-
Notifications
You must be signed in to change notification settings - Fork 0
/
collision.py
57 lines (49 loc) · 2.02 KB
/
collision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
def intersection():
p = np.array([0, 0])
r = np.array([1, 1])
q = np.array([0.1, 0.1])
s = np.array([.1, .1])
if np.cross(r, s) == 0 and np.cross((q-p), r) == 0: # collinear
# t0 = (q − p) · r / (r · r)
# t1 = (q + s − p) · r / (r · r) = t0 + s · r / (r · r)
t0 = np.dot(q-p, r)/np.dot(r, r)
t1 = t0 + np.dot(s, r)/np.dot(r, r)
print(t1, t0)
if ((np.dot(s, r) > 0) and (0 <= t1 - t0 <= 1)) or ((np.dot(s, r) <= 0) and (0 <= t0 - t1 <= 1)):
print('collinear and overlapping, q_s in p_r')
else:
print('collinear and disjoint')
elif np.cross(r, s) == 0 and np.cross((q-p), r) != 0: # parallel r × s = 0 and (q − p) × r ≠ 0,
print('parallel')
else:
t = np.cross((q - p), s) / np.cross(r, s)
u = np.cross((q - p), r) / np.cross(r, s)
if 0 <= t <= 1 and 0 <= u <= 1:
# If r × s ≠ 0 and 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, the two line segments meet at the point p + t r = q + u s
print('intersection: ', p + t*r)
else:
print('not parallel and not intersect')
def point2segment():
p = np.array([-1, 1]) # coordination of point
a = np.array([0, 1]) # coordination of line segment end 1
b = np.array([1, 0]) # coordination of line segment end 2
ab = b-a # line ab
ap = p-a
distance = np.abs(np.cross(ab, ap)/np.linalg.norm(ab)) # d = (AB x AC)/|AB|
print(distance)
# angle Cos(θ) = A dot B /(|A||B|)
bp = p-b
cosTheta1 = np.dot(ap, ab) / (np.linalg.norm(ap) * np.linalg.norm(ab))
theta1 = np.arccos(cosTheta1)
cosTheta2 = np.dot(bp, ab) / (np.linalg.norm(bp) * np.linalg.norm(ab))
theta2 = np.arccos(cosTheta2)
if np.pi/2 <= (theta1 % (np.pi*2)) <= 3/2 * np.pi:
print('out of a')
elif -np.pi/2 <= (theta2 % (np.pi*2)) <= np.pi/2:
print('out of b')
else:
print('between a and b')
if __name__ == '__main__':
point2segment()
# intersection()