-
Notifications
You must be signed in to change notification settings - Fork 3
/
hamradio.tex
executable file
·265 lines (214 loc) · 7.56 KB
/
hamradio.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
%\documentclass[draft]{beamer}
\documentclass{beamer}
\usepackage{thumbpdf} % Thumbnails for PDF versions
\usepackage{hyperref}
\usepackage{pgf}
\usepackage{tikz}
\usepackage{bm}
\usepackage{movie15}
\usepackage{textcomp}
\definecolor{green::dark}{rgb}{0.,0.7,0}
\title{Advanced Amateur Radio Licence}
\author{Rupert Brooks}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\setbeamertemplate{navigation symbols}{}
%\setbeamertemplate{frametitle}[default][right]
\setbeamertemplate{frametitle}{
\begin{flushright}
\insertframetitle\\
{\small \insertframesubtitle}
\end{flushright}
}
\setbeamertemplate{footline}[frame number]
\usefonttheme{professionalfonts}
%\setbeamertemplate{background}
%{
%\put(-10,0){
%\includegraphics[height=0.2\paperwidth]{logo.jpg}
%}%
%\put(0,2){
%\includegraphics[width=0.5in]{MICCAI_Logo_CMYK.pdf}
%}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\lemma{{\large \usebeamercolor[fg]{titlelike} Lemma\\}}
\def\proof{{\large \usebeamercolor[fg]{titlelike} Proof\\}}
\def\endproof{\qed}
\def\point#1{{\large \usebeamercolor[fg]{titlelike} #1\\}}
\def\herepoint#1{{\large \usebeamercolor[fg]{titlelike} #1}}
\def\emph#1{{\usebeamercolor[fg]{titlelike} #1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\maketitle
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% \section*{Outline}
%% \begin{frame}[allowframebreaks]
%% \frametitle{Outline}
%% \tableofcontents
%% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Outline}
\begin{frame}{Outline}{}
\tableofcontents
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Prolegomena}
\subsection{Basics}
\begin{frame}{Units}{}
\begin{itemize}
\item Farad: Capacitance,$1F=1C/V=1s^4 \cdot A^2/m^2 \cdot kg$
\item Henry: Inductance, $1H=1Wb/A=1V \cdot s/A=1\Omega\cdot s$
\item Hertz: Frequency, $f$, also angular frequency $\omega$ in $rad/s$
\item $1Hz=2\pi rad/s; f=2\pi\omega$
\end{itemize}
\end{frame}
\begin{frame}{Concepts}{}
\begin{itemize}
\item Skin Effect: RF current in a conductor flows along the outside
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{RLC Circuits}
\subsection{Time Constant}
\begin{frame}{Time Constant}{}
\begin{itemize}
\item Time constant:
\begin{itemize}
\item RC – time required for voltage to reach 63.2\% of equilibrium
\item RL – time required for current to reach 63.2\% of equilibrium
\end{itemize}
\item Why 63.2\%? Because it is an exponential function.
\end{itemize}
\parbox{0.48\textwidth}{
\[v(t)=v_e e^{-t/RC}\]
}
\parbox{0.48\textwidth}{
\[I(t)=I_e e^{-tL/R}\]
}
Note: These are both for decay. For rise, use $1-e^{-t/RC}$
\end{frame}
\begin{frame}{Time Constant}{}
\begin{tabular}{ccc}
Time constants & $e^{-t}$ & $1-e^{-t}$ \\
\hline
0& 1.000& 0.000\\
1& 0.368& 0.632\\
2& 0.135& 0.865\\
3& 0.050& 0.950\\
4& 0.018& 0.982\\
5& 0.007& 0.993\\
\hline
\end{tabular}
\begin{itemize}
\item Circuitlab RC \url{https://www.circuitlab.com/circuit/ga5y34/simple-rc/}
\item Circuitlab RL \url{https://www.circuitlab.com/circuit/veg4ma/simple-rl/}
\end{itemize}
\end{frame}
\subsection{Reactance}
\begin{frame}{Reactance}{}
\begin{itemize}
\item In a pure resistance, current is in phase with voltage.
\item In a pure capacitance, current leads voltage by 90\textdegree
\item In a pure inductance, voltage leads current by 90\textdegree
\item Reactance and resistance can be viewed as a complex number. Impedance is the magnitude of this number.
\end{itemize}
\parbox{0.48\textwidth}{
Capacitive Reactance
$X_c=\frac{-j}{2\pi fC}$
}
\parbox{0.48\textwidth}{
Inductive Reactance
$X_i=j2\pi fL$
}
\includegraphics[width=0.4\textwidth]{images/imped.png}
Image taken from \url{http://electronicsclub.info/impedance.htm}
\end{frame}
\begin{frame}{Resonance}{}
\begin{itemize}
\item Capacitive and Inductive reactances oppose.
\item The frequency at which they exactly cancel is the resonant frequency.
\item $f=\frac{1}{2\pi\sqrt{LC}}$
\item The resonant frequency can be altered by resistance in some configurations, but not in pure series or pure parallel.
\end{itemize}
\parbox{0.48\textwidth}{
\includegraphics[width=0.2\textwidth]{images/RLC_series_circuit.png}
Attrib: \url{http://en.wikipedia.org/wiki/File:RLC_series_circuit.png}
}
\parbox{0.48\textwidth}{
\includegraphics[width=0.4\textwidth]{images/RLC_parallel_circuit.png}
Attrib: \url{http://en.wikipedia.org/wiki/File:RLC_parallel_circuit.png}
}
\end{frame}
\begin{frame}{Q factor}{}
\begin{itemize}
\item Indication of 'quality' of a resonator.
\item High Q indicates small bandwidth, and low damping.
\item $Q=\frac{1}{F_b}$
\item Series $Q=\frac{X}{R}$, Parallel $Q=\frac{R}{X}$
\item $F_b$ is width between the -3dB points
\end{itemize}
\end{frame}
\begin{frame}{Examples on circuitlab}{}
\begin{itemize}
\item \url{https://www.circuitlab.com/circuit/5xp69v/series-rlc/}
\item \url{https://www.circuitlab.com/circuit/tgbk77/parallel-rlc/}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Power Supplies}
\subsection{Rectifiers}
\begin{frame}{Rectifiers}{}
\begin{itemize}
\item Half Wave
\item Full Wave
\item Bridge
\end{itemize}
Note that the full wave is two diodes, one from each side of a center tapped transformer. Thus the full wave has
half the output voltage of a bridge (4 diodes).
Also, dont be tricked by the ripple frequency - its double the supply frequency for full and bridge rectifiers.
Diodes should be rated with a PIV of 2.8 times the transformer secondary. Just memorize it.
They state you may put bypass resistors and capacitors around the rectifiers to guard against voltage spikes. I have not seen this.
\end{frame}
\subsection{Filters}
\begin{frame}{Filters}{}
Supply filters are classified by the first component after the rectifer.
\begin{itemize}
\item Choke input
\item Capacitor input
\end{itemize}
Capacitor input has higher output voltage, but choke input can handle higher loads.
The questions state that choke input can give better regulation.
\end{frame}
\subsection{Terms and concepts}
\begin{frame}{Terms and concepts}{}
\begin{itemize}
\item {\em Bleeder Resistors} - maintain a minimum current draw, often necessary on choke input filtered systems
\item {\em Linear} vs {\em Switching} supplies
\item {\em Zener diodes} - often used as voltage reference
\item {\em Remote sensing.} It may be necessary to take feedback from near the load, if the voltage may be drawn down over long supply leads.
\item {\em dynamic regulation} Managing short term changes in load resistance.
\item {\em static regulation} Managing long term changes in load resistance.
\end{itemize}
\end{frame}
\begin{frame}{Linear regulators}{}
\begin{itemize}
\item May be configured as series (series with load) or shunt (parallel with load) configuration.
\item Often packaged as a {\em three terminal regulator}.
\item Internally, this contains
\begin{itemize}
\item voltage reference
\item error amplifier
\item sensing resistors and transistors
\item pass element
\end{itemize}
\item and is characterized by
\begin{itemize}
\item min / max input voltage
\item max output current and max output voltage.
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}