-
Notifications
You must be signed in to change notification settings - Fork 5
/
msc_automated_v2.py
104 lines (82 loc) · 3.18 KB
/
msc_automated_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import itertools
import pandas as pd
import requests
import pickle
# Define origin and destination countries
origin = ["BR", "CO", "VE", "SR", "CW", "GY", "GF", "UY", "AR", "CL", "PE", "EC", "VN", "PY", "GY", "KH"]
destination = ["NL", "BE"]
# Create DataFrames from UN-LOCODE CSVs
country_df = pd.read_csv("../utils/country-codes.csv")
country_df.set_index("CountryCode", inplace=True)
country_dict = country_df.to_dict()["CountryName"]
# Create dictionary with country codes and names
o_dict = {code: name for code, name in country_dict.items() if code in origin}
d_dict = {code: name for code, name in country_dict.items() if code in destination}
# Load MSC port codes
with open('../pickles/msc_country_port_codes.pickle', 'rb') as handle:
country_port_codes = pickle.load(handle)
# Get all ports in origin and destination countries
o_ports = [port for port in country_port_codes["Ports"] if port["CountryIsoCode"] in origin]
d_ports = [port for port in country_port_codes["Ports"] if port["CountryIsoCode"] in destination]
# Create list of port IDs to scrape
o_ids = [port['PortId'] for port in o_ports]
d_ids = [port['PortId'] for port in d_ports]
# Create dictionary of port IDs and codes:
port_codes = {port['PortId']: port['LocationCode'] for port in o_ports + d_ports}
# Make list with all combinations
od_ids = list(itertools.product(o_ids, d_ids))
print(f"{(n_combs := len(od_ids))} combinations of ports ({len(o_ids)} origins * {len(d_ids)} destinations)")
# Use today's date, by default
from datetime import date
today = date.today()
print(today)
url = "https://www.msc.com/api/feature/tools/SearchSailingRoutes"
headers = {
"authority": "www.msc.com",
"accept": "application/json, text/plain, */*",
"content-type": "application/json",
"x-requested-with": "XMLHttpRequest"
}
data = []
for n, (o, d) in enumerate(od_ids):
o_code = port_codes[int(o)]
d_code = port_codes[int(d)]
payload = {
"FromDate": str(today),
"fromPortId": o,
"toPortId": d,
"isDirectRouteOnly": False,
"language": "en"
}
response = requests.request("POST", url, json=payload, headers=headers)
# Check if request was succesfull
rdict = response.json()
succes = rdict["IsSuccess"]
if not succes:
print(f"Warning: No succes on request {n} {o_code, d_code}")
continue
# Save data
new_data = rdict["Data"][0]
for i in range(len(new_data["Routes"])):
new_data["Routes"][i]["Origin"] = o_code
new_data["Routes"][i]["Destination"] = d_code
data.append(new_data)
if n % 5:
print(f"Scraped {n}/{n_combs}")
# Save list with dicts as Pickle
with open(f'../pickles/msc_daily_v2/connections_{today}.pickle', 'wb') as handle:
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
# Flatten trip route data
route_data = []
for d in data:
for route in d["Routes"]:
route_data.append(route)
# Create dataframe
df = pd.DataFrame(route_data)
print(f"Done. DataFrame has {df.index.size} entries")
# Move the origin and destination columns to the start
cols = df.columns.tolist()
cols = cols[-2:] + cols[:-2]
df = df[cols]
# Save as CSV
df.to_csv(f"../data/msc_daily_v2/connections_{today}.csv")