode 100644 index 0000000..a7867e4 Binary files /dev/null and b/talks/FrevaFutures/output_8_1.png differ