forked from ryankiros/neural-storyteller
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
230 lines (186 loc) · 6.8 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
Story generation
"""
import cPickle as pkl
import numpy
import copy
import sys
import skimage.transform
import skipthoughts
import decoder
import embedding
import lasagne
from lasagne.layers import InputLayer, DenseLayer, NonlinearityLayer, DropoutLayer
from lasagne.layers.corrmm import Conv2DMMLayer as ConvLayer
from lasagne.layers import MaxPool2DLayer as PoolLayer
from lasagne.nonlinearities import softmax
from lasagne.utils import floatX
from scipy import optimize, stats
from collections import OrderedDict, defaultdict, Counter
from numpy.random import RandomState
from scipy.linalg import norm
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
#-----------------------------------------------------------------------------#
# Specify model paths and biases here
#-----------------------------------------------------------------------------#
# Skip-thoughts
path_to_skmodels = '/u/rkiros/public_html/models/'
path_to_sktables = '/u/rkiros/public_html/models/'
# Decoder
path_to_decmodel = '/ais/gobi3/u/rkiros/storyteller/romance.npz'
path_to_dictionary = '/ais/gobi3/u/rkiros/storyteller/romance_dictionary.pkl'
# Image-sentence embedding
path_to_vsemodel = '/ais/gobi3/u/rkiros/storyteller/coco_embedding.npz'
# VGG-19 convnet
path_to_vgg = '/ais/gobi3/u/rkiros/vgg/vgg19.pkl'
# COCO training captions
path_to_captions = '/ais/gobi3/u/rkiros/storyteller/coco_train_caps.txt'
# Biases
path_to_negbias = '/ais/gobi3/u/rkiros/storyteller/caption_style.npy'
path_to_posbias = '/ais/gobi3/u/rkiros/storyteller/romance_style.npy'
#-----------------------------------------------------------------------------#
def story(z, image_loc, k=100, bw=50, lyric=False):
"""
Generate a story for an image at location image_loc
"""
# Load the image
rawim, im = load_image(image_loc)
# Run image through convnet
feats = compute_features(z['net'], im).flatten()
feats /= norm(feats)
# Embed image into joint space
feats = embedding.encode_images(z['vse'], feats[None,:])
# Compute the nearest neighbours
scores = numpy.dot(feats, z['cvec'].T).flatten()
sorted_args = numpy.argsort(scores)[::-1]
sentences = [z['cap'][a] for a in sorted_args[:k]]
print 'NEAREST-CAPTIONS: '
for s in sentences[:5]:
print s
print ''
# Compute skip-thought vectors for sentences
svecs = skipthoughts.encode(z['stv'], sentences, verbose=False)
# Style shifting
shift = svecs.mean(0) - z['bneg'] + z['bpos']
# Generate story conditioned on shift
passage = decoder.run_sampler(z['dec'], shift, beam_width=bw)
print 'OUTPUT: '
if lyric:
for line in passage.split(','):
if line[0] != ' ':
print line
else:
print line[1:]
else:
print passage
def load_all():
"""
Load everything we need for generating
"""
print path_to_decmodel
# Skip-thoughts
print 'Loading skip-thoughts...'
stv = skipthoughts.load_model(path_to_skmodels, path_to_sktables)
# Decoder
print 'Loading decoder...'
dec = decoder.load_model(path_to_decmodel, path_to_dictionary)
# Image-sentence embedding
print 'Loading image-sentence embedding...'
vse = embedding.load_model(path_to_vsemodel)
# VGG-19
print 'Loading and initializing ConvNet...'
net = build_convnet(path_to_vgg)
# Captions
print 'Loading captions...'
cap = []
with open(path_to_captions, 'rb') as f:
for line in f:
cap.append(line.strip())
# Caption embeddings
print 'Embedding captions...'
cvec = embedding.encode_sentences(vse, cap, verbose=False)
# Biases
print 'Loading biases...'
bneg = numpy.load(path_to_negbias)
bpos = numpy.load(path_to_posbias)
# Pack up
z = {}
z['stv'] = stv
z['dec'] = dec
z['vse'] = vse
z['net'] = net
z['cap'] = cap
z['cvec'] = cvec
z['bneg'] = bneg
z['bpos'] = bpos
return z
def load_image(file_name):
"""
Load and preprocess an image
"""
MEAN_VALUE = numpy.array([103.939, 116.779, 123.68]).reshape((3,1,1))
image = Image.open(file_name)
im = numpy.array(image)
# Resize so smallest dim = 256, preserving aspect ratio
if len(im.shape) == 2:
im = im[:, :, numpy.newaxis]
im = numpy.repeat(im, 3, axis=2)
h, w, _ = im.shape
if h < w:
im = skimage.transform.resize(im, (256, w*256/h), preserve_range=True)
else:
im = skimage.transform.resize(im, (h*256/w, 256), preserve_range=True)
# Central crop to 224x224
h, w, _ = im.shape
im = im[h//2-112:h//2+112, w//2-112:w//2+112]
rawim = numpy.copy(im).astype('uint8')
# Shuffle axes to c01
im = numpy.swapaxes(numpy.swapaxes(im, 1, 2), 0, 1)
# Convert to BGR
im = im[::-1, :, :]
im = im - MEAN_VALUE
return rawim, floatX(im[numpy.newaxis])
def compute_features(net, im):
"""
Compute fc7 features for im
"""
fc7 = numpy.array(lasagne.layers.get_output(net['fc7'], im, deterministic=True).eval())
return fc7
def build_convnet(path_to_vgg):
"""
Construct VGG-19 convnet
"""
net = {}
net['input'] = InputLayer((None, 3, 224, 224))
net['conv1_1'] = ConvLayer(net['input'], 64, 3, pad=1)
net['conv1_2'] = ConvLayer(net['conv1_1'], 64, 3, pad=1)
net['pool1'] = PoolLayer(net['conv1_2'], 2)
net['conv2_1'] = ConvLayer(net['pool1'], 128, 3, pad=1)
net['conv2_2'] = ConvLayer(net['conv2_1'], 128, 3, pad=1)
net['pool2'] = PoolLayer(net['conv2_2'], 2)
net['conv3_1'] = ConvLayer(net['pool2'], 256, 3, pad=1)
net['conv3_2'] = ConvLayer(net['conv3_1'], 256, 3, pad=1)
net['conv3_3'] = ConvLayer(net['conv3_2'], 256, 3, pad=1)
net['conv3_4'] = ConvLayer(net['conv3_3'], 256, 3, pad=1)
net['pool3'] = PoolLayer(net['conv3_4'], 2)
net['conv4_1'] = ConvLayer(net['pool3'], 512, 3, pad=1)
net['conv4_2'] = ConvLayer(net['conv4_1'], 512, 3, pad=1)
net['conv4_3'] = ConvLayer(net['conv4_2'], 512, 3, pad=1)
net['conv4_4'] = ConvLayer(net['conv4_3'], 512, 3, pad=1)
net['pool4'] = PoolLayer(net['conv4_4'], 2)
net['conv5_1'] = ConvLayer(net['pool4'], 512, 3, pad=1)
net['conv5_2'] = ConvLayer(net['conv5_1'], 512, 3, pad=1)
net['conv5_3'] = ConvLayer(net['conv5_2'], 512, 3, pad=1)
net['conv5_4'] = ConvLayer(net['conv5_3'], 512, 3, pad=1)
net['pool5'] = PoolLayer(net['conv5_4'], 2)
net['fc6'] = DenseLayer(net['pool5'], num_units=4096)
net['fc7'] = DenseLayer(net['fc6'], num_units=4096)
net['fc8'] = DenseLayer(net['fc7'], num_units=1000, nonlinearity=None)
net['prob'] = NonlinearityLayer(net['fc8'], softmax)
print 'Loading parameters...'
output_layer = net['prob']
model = pkl.load(open(path_to_vgg))
lasagne.layers.set_all_param_values(output_layer, model['param values'])
return net