diff --git a/examples/XData Example Usage.ipynb b/examples/XData Example Usage.ipynb
deleted file mode 100644
index ad8e5da..0000000
--- a/examples/XData Example Usage.ipynb
+++ /dev/null
@@ -1,2015 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 160,
- "metadata": {},
- "outputs": [],
- "source": [
- "import sys, os\n",
- "import pandas as pd\n",
- "import numpy as np\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "\n",
- "params = {\"ytick.color\" : \"w\",\n",
- " \"xtick.color\" : \"w\",\n",
- " \"axes.labelcolor\" : \"w\",\n",
- " \"axes.edgecolor\" : \"w\"}\n",
- "plt.rcParams.update(params)\n",
- "\n",
- "\n",
- "sys.path.append('../')\n",
- "import xai\n",
- "from xai.xdata import XData\n",
- "from importlib import reload\n",
- "reload(xai)\n",
- "reload(xai.xdata)\n",
- "import xai\n",
- "from xai.xdata import XData"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 158,
- "metadata": {},
- "outputs": [],
- "source": [
- "csv_path = 'data/adult.data'\n",
- "csv_columns = [\"age\", \"workclass\", \"fnlwgt\", \"education\", \"education-num\", \"marital-status\",\n",
- " \"occupation\", \"relationship\", \"ethnicity\", \"gender\", \"capital-gain\", \"capital-loss\",\n",
- " \"hours-per-week\", \"native-country\", \"loan\"]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 159,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " age | \n",
- " workclass | \n",
- " fnlwgt | \n",
- " education | \n",
- " education-num | \n",
- " marital-status | \n",
- " occupation | \n",
- " relationship | \n",
- " ethnicity | \n",
- " gender | \n",
- " capital-gain | \n",
- " capital-loss | \n",
- " hours-per-week | \n",
- " native-country | \n",
- " loan | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 39 | \n",
- " State-gov | \n",
- " 77516 | \n",
- " Bachelors | \n",
- " 13 | \n",
- " Never-married | \n",
- " Adm-clerical | \n",
- " Not-in-family | \n",
- " White | \n",
- " Male | \n",
- " 2174 | \n",
- " 0 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 50 | \n",
- " Self-emp-not-inc | \n",
- " 83311 | \n",
- " Bachelors | \n",
- " 13 | \n",
- " Married-civ-spouse | \n",
- " Exec-managerial | \n",
- " Husband | \n",
- " White | \n",
- " Male | \n",
- " 0 | \n",
- " 0 | \n",
- " 13 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 38 | \n",
- " Private | \n",
- " 215646 | \n",
- " HS-grad | \n",
- " 9 | \n",
- " Divorced | \n",
- " Handlers-cleaners | \n",
- " Not-in-family | \n",
- " White | \n",
- " Male | \n",
- " 0 | \n",
- " 0 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 53 | \n",
- " Private | \n",
- " 234721 | \n",
- " 11th | \n",
- " 7 | \n",
- " Married-civ-spouse | \n",
- " Handlers-cleaners | \n",
- " Husband | \n",
- " Black | \n",
- " Male | \n",
- " 0 | \n",
- " 0 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 28 | \n",
- " Private | \n",
- " 338409 | \n",
- " Bachelors | \n",
- " 13 | \n",
- " Married-civ-spouse | \n",
- " Prof-specialty | \n",
- " Wife | \n",
- " Black | \n",
- " Female | \n",
- " 0 | \n",
- " 0 | \n",
- " 40 | \n",
- " Cuba | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " age workclass fnlwgt education education-num \\\n",
- "0 39 State-gov 77516 Bachelors 13 \n",
- "1 50 Self-emp-not-inc 83311 Bachelors 13 \n",
- "2 38 Private 215646 HS-grad 9 \n",
- "3 53 Private 234721 11th 7 \n",
- "4 28 Private 338409 Bachelors 13 \n",
- "\n",
- " marital-status occupation relationship ethnicity gender \\\n",
- "0 Never-married Adm-clerical Not-in-family White Male \n",
- "1 Married-civ-spouse Exec-managerial Husband White Male \n",
- "2 Divorced Handlers-cleaners Not-in-family White Male \n",
- "3 Married-civ-spouse Handlers-cleaners Husband Black Male \n",
- "4 Married-civ-spouse Prof-specialty Wife Black Female \n",
- "\n",
- " capital-gain capital-loss hours-per-week native-country loan \n",
- "0 2174 0 40 United-States <=50K \n",
- "1 0 0 13 United-States <=50K \n",
- "2 0 0 40 United-States <=50K \n",
- "3 0 0 40 United-States <=50K \n",
- "4 0 0 40 Cuba <=50K "
- ]
- },
- "execution_count": 159,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df = pd.read_csv(csv_path, names=csv_columns)\n",
- "df.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 55,
- "metadata": {
- "scrolled": false
- },
- "outputs": [],
- "source": [
- "xd = XData(\"loan\", df)\n",
- "xd.set_protected([\"gender\", \"ethnicity\", \"native-country\", \"age\"])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 56,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " age | \n",
- " workclass | \n",
- " fnlwgt | \n",
- " education | \n",
- " education-num | \n",
- " marital-status | \n",
- " occupation | \n",
- " relationship | \n",
- " ethnicity | \n",
- " gender | \n",
- " capital-gain | \n",
- " capital-loss | \n",
- " hours-per-week | \n",
- " native-country | \n",
- " loan | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 39 | \n",
- " State-gov | \n",
- " 77516 | \n",
- " Bachelors | \n",
- " 13 | \n",
- " Never-married | \n",
- " Adm-clerical | \n",
- " Not-in-family | \n",
- " White | \n",
- " Male | \n",
- " 2174 | \n",
- " 0 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 50 | \n",
- " Self-emp-not-inc | \n",
- " 83311 | \n",
- " Bachelors | \n",
- " 13 | \n",
- " Married-civ-spouse | \n",
- " Exec-managerial | \n",
- " Husband | \n",
- " White | \n",
- " Male | \n",
- " 0 | \n",
- " 0 | \n",
- " 13 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 38 | \n",
- " Private | \n",
- " 215646 | \n",
- " HS-grad | \n",
- " 9 | \n",
- " Divorced | \n",
- " Handlers-cleaners | \n",
- " Not-in-family | \n",
- " White | \n",
- " Male | \n",
- " 0 | \n",
- " 0 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 53 | \n",
- " Private | \n",
- " 234721 | \n",
- " 11th | \n",
- " 7 | \n",
- " Married-civ-spouse | \n",
- " Handlers-cleaners | \n",
- " Husband | \n",
- " Black | \n",
- " Male | \n",
- " 0 | \n",
- " 0 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 28 | \n",
- " Private | \n",
- " 338409 | \n",
- " Bachelors | \n",
- " 13 | \n",
- " Married-civ-spouse | \n",
- " Prof-specialty | \n",
- " Wife | \n",
- " Black | \n",
- " Female | \n",
- " 0 | \n",
- " 0 | \n",
- " 40 | \n",
- " Cuba | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " age workclass fnlwgt education education-num \\\n",
- "0 39 State-gov 77516 Bachelors 13 \n",
- "1 50 Self-emp-not-inc 83311 Bachelors 13 \n",
- "2 38 Private 215646 HS-grad 9 \n",
- "3 53 Private 234721 11th 7 \n",
- "4 28 Private 338409 Bachelors 13 \n",
- "\n",
- " marital-status occupation relationship ethnicity gender \\\n",
- "0 Never-married Adm-clerical Not-in-family White Male \n",
- "1 Married-civ-spouse Exec-managerial Husband White Male \n",
- "2 Divorced Handlers-cleaners Not-in-family White Male \n",
- "3 Married-civ-spouse Handlers-cleaners Husband Black Male \n",
- "4 Married-civ-spouse Prof-specialty Wife Black Female \n",
- "\n",
- " capital-gain capital-loss hours-per-week native-country loan \n",
- "0 2174 0 40 United-States <=50K \n",
- "1 0 0 13 United-States <=50K \n",
- "2 0 0 40 United-States <=50K \n",
- "3 0 0 40 United-States <=50K \n",
- "4 0 0 40 Cuba <=50K "
- ]
- },
- "execution_count": 56,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "xd.df.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 57,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "['gender', 'ethnicity', 'native-country', 'age']\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEoCAYAAACzVD1FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAHY1JREFUeJzt3Xt0VOW9//F3uNPKMV7AAvFYNBEJBiJ3RUVFrtaAFRG0BdRCRSnFXpac6q+61HOEVlvrDQvHC1gQFaugpXIQxVsFAbVFQBqtVAJZIEFURG4yvz/2zpDwJBAhMJF5v9aaNXue2XvPd8Iwn3n2s+eZjEQigSRJZdVKdQGSpJrHcJAkBQwHSVLAcJAkBQwHSVLAcJAkBQwHSVLAcJAkBQwHSVLAcJAkBeqkuoAD4LwfkvT1bQAa72slew6SlF7+XZWVDAdJUsBwkCQFDAdJUuCbPCAd2LFjB0VFRWzdujXVpUgHVYMGDcjKyqJu3bqpLkWHqcMqHIqKimjUqBHf/e53ycjISHU50kGRSCQoKSmhqKiIFi1apLocHaYOq8NKW7du5ZhjjjEYdFjLyMjgmGOOsYesg+qwCgfAYFBa8HWug+2wC4dUKikpIT8/n/z8fL7zne/QvHlz8vPzyczMJDc3t9ofb/78+Xzve9/7Wtucc845LF68OGh/5JFHGDVq1D637927N5mZmcHjfvjhh3Tu3JmcnBwuvfRStm/fDsBHH33Eueeey2mnnUabNm2YPXs2ANu3b+eKK64gLy+Ptm3bMn/+/HI1tmzZMvm3XL9+fYW13H777WRnZ9OyZUvmzJmTbH/++edp2bIl2dnZjBs3rtLnMmbMGF555RUAhg0bRosWLZKP+c477wDRIZzRo0eTnZ1NmzZteOuttyrc15IlS8jLyyM7O5vRo0dT+tvsGzdupEePHuTk5NCjRw8++eQTAJ566ilat27NWWedRUlJCQAffPABgwYNSu5z+/btnH322ezcubPS5yAdLIfVmEOqHXPMMck3lZtvvpkjjjiCX/ziF6xatapKb+I7d+6kTp2a/U/yy1/+ki1btvDHP/6xXPv111/Pddddx6BBg7j66qt58MEHGTlyJLfddhsDBw5k5MiRLF++nL59+7Jq1SomTZoEwNKlS1m/fj19+vRh0aJF1KoVfV6ZOnUqHTp0qLSO5cuXM336dJYtW8batWs5//zz+ec//wnAtddey9y5c8nKyqJjx44UFBQE4bxx40YWLFjAXXfdlWz77W9/y4ABA8qt99e//pXCwkIKCwtZuHAhI0eOZOHChUE9I0eOZOLEiXTp0oW+ffvy/PPP06dPH8aNG0f37t0ZO3Ys48aNY9y4cYwfP54777yTBQsWMH36dKZNm8ZPfvITbrzxRm699dbkPuvVq0f37t15/PHHufzyy6vyz/O1tOt8f7XvM529tfCaVJdQrew5HCJfffUVw4cPp3Xr1vTs2ZMvv/wSiD4l/+pXv6Jbt2784Q9/4OOPP+biiy+mY8eOdOzYkddffx2Al19+Ofmp9rTTTuPzzz8HYPPmzQwYMIBTTjmFyy+/PPmJdd68eZx22mnk5eVx5ZVXsm3btqCmhx9+mJNPPplu3bolH2dfunfvTqNGjcq1JRIJXnzxxeQb69ChQ3nmmWeA6PDHZ599BsCnn35Ks2bNgOjNvXv37gA0adKEzMzMCns0lZk5cyaDBg2ifv36tGjRguzsbN58803efPNNsrOzOfHEE6lXrx6DBg1i5syZwfYzZsygd+/eVXqcIUOGkJGRQZcuXdi0aRPFxcXl1ikuLuazzz7j9NNPJyMjgyFDhiSf/8yZMxk6dGjwd6lVqxbbtm1jy5Yt1K1bl1dffZWmTZuSk5NTbt/9+/dn6tSpVf67SNWlZn9MPRBjxkD8Kb7a5OdDmU+aX0dhYSGPPfYYkyZNYuDAgTz11FP84Ac/AGDTpk28/PLLAFx22WVcd911nHnmmXz00Uf06tWLFStWcMcdd3DffffRtWtXNm/eTIMGDQB4++23WbZsGc2aNaNr1668/vrrdOjQgWHDhjFv3jxOPvlkhgwZwoQJExgzZkyynuLiYm666SaWLFnCkUcemTz0AzBr1iwWL17MLbfcUqXnVlJSQmZmZrLXk5WVxZo1a4CoB9WzZ0/uuecevvjiC1544QUA2rZtm3yDX716NUuWLGH16tV06tQJgCuuuILatWtz8cUXc+ONNwbH2NesWUOXLl2St8s+5vHHH1+uvaJP+q+//nrQS7jhhhu45ZZb6N69O+PGjaN+/fqsWbMm2N+aNWto2rRpuVqysrIqrGXdunXJdZs2bZo8RHbTTTfRq1cvmjVrxp/+9CcGDhzI9OnTgzpPPfVUFi1aVMFfXTq47DkcIqXHswHat2/PqlWrkvddeumlyeUXXniBUaNGkZ+fT0FBAZ999hmff/45Xbt25Wc/+xl33303mzZtSr4Rd+rUiaysLGrVqkV+fj6rVq1i5cqVtGjRgpNPPhmIPrGWHlsvtXDhQs455xwaN25MvXr1ytVQUFBQ5WAAkr2VskrfzB977DGGDRtGUVERs2fP5oc//CG7du3iyiuvJCsriw4dOjBmzBjOOOOM5HOaOnUqS5cu5dVXX+XVV1/l0UcfrfJj7q2WsoqLi2ncePfcY7fffjvvvfceixYtYuPGjYwfP36fz60qz78yPXr0YMmSJTz77LM888wz9O3bl5UrVzJgwACGDx/Oli1bAKhduzb16tVL9hSlQ+Xw7Tns5yf8g6V+/frJ5dq1aycPKwF8+9vfTi7v2rWLN954g4YNG5bbfuzYsVxwwQXMnj2bLl26JD+B77nfnTt3VvhmVZHqOuPl2GOPZdOmTckxk6KiouThowcffJDnn38egNNPP52tW7eyYcMGmjRpwu9///vkPs4444zkIZXmzZsD0KhRIy677DLefPNNhgwZUu4xs7KyWL16dfJ22cesrL2shg0bljsVtPTTff369bniiiu444479vk4ZWspKiqqcJ3jjjuO4uJimjZtSnFxMU2aNCm37ZYtW5g8eTJz5syhZ8+ezJw5k2nTpjF16lSGDx8OwLZt25I9RelQsedQw/Ts2ZN77703ebt0gPuDDz4gLy+P66+/ng4dOvDee+9Vuo9TTjmFVatW8f777wPw6KOP0q1bt3LrdO7cmfnz51NSUsKOHTt48skn97vmjIwMzj33XGbMmAHA5MmT6devHwD/+Z//ybx58wBYsWIFW7dupXHjxmzZsoUvvvgCgLlz51KnTh1yc3PZuXMnGzZsAKJvvD/33HOceuqpwWMWFBQwffp0tm3bxocffkhhYSGdOnWiY8eOFBYW8uGHH7J9+3amT59OQUFBsH2rVq2Sfx8gOY6QSCR45plnko9ZUFDAlClTSCQSLFiwgCOPPLLcISWIgqVRo0YsWLCARCLBlClTks+/oKCAyZMnB3+XUr/5zW/46U9/St26dfnyyy/JyMigVq1ayZ5DSUkJjRs39pvQOuQMhxrm7rvvZvHixbRp04bc3FweeOABAO666y5OPfVU2rZtS8OGDenTp0+l+2jQoAEPP/wwl1xyCXl5edSqVYurr7663DpNmzbl5ptv5vTTT+f888+nXbt2yftmzZrFr3/96wr3fdZZZ3HJJZcwb948srKykqeQjh8/nt/97ndkZ2dTUlLCVVddBcCdd97JpEmTaNu2LYMHD+aRRx4hIyOD9evX065dO1q1asX48eOTh462bdtGr169aNOmDfn5+TRv3jz5CbpsXa1bt2bgwIHk5ubSu3dv7rvvPmrXrk2dOnW499576dWrF61atWLgwIG0bt06eB4XXHBBudNnL7/8cvLy8sjLy2PDhg3ceOONAPTt25cTTzyR7Oxshg8fzv337z7Dp/QwIcCECRP40Y9+RHZ2NieddFLy32fs2LHMnTuXnJwc5s6dy9ixY5PbrF27lsWLFycD4+c//zldunRh8uTJXHbZZQC89NJL9O3bt+J/aOkgyqjqIYgaKCh8xYoVtGrVKhW16BvozDPP5LnnniMzMzPVpVTq+9//PrfffjstW7YM7jvQ17unslavb9CprEuAys8Tj9lzUNq68847+eijj1JdRqW2b99O//79KwwG6WA7fAekpX3o3LlzqkvYq3r16gUD8dKhYs9BkhQwHCRJAcNBkhSoSjgcD7wErACWAT+N248G5gKF8fVRcXsGcDfwPvAPoF2ZfQ2N1y+Ml0u1B5bG29wd70OSlCJVCYedwM+BVkAX4FogFxgLzANy4uvSE7j7xG05wAhgQtx+NHAT0BnoFC+XBsqEeN3S7fY9I1oaGTZsWPILZpJ0KFTlbKXi+ALwOVEPojnQDzgnbp8MzAeuj9unEH0PYQGQCTSN150LbIy3mUsUAvOB/wDeiNunAP2Bv+7H8ylv17wD3kU5tbpX7/4Okm/C1N+SaravO+bwXeA0YCFwHLtDoxgonTSmObC6zDZFcdve2osqaP9GuvXWWznllFPo0aMHgwcP5o477uCDDz6gd+/etG/fnrPOOis59cWwYcMYPXo0Z5xxBieeeGKyd5BIJBg1ahS5ublccMEF5X7sZsmSJXTr1o327dvTq1ev5LQPe079LUkH4ut8vDwCeAoYA3y2l/UqGi9I7Ed7RUbElxpp8eLFPPXUU7z99tvs3LmTdu3a0b59e0aMGMEDDzxATk4OCxcu5JprruHFF18Eojl9XnvtNd577z0KCgoYMGAATz/9NCtXrmTp0qWsW7eO3NxcrrzySnbs2MFPfvITZs6cSePGjXn88ce54YYbeOihh4DyU39L0oGoajjUJQqGqcCf47Z1RIeLiuPr0o+3RUSD2KWygLVx+zl7tM+P27MqWL8iE+MLVB4gKfPaa6/Rr1+/5IyqF154IVu3buVvf/sbl1xySXK9sj+8079/f2rVqkVubi7r1q0D4JVXXmHw4MHUrl2bZs2acd555wGwcuVK3n33XXr06AFEPyBUdhK4stNuS9KBqEo4ZAAPEo01/K5M+yyiM47Gxdczy7SPAqYTDT5/ShQgc4D/YfcgdE/gv4jGID4nGuxeCAwB7tnfJ5RKFc1TtWvXLjIzM5Ozq+6p7JTbZbevaDrtRCJB69ateeONN4L7oPzU35J0IKoy5tAV+CFwHvBOfOlLFAo9iE5L7RHfBpgN/IvotNRJQOlsVBuBW4FF8eUWdg9OjwT+N97mA6pjMDoFzjzzTJ599lm2bt3K5s2b+ctf/sK3vvUtWrRokZwSO5FI8Pe//32v+zn77LOZPn06X331FcXFxbz00ksAtGzZko8//jgZDjt27GDZsmUH90lJSktV6Tm8RuXfO6jo9J0E0emuFXkovuxpMRBO2v8NU/pj9m3btuWEE06gQ4cOHHnkkUydOpWRI0dy2223sWPHDgYNGkTbtm0r3c9FF13Eiy++SF5eXvI3niGaa2fGjBmMHj2aTz/9lJ07dzJmzJgKp6SWpAPhlN3VbPPmzRxxxBFs2bKFs88+m4kTJ5b7rQSpujhld81yuE3Z7cnw1WzEiBEsX76crVu3MnToUINB0jeS4VDNpk2bluoSJOmAOfGeJClw2IXDN3gMRaoyX+c62A6rcGjQoAElJSX+x9FhLZFIUFJSQoMGDVJdig5jh9WYQ1ZWFkVFRXz88cepLkU6qBo0aEBWVta+V5T202EVDnXr1qVFixapLkOSvvEOq8NKkqTqYThIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpYDhIkgKGgyQpUJVweAhYD7xbpu1mYA3wTnzpW+a+/wLeB1YCvcq0947b3gfGlmlvASwECoHHgXpf5wlIkqpfVcLhEaI39j39HsiPL7PjtlxgENA63uZ+oHZ8uQ/oE68zOL4GGB/vKwf4BLjq6z8NSVJ1qko4vAJsrOL++gHTgW3Ah0S9hE7x5X3gX8D2eJ1+QAZwHjAj3n4y0L+KjyVJOkgOZMxhFPAPosNOR8VtzYHVZdYpitsqaz8G2ATs3KO9MiOAxfFFknSQ7G84TABOIjqkVAzcGbdnVLBuYj/aKzMR6BBfJEkHSZ393G5dmeVJwHPxchFwfJn7soC18XJF7RuAzLiOnXusL0lKkf3tOTQts3wRu89kmkU0IF2f6CykHOBNYFG83ILobKRB8boJ4CVgQLz9UGDmftYkSaomVek5PAacAxxL1DO4Kb6dT/Tmvgr4cbzuMuAJYDlRT+Ba4Kv4vlHAHKIzlx6K1wW4nmiA+jbgbeDB/X42kqRqkZFI7O0Qf432jS1cqgnadb4/1SUcVt5aeE2qS6iqJVRh3NZvSEuSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAnVSXcB+W7kSfvzjVFchfWNNXLE21SUcXs55ItUVVM38+VVazZ6DJCmQkUgkUl3D/vpmFL5rXqorOHzU6p7qCg4r7Trfn+oSDitvLbwm1SVU1RKgw75WsucgSQoYDpKkQFXC4SFgPfBumbajgblAYXx9VNyeAdwNvA/8A2hXZpuh8fqF8XKp9sDSeJu7431IklKoKuHwCNB7j7axwDwgJ74eG7f3idtygBHAhLj9aOAmoDPQKV4uDZQJ8bql2+35WJKkQ6wq4fAKsHGPtn7A5Hh5MtC/TPsUosHiBUAm0BToRdTD2Ah8Ei/3ju/7D+CNeJspZfYlSUqR/R1zOA4ojpeLgSbxcnNgdZn1iuK2vbUXVdAuSUqh6v4SXEXjBYn9aK/MiPgiSTqI9rfnsI7okBDx9fp4uQg4vsx6WcDafbRnVdBemYlE5+fu8xxdSdL+299wmMXuM46GAjPLtA8h6hF0AT4lOuw0B+hJNAh9VLw8J77v83jdjHjb0n1JklKkKoeVHgPOAY4l+qR/EzAOeAK4CvgIuCRedzbQl+i01C3AFXH7RuBWYFF8+xZ2D3KPJDojqiHw1/giSUqhqoTD4EraK5rLIAFcW8n6D8WXPS0GTq1CHZKkQ8RvSEuSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAgcaDquApcA7wOK47WhgLlAYXx8Vt2cAdwPvA/8A2pXZz9B4/cJ4WZKUQtXRczgXyAc6xLfHAvOAnPh6bNzeJ27LAUYAE+L2o4GbgM5Ap3i5NFAkSSlwMA4r9QMmx8uTgf5l2qcACWABkAk0BXoR9TA2Ap/Ey70PQl2SpCo60HBIAP8HLCHqDQAcBxTHy8VAk3i5ObC6zLZFcVtl7ZKkFKlzgNt3BdYSBcBc4L29rJtRQVtiL+0VGcHuEJIkHSQH2nNYG1+vB54mGjNYR3S4iPh6fbxcBBxfZtusePvK2isykWhso0Ml90uSqsGBhMO3gUZllnsC7wKz2H3G0VBgZrw8CxhC1FPoAnxKdNhpTrztUfGlZ9wmSUqRAzmsdBxRb6F0P9OA54FFwBPAVcBHwCXxOrOBvkSnsm4BrojbNwK3xtsB3BK3SZJS5EDC4V9A2wraS4DuFbQngGsr2ddD8UWSVAP4DWlJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFDAdJUsBwkCQFalI49AZWAu8DY1NciySltZoSDrWB+4A+QC4wOL6WJKVATQmHTkQ9hn8B24HpQL+UViRJaaymhENzYHWZ20VxmyQpBeqkuoBYRgVtiQraRsQXgM1EYxQ1W63uqa6gKo4FNqS6CB1aby28JtUlVJWvz+p1QlVWqinhUAQcX+Z2FrC2gvUmxhdVr8VAh1QXIVXC12cK1JTDSouAHKAFUA8YBMxKaUWSlMZqSs9hJzAKmEN05tJDwLKUViRJaaymhAPA7PiiQ89DdarJfH2mQEYiUdG4ryQpndWUMQdJUg1iOEiSAoZD+moItEx1EVIlTgDOj5cbAo1SWEtaMhzS04XAO8Dz8e18PHVYNcdwYAbwx/h2FvBM6spJT4ZDerqZaD6rTfHtd4DvpqoYaQ/XAl2Bz+LbhUCT1JWTngyH9LQT+DTVRUiV2EY0AWepOlQ8nY4OIsMhPb0LXEb0hcMc4B7gbymtSNrtZeBXRGMNPYAngWdTWlEa8nsO6elbwA1AT6JJD+cAtwJbU1mUFKsFXEX51+f/Yu/hkDIcJEmBmjR9hg6+Z9n7p6+CQ1WIVIGl7P312eZQFSJ7Dumm2z7uf/mQVCFVbF+/M/DvQ1KFAMNBklQBz1ZKTzlEXzJaTvS73aUXqSboQvQbL5uJTmn9it3fedAhYjikp4eBCUTfdzgXmAI8mtKKpN3uBQYTffmtIfAjotOtdQgZDumpITCP6DTBfxN9Y/q8VBYk7eF9ou/hfEX0Yebc1JaTfjxbKT1tJfpgUEj0C3xrcHoC1RxbiH4u+B3gN0Ax8O2UVpSGHJBOTx2BFUAm0ZffjiT6T7gglUVJsROA9UBd4Dqi1+f9RL0JHSKGgyQp4GGl9NSBaPqMEyj/GvBLRkqlf+zjfl+fh5DhkJ6mAr8k+kbqrhTXIpXaRfQN6WlE3+b/MrXlpDcPK6Wn14AzU12EVIFTiE5jvZDoezjTgP8jOu1ah5DhkJ66E/0HnEc0d36pP6emHKlClwL3AeOB36a4lrTjYaX0dAXRJ7S67D6slMBwUOo1BwYBFwGfEJ2t9HRKK0pT9hzS01IgL9VFSHt4GWgEPEE0vcvGPe7f87YOIsMhPU0Cfk90TFeqKVaxe8rusm9MGfHtEw91QenMcEhPK4CTgA+JxhxK//N5qqAkwHBIV5XNm+98+ZIAJ95LV/8GjieabO/fRHPZ+FqQlGTPIT3dRPQt6ZbAyUAz4EmgayqLklRz+GkxPV1E9HvRX8S31xKdJSJJgOGQrrYTDUCXdhudDllSOYZDenoC+CPRlN3DgReITm+VJMAxh3TWA+hJdBrrHGBuasuRVJMYDumlC/6gj6Qq8LBSerm/zPIbKatCUo1nOKSXjDLLDVJWhaQaz1lZ00st4Kj4unS5bGA4sZkkwDGHdLOKaIrujAruc2IzSUmGgyQp4JiDJClgOEiSAoaDJClgOEiSAoaDJClgOEiSAoaDdGg8AgxIdRFSVRkOUs3k7AVKKcNBCv0/4D2iacwfA34BnAQ8DywBXgVOidd9BLgb+BvwL3b3DjKAe4HlwF+AJmX23x54Od7XHKBp3D4f+J/4vp9W95OSvg4/nUjldQAuBk4j+v/xFtGb+ETgaqAQ6Ew0w+158TZNgTOJAmMWMIPop1hbAnnAcUQh8RBQF7gH6Ad8DFwK/DdwZbyvTKDbQXx+UpUYDlJ5ZwIzgS/j288SzWB7BvBkmfXql1l+hmjOquVEQQBwNlGv4yui3+h+MW5vCZzK7h9Xqg0Ul9nX49XxJKQDZThI5VU0KWEtYBOQX8k22yrZvqKJyzKAZcDplezri30VKB0KjjlI5b0GXEjUWzgCuADYAnwIXBKvkwG03cd+XgEGEfUMmgLnxu0rgcbsDoe6QOtqql2qNoaDVN4ionGDvwN/BhYDnwKXA1fF7cuIxgz25mmi8YmlwASiQWaA7USD1uPjfb1DdMhKqlGcslsKHQFsBr5F1AMYQTQwLaUNxxyk0EQgl+jQ0mQMBqUhew6SpIBjDpKkgOEgSQoYDpKkgOEgSQoYDpKkgOEgSQr8f43zsLXVHDxEAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "dark"
- },
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAFoCAYAAAC8DDcpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xl4VOX5//F3CEEQ2cJigdiCEvaEAGHpFysgCogWaEFALSBSsYor1YIKAmKtXii1COJSRUAUrWihFkWIghYVZIkgIA0CaoSfQFiEssgyvz+eZyaTnAmZyXYmcz6v65przjznnJk7wzD3POuJ8/l8iIiIBKvgdgAiIhJ9lBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERBwquh1AMWhqt4hI5PYDdQs7SDUHERFv+Sacg5QcRETEQclBREQclBxERMShPHdIO5w6dYrs7GxOnDjhdigipaZy5cokJSWRkJDgdigSw2IqOWRnZ1OtWjUaNWpEXFyc2+GIlDifz0dOTg7Z2dk0btzY7XAkhsVUs9KJEyeoXbu2EoPErLi4OGrXrq3asZS6mEoOgBKDxDx9xqUsxFxyEBGR4lNyKEE5OTmkpaWRlpbGz372Mxo2bEhaWho1a9akZcuWJf56K1as4JprrononG7durF27VpH+csvv8ztt99e6Pm9e/emZs2ajtcdOXIkbdq0ITU1lYEDB3L06FEAvvnmG3r06EFqairdunUjOzs7cM6cOXNITk4mOTmZOXPmBMpfe+01UlJSSE1NpXfv3uzfv98Rh8/n484776RJkyakpqayfv36Qp83v4EDB7Jjx47A+9KsWbPAv9/evXsBOHnyJIMHD6ZJkyZ06tSJXbt2hXyu9957j2bNmtGkSRMee+yxQPnOnTvp1KkTycnJDB48mJ9++gmAp59+mtatW9OnT59A2X/+8x/GjBkTOHffvn307t27wPhFSlNMdUi7rXbt2mRmZgIwadIkLrjgAu6991527doV1pf46dOnqVgxuv9J7rvvPo4dO8Zzzz2Xp/yvf/0r1atXB2DMmDHMmDGDcePGce+99zJs2DCGDx/OBx98wP3338+8efM4cOAAkydPZu3atcTFxdG+fXv69u1LtWrVuOuuu9iyZQt16tThT3/6EzNmzGDSpEl5Xu/dd98lKyuLrKwsVq9eza233srq1asLfN5atWrlOX/z5s2cOXOGiy++OFA2f/580tPT8xz34osvUqtWLbZv386CBQsYO3Ysr7/+ep5jzpw5w+jRo1m2bBlJSUl06NCBvn370rJlS8aOHcs999zDkCFD+MMf/sCLL77Irbfeyt///nc2btzIhAkTWLp0Kddccw1TpkxhwYIFgeetW7cu9evXZ9WqVXTp0qXI/2ZSfO06PeN2CACsX31bmb2Wag5l5MyZM9x88820atWKnj17cvz4ccD8Yn3ggQfo2rUrf/vb39i3bx8DBgygQ4cOdOjQgVWrVgGwcuXKwK/atm3bcuTIEQCOHj3KwIEDad68OTfccAM+n1lyKiMjg7Zt25KSksJNN93EyZMnHTHNnj2bpk2b0rVr18DrFKZHjx5Uq1bNUe5PDD6fj+PHjwfaxbds2UKPHj0A6N69O4sWLQJg6dKlXHnllSQmJlKrVi2uvPJK3nvvPXw+Hz6fj//973/4fD5+/PFHGjRo4Hi9RYsWMWzYMOLi4ujcuTOHDh1iz549BT5vfvPnz6dfv36F/r2LFi1i+PDhgKlpZGRkBN5jvzVr1tCkSRMuvvhiKlWqxJAhQ1i0aBE+n48PPviAgQMHAjB8+HD++c9/Bs47deoUx44dIyEhgXnz5tGnTx9HEuvfvz/z588vNE6RkhbdP1OL4+67wf6KLzFpafDUU0U6NSsri9dee40XXniBQYMGsXDhQn73u98BcOjQIVauXAnA9ddfzz333MOll17Kt99+S69evdi6dStPPPEEM2fOpEuXLhw9epTKlSsDsGHDBjZv3kyDBg3o0qULq1atIj09nRtvvJGMjAyaNm3KsGHDmDVrFnfffXcgnj179jBx4kTWrVtHjRo16N69O23btgVg8eLFrF27locffjiiv3HEiBEsWbKEli1b8uSTTwLQpk0bFi5cyF133cXbb7/NkSNHyMnJ4fvvv+eiiy4KnJuUlMT3339PQkICs2bNIiUlhapVq5KcnMzMmTMdr1XQ+QWV57dq1Squu+46R/zx8fEMGDCA8ePHExcXl+f5KlasSI0aNcjJyaFOnTrnjGX16tXk5ORQs2bNQG0wOJZ7772Xzp0706pVK7p06UL//v1DJrH09HTGjx9/jnddpHSo5lBGGjduTFpaGgDt27fP03Y9ePDgwPby5cu5/fbbSUtLo2/fvvz4448cOXKELl26MGbMGKZPn86hQ4cCXzgdO3YkKSmJChUqkJaWxq5du9i2bRuNGzemadOmgPnF+tFHH+WJZ/Xq1XTr1o26detSqVKlPDH07ds34sQApiaye/duWrRoEWh6eeKJJ1i5ciVt27Zl5cqVNGzYkIoVKzp+fYMZhXPq1ClmzZrFhg0b2L17N6mpqfzlL39xHFvQ+QWV57dnzx7q1s1dmHL+/Pls2rSJjz/+mI8//ph58+ad83WKG8vQoUPZsGEDr7zyCtOmTePOO+/k3XffZeDAgdxzzz2cPXsWgHr16rF7927H84iUttitORTxF35pOe+88wLb8fHxgWYlgKpVqwa2z549y6effkqVKlXynD9u3DiuvvpqlixZQufOnVm+fHnI5z19+nTIL6VQSmNIZHx8PIMHD2bq1KmMGDGCBg0a8NZbbwGmCWzhwoXUqFGDpKQkVqxYETgvOzubbt26BfpsLrnkEgAGDRqUp4PXLykpie+++y7P+Q0aNCjwefOrUqVKnrkCDRs2BKBatWpcf/31rFmzhmHDhgVeJykpidOnT3P48GESExPDiqVOnTocOnQo0JfkLw+2e/duPv/8cyZOnEjHjh359NNPefDBB8nIyODKK6/kxIkTjs+CSFlQzSHK9OzZkxkzZgQe+78sv/76a1JSUhg7dizp6el89dVXBT5H8+bN2bVrF9u3bwdg3rx5dO3aNc8xnTp1YsWKFeTk5HDq1Cn+8Y9/FDlmn88XeC2fz8e//vUvmjdvDsD+/fsDv4L/8pe/cNNNNwHQq1cv3n//fQ4ePMjBgwd5//336dWrFw0bNmTLli3s27cPgGXLltGiRQvHa/bt25e5c+fi8/n47LPPqFGjBvXr1y/wefNr0aJFIObTp08HRkSdOnWKd955h9atWwdexz/i6c033+Tyyy93JNUOHTqQlZXFzp07+emnn1iwYAF9+/YlLi6O7t278+abbwJmFFX+fo4JEyYwZcoUgEBfTYUKFTh27BgA//3vfwOxiJQlJYcoM336dNauXUtqaiotW7bk2WefBeCpp56idevWtGnThipVqnDVVVcV+ByVK1dm9uzZXHvttaSkpFChQgX+8Ic/5Dmmfv36TJo0iV/+8pdcccUVtGvXLrBv8eLFPPTQQyGf+1e/+hXXXnstGRkZJCUlsXTpUnw+H8OHDyclJYWUlBT27NkTOH/FihU0a9aMpk2b8sMPP/Dggw8CkJiYyIQJEwId7w899BCJiYk0aNCAiRMnctlll5GamkpmZiYPPPAAAM8++2zg/ejTpw8XX3wxTZo04eabb+aZZ5455/Pmd/XVVwdqGCdPnqRXr16kpqaSlpZGw4YNufnmmwEzRDcnJ4cmTZowbdq0QC1m9+7d9OnTBzB9ETNmzKBXr160aNGCQYMG0apVKwAef/xxpk2bRpMmTcjJyWHkyJGBGDZs2AAQ6OsZOXIkKSkprF+/PjCE9cMPP+Tqq68u8N9apLTEhdsEEYUcgW/dujXkr0yR/I4fP0737t1ZtWoV8fHxbodToMsuu4xFixY5RjHps162Ymwo6zogvbCDVHMQT6pSpQqTJ08OOZIpWuzbt48xY8Y4EoNIWYjdDmmRQoTqi4gmdevWpX///m6HIR6lmoOIiDgoOYiIiIOSg4iIOCg5iIiIQ0x3SL+R0KxEn2/QqW1FOu/RRx8NjNX3r9D65Zdfhn3+2rVrmTt3LtOnTy/wmD59+vDqq68C8Oqrr3LbbWW3eqOIxB7VHMrAo48+Wqzz09PTz5kYAJYsWULNmjU5dOhQYEKYiEhRKTmUsFdeeYWOHTuSlpbGLbfcwn333cfx48dJS0vjhhtuAM69fPfYsWPp2LEjTZs25eOPPwbyXtTn6NGjjBgxInAxnIULFwLQqFEj9u/fz7hx4/j6669JS0vjvvvuY+jQoYFlsgFuuOEGFi9eXJZviYiUQ+Ekh4uAD4GtwGbgLls+CfgeyLS3PkHn3A9sB7YBwYPJe9uy7cC4oPLGwGogC3gdqBTZnxEdtm7dyuuvv86qVavIzMwkPj6elJQUqlSpQmZmZmBd/qysLEaPHs3mzZupWbNm4AsezDo/a9as4amnnmLy5MmO15gyZQo1atRg06ZNbNy4kcsvvzzP/scee4xLLrmEzMxMpk6dyu9//3tmz54NwOHDh/nkk08Cyz6IiBQknD6H08AfgfVANczU62V231+BJ/Id3xIYArQCGgDLgaZ230zgSiAb+BxYDGwBHrfPtQB4FhgJzCrKH+SmjIwM1q1bR4cOHQCzREO9evUcx51r+e7f/va3Icv9li9fnudqYYXNnu3atSujR49m7969vPXWWwwYMCDqrzYnIu4Lp+awB5MYAI5gahANz3F8P8yX/ElgJ6aW0NHetgM7gJ/sMf2AOOBy4E17/hygXE4L9S9Al5mZSWZmJtu2bXNc3hJCL7Odf1/+8uDXiHSp7aFDhzJ//nxmz57NiBEjIjpXRLwp0j6HRkBbTBMQwO3ARuAlwP8TtiHwXdA52basoPLawCFMDSW4vNzp0aMHb775ZuDi9AcOHOCbb74hISGBU6dOlchr5F/S++DBg3n2V6tWLXAJUb8bb7yRp+z1LfyrhYqInEsk7QsXAAuBu4EfMc0+UzCro04BngRuwtQE8vMROhH5znF8KKPsLSxFHXpaVC1btuSRRx6hZ8+enD17loSEBGbOnMmoUaNITU2lXbt2/PnPfy7Wa4wfP57Ro0fTunVr4uPjmThxYqApCqB27dp06dKF1q1bc9VVVzF16lQuvPBCWrRooXV6RCRs4S7ZnQC8AywFpoXY38jub43pjAbwX9txKabzGnvv76D2H/cYsA/4Gab28Mt8xxVES3aH6dixY4HrBNSoUcPtcKQE6LNetrRkd2hxwIuYvobgxFA/aPs3gH9W12JMh/R5mFFIycAaTAd0si2rZI9ZjPmS/xAYaM8fDuSOvZRiWb58Oc2bN+eOO+5QYhCRsIXTrNQFGApswgxZBXgAuA5Iw3y57wJusfs2A29gRiGdBkYDZ+y+2zE1iXhMP8VmWz4W00H9CLABk4ykBFxxxRV8++23bochIuVMOMnhP4TuF1hyjnP+bG+hzgl13g7MaKZiK8poHpHypBxfvVHKkZiaIV25cmVycnL0n0dils/nIycnh8qVK7sdisS4mJoNlZSURHZ2Nvv27XM7FJFSU7lyZZKSktwOQ2JcTCWHhIQEGjdu7HYYIiLlXkw1K4mISMlQchAREQclBxERcVByEBERByUHERFxUHIQEREHJQcREXFQchAREQclBxERcVByEBERByUHERFxUHIQEREHJQcREXFQchAREQclBxERcVByEBERByUHERFxUHIQEREHJQcREXFQchAREQclBxERcVByEBERByUHERFxUHIQEREHJQcREXEIJzlcBHwIbAU2A3fZ8kRgGZBl72vZ8jhgOrAd2Ai0C3qu4fb4LLvt1x7YZM+Zbp9DRERcEk5yOA38EWgBdAZGAy2BcUAGkGzvx9njr7JlycAoYJYtTwQmAp2Ajnbbn1Bm2WP95/Uuxt8kIiLFFE5y2AOst9tHMDWIhkA/YI4tnwP0t9v9gLmAD/gMqAnUB3phahgHgIN2u7fdVx341J4zN+i5RETEBZH2OTQC2gKrgQsxiQN7X89uNwS+Czon25adqzw7RLmIiLikYgTHXgAsBO4GfjzHcaH6C3xFKA9llL2JiEgpCrfmkIBJDPOBt2zZD5gmIez9XrudjenE9ksCdhdSnhSiPJTngXR7ExGRUhJOcogDXsT0NUwLKl9M7oij4cCioPJh9rzOwGFMs9NSoCemE7qW3V5q9x2xx8bZc/3PJSIiLginWakLMBQz1DTTlj0APAa8AYwEvgWutfuWAH0ww1KPASNs+QFgCvC5ffywLQO4FXgZqAK8a28iIuKScJLDfyh43kGPEGU+zHDXUF6yt/zWAq3DiEVERMqAZkiLiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOISTHF4C9gJfBpVNAr4HMu2tT9C++4HtwDagV1B5b1u2HRgXVN4YWA1kAa8DlSL5A0REpOSFkxxexnyx5/dXIM3eltiylsAQoJU95xkg3t5mAlfZY66z9wCP2+dKBg4CIyP/M0REpCSFkxw+Ag6E+Xz9gAXASWAnppbQ0d62AzuAn+wx/YA44HLgTXv+HKB/mK8lIiKlpDh9DrcDGzHNTrVsWUPgu6Bjsm1ZQeW1gUPA6XzlIiLioqImh1nAJZgmpT3Ak7Y8LsSxviKUF2QUsNbeRESklFQs4nk/BG2/ALxjt7OBi4L2JQG77Xao8v1ATRvH6XzHh/K8vcG5k4iIiBRDUWsO9YO2f0PuSKbFmA7p8zCjkJKBNcDndrsxZjTSEHusD/gQGGjPHw4sKmJMIiJSQsKpObwGdAPqYGoGE+3jNMyX+y7gFnvsZuANYAumJjAaOGP33Q4sxYxceskeCzAW00H9CLABeLHIf42IiJSIOJ+v3LbOlNvARaR8adfpGbdDAGD96ttK4mnWAemFHaQZ0iIi4qDkICIiDkUdreS+bdvgllsKP05EpJie33quQZRlqNsbxX+OFSvCOkw1BxERcVCHtIhIIdQhLSIigpKDiIiEoOQgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4hBOcngJ2At8GVSWCCwDsux9LVseB0wHtgMbgXZB5wy3x2fZbb/2wCZ7znT7HCIi4qJwksPLQO98ZeOADCDZ3o+z5VfZsmRgFDDLlicCE4FOQEe77U8os+yx/vPyv5aIiJSxcJLDR8CBfGX9gDl2ew7QP6h8LuADPgNqAvWBXpgaxgHgoN3ubfdVBz6158wNei4REXFJxSKedyGwx27vAerZ7YbAd0HHZduyc5VnhygvyCh7ExGRUlTU5FCQUP0FviKUF+R5eyvsOBERKYaijlb6AdMkhL3fa7ezgYuCjksCdhdSnhSiXEREXFTU5LCY3BFHw4FFQeXDMDWCzsBhTLPTUqAnphO6lt1eavcdscfG2XP9zyUiIi4Jp1npNaAbUAfzS38i8BjwBjAS+Ba41h67BOiDGZZ6DBhhyw8AU4DP7eOHye3kvhUzIqoK8K69iYiIi+J8vnLbdF9uAxeR8qVdp2fcDgGA9atvK4mnWQekF3aQZkiLiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOBQ3OewCNgGZwFpblggsA7LsfS1bHgdMB7YDG4F2Qc8z3B6fZbdFRMRFJVFz6A6kAen28TggA0i29+Ns+VW2LBkYBcyy5YnARKAT0NFu+xOKiIi4oDSalfoBc+z2HKB/UPlcwAd8BtQE6gO9MDWMA8BBu927FOISEZEwFTc5+ID3gXWY2gDAhcAeu70HqGe3GwLfBZ2bbcsKKhcREZdULOb5XYDdmASwDPjqHMfGhSjznaM8lFHkJiERESklxa057Lb3e4G3MX0GP2Cai7D3e+12NnBR0LlJ9vyCykN5HtO3kV7AfhERKQHFSQ5VgWpB2z2BL4HF5I44Gg4sstuLgWGYmkJn4DCm2WmpPbeWvfW0ZSIi4pLiNCtdiKkt+J/nVeA94HPgDWAk8C1wrT1mCdAHM5T1GDDClh8AptjzAB62ZSIi4pLiJIcdQJsQ5TlAjxDlPmB0Ac/1kr2JiEgU0AxpERFxUHIQEREHJQcREXFQchAREQclBxERcVByEBERByUHERFxUHIQEREHJQcREXEo7qqsIjElq1Mrt0MAIHn1ZrdDEI9TzUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEFLdgvvJTZzOwQAeh/Y5nYIImKp5iAiIg5KDiIi4qDkICIiDtGUHHoD24DtwDiXYxER8bRoSQ7xwEzgKqAlcJ29FxERF0TLaKWOmBrDDvt4AdAP2FJaL/hGQnSM0Bl0SiN0JDrp/4i3RUvNoSHwXdDjbFsmIiIuiPP5fG7HAHAt0Av4vX08FFObuCPfcaPsDaAZpo/CTXWA/S7HEC30XuTSe5FL70WuaHkvfgHULeygaGlWygYuCnqcBOwOcdzz9hYt1gLpbgcRJfRe5NJ7kUvvRa5y9V5ES7PS50Ay0BioBAwBFrsakYiIh0VLzeE0cDuwFDNy6SVgs6sRiYh4WLQkB4Al9laeRFMTl9v0XuTSe5FL70WucvVeREuHtIiIRJFo6XMQEZEoouQgUjrOczsAkeJQcojchcA19lbP5VjcEg9MdTuIKPJSvscXUP76z0pCBWCQ20FEkfOBCcAL9nEy5nujXFByiMwgYA1m0t4gYDUw0NWI3HEGaA/EuR1IlPgemGW3awHvA6+4F45rzmJGHYoxGzgJ/NI+zgYecS+cyKhDOjJfAFcCe+3jusByoI1rEbnnScwvoX8A/wsqf8udcFz3OFADkzQfAxa6G45rJgDHgdfJ+7k44E44rvJPetsAtLVlX1BOvi+iaShreVCB3MQAkIN3a1+JmL//8qAyH95KDr8N2l6D+WJcg3kffou33gu/m+z96KAyH3CxC7G47SegCubvB7gEU5MoF1RziMxUIBV4zT4eDGwC/uRaROKm2efY5yP3i1K8qSfwIObyA+8DXYARwIduBhUuJYfIDcD8I8cBHwFvuxuOa5pi2tkvBFpjkmZfylGbqpSK84ExwM8xi2QmYxbJfMfNoFxUG+iM+b74jOhYeC8sSg5FU528TXJebE9dCdwHPEdue+qXmEThNXOAu4BD9nEtTJ+MF2sOrwPrgGGYz0IV4FMgzc2gXJIB9AijLCqpzyEytwAPYzrczmJ+DXi1PfV8TPt6sNNuBBIFUslNDAAHyU2YXnMJprn1Ovv4ON4b1VYZ8/+jDuaHgv/vrw40cCuoSCk5ROZeoBXlqGpYivZjvgj8Vc+BwB73wnFVBcyXwEH7OBHv/t8q152wJeQW4G5MIlgfVP4j5nLI5YJXP8BF9TVwzO0gosRozEJizTHj/HcCv3M1Ivc8CXwCvGkfXwv82b1wXDUReA9zfZb5mP65G90MyAV/s7c7gKddjqXI1OcQmbaYESqryftr6E53wokKVTG/nI+4HYjLWgHdMU0IGZTi9c/LgXLbCVtCLgc+IO9Q52DlYoizag6ReQ7zj74J0+fgRWMK2T+tTKKIPpuBfZj2ZjCjdb51LxxXVcY0sVXEDOMEM7LPK7pivid+HWJfuZkLpOQQmdMU/uUY66rZ+2ZAB3Kv2PdrvPUFEKwvpmmpAWaS5C+ArZjahNc8jumQ3kzuDygf3vpsTLT3I1yNopjUrBSZPwPfAP8ib7OSF4eyvo+Z8+FvTqqGWUqjt2sRuecLTFPCckzTY3fMaJ1Rbgblkm2Y0Vte64QO5TzM/5FG5P0h/rAr0URINYfIXG/v7w8q8+pQ1p9jRqb4/YT5T+BFp8hdSqUCZgbs465G5J4dQAJKDgCLgMOYeR/l7v1QcohMY7cDiCLzMPMc3sYkyN8Ac12NyD2HMMt0f4QZobMX7835eBrzOTgGZGI65b0+aCOJclyTVrNSeGJi9EEpaA9carc/wqw+6UVVgROY0Tk3YFZnnY+pTXjF8HPs8+HNHw7PY5LmJrcDKQolh/BMxnQyhVpozcsLrMVj1lYKroF6dYSOGHdhxvgXVhbLNmG+Fypi1pbagalF+VdUSHUvtPApOUTmPJxth4l4s0P6DkzC/AFz8Z9y9cEvIUfInQkczP9eVC/bcKLCeqBdvrLg6xl4wS8K2f9NmURRTEoOkfk30I/c9uSf2bL2rkXknu1AJ7zVdCIFuw4zYONS4OOg8mqYHw9XuBGUS54CVmFmzX/vcixFpg7pyPwTs0TCAMzyAIsx6y150XeYkRiS63zMpK9deG9W8CeYtbXqYOZ8+B0BNroSkXu2YwZo+K+z/gm5yeILyskEWtUcIjcaMwKhEWaBrU9cjcY9L2Imwv2bvE1tXpoh3ReYjmlWHI9ZVO0HzGdjLGYpb6+5GJMgfZiJgDvcDcd19THrS/0f5vNSj3LS3KiaQ3iCZ0XHYWoNmZj1YzrjrS9Ev2/trZK9edEUzNW+amDmNqRivgzrYYZyeik5VAf+jmli/QLz/6QNZoz/SMyKpF4SB6RgkkIXTMLcjhkCXi4oOYSnWr7HbxdQ7iWT3Q4gCpwF/mu3d5L7K9mL8xymYxYbHEJus0kc5rpCEJnQAAAKJUlEQVTaMzAX//GKZZhkmYlZePBRTC2qXFFyCE+oL8IKmIlPXvtF5FcXc+3sVuQuNgdmTohX+K/jUAHzhRh8YZcKbgXlklBLc/swS0VklXk07tqBqTUlYwZs7Mcsyliu+qG89gEurlcxvwiqYn4lbcNcKtOL5gNfYWaNT8Z0wn7uZkAuqIFpNlmL+Vyst4/X4b1apdeu9nYut2Cam/sDKzBNba9gPhflpqlRySEyLTE1hf7AEsz6QkNdjcg9tTGd0qcw15O+CfMfwksaYTpgG4e4eW29rVXAQziTxARM04oXncQsJ3LcbifhnAMStdSsFJkEe+uPaUc9RehJUF5wyt7vAa4GdmM+/OJNd2B+LGzHtLX7MBPfNmA6pL3kr5iO6GTMe/EJ5loww8l7rfGopuQQmecwzSdfYNYS+gXe7XN4BNOs8kfM+jHVgXtcjUjc9CPm8qiXYGrYcZjhvF+7GZRLdmKaXTdgJgCWS5rnUDxxmPWFvDYyRURinJJDeJ4C7rbb+RcRexlvXUDdvzRzQby4NLNIzFGzUnguC9oeTt7k4KWF5sCMzBGRGKfkEJ64Ara9KNRQPK/P+RCJORrKGh7/ZKfaQduJ9hbvYlxu0pwPkRimPofw7MLMgA1Va/DqNaQzgTTMlc/aY0amrMN7zWwiMUnNSuFp5HYAUUhzPkRimJqVim6S2wG4zD/noyqa8yESc9SsVHShLofodRXRnA+RmKBmpaLz6qilMYXs9+K1LURijpJD0XnxutHgvdVGRTxJzUqRqQvcjOmgDk6sN7kSjYhIKVHNITKLgI+B5ZTjBbVKgfpfRGKMkkNkzseM55e8vNr/IhKzNJQ1Mu8AfdwOIgr92+0ARKRkqc8hMkcw4/pPYiZ9xWEmflV3MyiXNMZc6OeEfVwFuBAz90FEyjklBymqtZirXf1kH1fCXCqyg2sRiUiJUZ9D5GphLv9XOajsI5dicVNFchMDdruSS7GISAlTcojM7zEX+0nCLDzXGfgUuNzNoFyyD+gLLLaP+wH73QtHREqSmpUiswnTbPIZZkXS5sBkYLCbQbnkEsx1chtg+l6+A4ZhLjAvIuWcag6ROUFuB+x5wFdAM/fCcdXXmJrTBZjkcMTdcESkJCk5RCYbqAn8E1gGHAR2uxqRu64GWpG3/+Vhl2IRkRKkZqWi6wrUAN4jb8esVzyLmRTYHfg7MBBYA4x0MygRKRlKDuGpjrlWQWIB+w+UYSzRYiPmqm/++wuAt4CebgYlIiVDzUrheRW4BnMZTB95l4vw6mVCj9v7Y5hO6RzMxDgRiQFKDuG5xt7ryy/XO5j+l6mYhfd8wAuuRiQiJUbNSuEpbMXR9WUSRfQ6D9MpfdjtQESkZCg5hOdDe18ZSAe+wDQtpQKrgUtdissNycATmHkOm4B7ge9djUhESpxWZQ1Pd3v7BlOLSMdcCa4t3pv09RKmSWkApsb0tLvhiEhpUM0hMpmYmdGFlcWy/H+vLvQjEoPUIR2ZrZgx/a9gOmB/Z8u8pDKmxuQfsVUl32Ov97+IxATVHCJTGbgVuMw+/giYRe6SGl7w4Tn2+fDmIoQiMUfJQUREHNQhHZkumDWV/gvsCLp53fNuByAiJUt9DpF5EbgHM1P6jMuxRJN0twMQkZKl5BCZw8C7bgcRhfa6HYCIlCz1OUTmMSAes8DcyaByjdARkZii5BCZUCN1vDpCpylwH/AL8tZAvfheiMQcJQcpqi8w13TI3/+yzp1wRKQkKTmEZ0wh+6eVSRTRZR1mCRERiUHqkA5PNbcDiEL/Am4D3iZv/4sXL3wkEnNUc5Ci2hmizKsXPhKJOUoORacF50QkZqlZqejiCj8k5rUGWmLWnPKb61IsIlKClByK7t9uB+CyiUA3THJYAlwF/AclB5GYoLWVwhcPLA96PN6tQKLEQKAH8P+AEUAbzOVCRSQGKDmE7wxwDKjhdiBR4jhwFjgNVMcsoaHOaJEYoWalyJzAXDd5GfC/oPI73QnHVWuBmsALmDkPR4E1rkYkIiVGo5UiM7yA8jllGkX0aYSpPWx0OQ4RKSFKDpGrAvwc2OZ2IC5pDnxFwcN4tQihSAxQcojMr4EngEpAYyANeBjo62ZQZex5YBRahFAkpik5RGYd5stvBdDWlm0CUtwKSESkNGi0UmROYy74E8yr2fVactecGo+5xkXbgg8XkfJEySEyXwLXY+Y8JANPA5+4GpF7JgBHgEuBXphO+WddjUhESoySQ2TuAFphViF9DfgRuNvViNzjv4bD1cAsYBGmL0ZEYoD6HKSo3gG+B67AXNfhOGaeQxs3gxKRkqHkEJl04AHMuP7gCYSprkTjrvOB3pgO+SygPmYhvmVuBiUiJUPJITLbMNdN3oRZOsLvG3fCiRpVgd8A12GamUSknNPyGZHZByx2O4goUQnog+mg7w0sRB3SIjFDNYfI9MD8Os4g76Ux33InHFdciXkPemEmwr2OGbXVyMWYRKSEKTlE5hXM8hGbyW1W8gE3uRZR2TsLfAzcSO6lQnegFVlFYoqalSLTBs2Gbg8MwVzbYgewADPvQ0RiiOY5ROYzzJXPvGwDMBa4BJiEmRVdCXgXs+aSiMQANStFZivmS3Enps8hDtOs5MWhrMEqYPoihmCuCici5ZySQ2R+UUC514eyikiMUXIouqpAf8xQTo3tF5GYoj6HyFTCJIQ3gD2YpSM0tl9EYo5qDuHR2H4R8RQlh/BobL+IeIrmOYRHY/tFxFNUc4hcF0wT0wAgE3gbc11lEZGYoeRQdBrbLyIxS8lBREQcNJRVREQclBxERMRByUFERByUHERExEHJQUREHJQcREJ7IGi7EfBlhOenA9MLOWYJUNPebovw+UVKlYayioR2FLjAbjcC3gFal9Jrlfbzi0RMNQcR+B2wBjPj/TlgKlDFPp5vj4kHXsBcP/x9ux9gBfC4Pf+/wK9seTfMFz6YJDMb2ARsxMyuB9gF1AEew1xEKtO+9jygX1B884G+xf4rRSKg5CBe1wIYjFkWJQ04g/kSP24f32CPSwZmAq2AQ+R+wYNZo6wjcDcwMcRrTAAOY64/ngp8kG//OOBr+3r3AX8nd9Z9DeD/ME1QImVGC++J1/XALKz4uX1cBdgb4ridmF/2AOvIu1z7WwWU+12BWWbF72AhMa3EJKJ6wG+BhcDpQs4RKVFKDuJ1ccAc4P585ffme3wyaPsMuc1KwfvOEPr/lP9a45GYh6m1DAFuivBckWJTs5J4XQYwEPMrHSARc63wU0BCCb3G+8DtQY9r5dt/BKiWr+xlTDMVmH4OkTKl5CBetwUYj/kC3wgsA+pjlmHfSG6HdHE8gkkIXwJfAN3z7c8BVtn9U23ZD8BWTEe2SJnTUFaR6HQ+pmO8HaYzW6RMqeYgEn2uAL7CXKdciUFcoZqDiIg4qOYgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLi8P8BTGuonMdGEvoAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "dark"
- },
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAGSCAYAAAAIBQ1WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXu8VlP6wL+ne5RuwlFUlFS6SCkaJpLKUO4VM6VxCzNyn8xFboMMMxi3n1slpRAVJhSJiVJxdCOFKMIokSnpsH5/PGudfX/3PrdOnXm+n8/+vO9e+7722utZ63me9aw8YwyKoiiK4qdKRd+AoiiKsuOhwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiVCtom+gFOjQbkVRlOLzNdA4bacsPYdawFvAu8Ay4Dqb3gKYD6wEJgM1bHpNu77Kbm/uO9fVNn0F0MeX3temrQJGZrgnRVEUpWR8kmWnLMJhK3A00BHohFTk3YHRwD+AVsA3wNl2/7Pteku7fbRNbwsMAtrZc9wLVLXLPUA/u89g+6soiqJUEFmEgwG+t/+r28UgAuMpmz4OONH+H2DXsdt7AXk2fRIibD5GegmH2mUV8BHwo91nQEkfSFEURSk9WQ3SVYEC4CtgJvAhsBEotNvXAk3s/ybAGvu/EPgWaBRK9x+TlB7HecBCuyiKoijlRFaD9E+ISqk+8AzQJmYfZyDOS9iWlB4noJKMzQ/YJXafbdu2sXbtWn744YeEwxWlclCrVi2aNm1K9erVK/pWlEpKcb2VNgKvIjaH+vb4QqAp8LndZy2wj/2tBtQDNvjSHf5jktKLxdq1a6lbty7NmzcnLy9OFinKzo8xhvXr17N27VpatGhR0bejVFKyqJUaI4IAoDZwDPAeMBs41aYPBabZ/9PtOnb7K0grfzpikK6JeDq1QrygFtj/LRCPp0F232Lzww8/0KhRIxUMSqUmLy+PRo0aaQ9ZKVey9BzyEQNzVUSYPAE8ByxHjMc3Au8AD9v9HwbGI0bmDUhlD+IG+4Q9rhC4CFFXAfwOeNFe4xG7b4lQwaD8L6DlXClv8nbiaUIjN/7ee+/Rpk2cOURRKh9a3pUSsgjokraThs8oQ9avX0+nTp3o1KkTe+21F02aNKFTp07Ur1+ftm3LfujGq6++yvHHH1+sY3r27MnChVFnr7Fjx/K73/0u9fi+fftSv379xOv+/ve/p06dOoHzNm7cuChfHnrooaJtV111Fe3ataNNmzZcfPHFuIZKz549ad26ddExX331Vey1br75Zlq2bEnr1q158cUXi9JfeOEFWrduTcuWLbnlllsSn+WSSy7htddeA+Css86iRYsWRdcsKCgARL9/8cUX07JlSzp06MDbb78de65FixbRvn17WrZsGXiWDRs20Lt3b1q1akXv3r355ptvAJgyZQrt2rXjiCOOYP369QB8+OGHDBo0qOicP/74I0ceeSSFhYXRCyqVns7d7g0s2xsVDmVIo0aNKCgooKCggOHDh3PppZcWrVepkp7VO0MlcOWVVzJ+/PjYbQsXLmTjxo2R9IEDBxblwznnnAPAG2+8wdy5c1m8eDFLly5lwYIFzJkzp+iYCRMmFB2zxx57RM65fPlyJk2axLJly3jhhRe48MIL+emnn/jpp5+46KKLmDFjBsuXL+fxxx9n+fLlkeM3bNjAvHnzOPLII4vS/va3vxVds1OnTgDMmDGDlStXsnLlSh544AEuuOCC2Ge/4IILeOCBB4r2feGFFwC45ZZb6NWrFytXrqRXr15Fwur2229n3rx5DBkyhIkTJwLw5z//mRtuuKHonDVq1KBXr15Mnjw59pqKUp7szLGVcnPJJWBbf2VGp05wxx0lOvSnn37i3HPP5Y033qBJkyZMmzaN2rVr07NnTw4//HDmzp1L//79GTJkCMOHD+fTTz8F4I477qBHjx7MmTOHESNGAKJvdi3e77//nlNPPZWlS5dyyCGH8Nhjj5GXl8fLL7/MFVdcQWFhIV27duW+++6jZs2agXsaM2YMN998M/n5+RxwwAGR7XH06tWLV199Nfb5rrzySiZOnMgzzzyTep68vDx++OEHfvzxR4wxbNu2jT333DP1OMe0adMYNGgQNWvWpEWLFrRs2ZK33noLgJYtW7LffvsBMGjQIKZNmxbpuT311FP07ds303WGDBlCXl4e3bt3Z+PGjaxbt478/PyifdatW8d3333HYYcdBsCQIUOYOnUq/fr1Y9q0aUX5NXToUHr27Mno0aOpUqUKW7duZfPmzdSsWZPXX3+d/Px8WrVqFbj+iSeeyNVXX82ZZ56ZOW8UpSzQnsN2YuXKlVx00UUsW7aM+vXrM2XKlKJtGzduZM6cOVx++eWMGDGCSy+9lAULFjBlypSilvZtt93GPffcQ0FBAa+//jq1a9cG4J133uGOO+5g+fLlfPTRR8ydO5cffviBs846i8mTJ7NkyRIKCwu57777Avezbt06Ro0axdy5c5k5c2agdT19+nSuueaaYj3f3XffTf/+/QOVpmPKlCl06NCBU089lTVrZLzjYYcdxlFHHUV+fj75+fn06dMnoD8fNmwYnTp14oYbbiDOLvbZZ5+xzz6eB3TTpk357LPPEtPDzJ07l0MOOSSQ9qc//YkOHTpw6aWXsnXr1pzXCd9L06ZNY/f58ssvi/IkPz+/SEU2atQo+vTpw6xZsxg8eDA33ngjf/nLXyL3edBBB7FgwYJIuqKUN5W351DCFn554fTZAIcccgirV68u2jZw4MCi/7NmzQpU1N999x2bNm2iR48eXHbZZZx55pmcfPLJRZXRoYceWvS/U6dOrF69mrp169KiRQsOOOAAQFqs99xzD5dccknReefPn0/Pnj1p3Lhx0T188MEHAPTv35/+/ftnfrbPP/+cJ598MrZHccIJJzB48GBq1qzJ/fffz9ChQ3nllVdYtWoV7733HmvXrgWgd+/evPbaaxx55JFMmDCBJk2asGnTJk455RTGjx/PkCFDAueNExh5eXn8/PPPselh1q1bV/TsIPaLvfbaix9//JHzzjuP0aNHc8011yReJ8u95KJ379707t0bgHHjxnHcccexYsUKbrvtNho0aMCdd97JLrvsQtWqValRowabNm2ibt26Oc+pKGWJ9hy2E36VTdWqVQP2hV133bXo/88//8ybb75ZpPv+7LPPqFu3LiNHjuShhx5iy5YtdO/enffffz/xvFk90MrKHfKdd95h1apVtGzZkubNm7N582ZatmwJiB3G3eO5557LokWLAHjmmWfo3r07derUoU6dOvTr14958+YB0KSJRE+pW7cuZ5xxRpG6yE/Tpk2LeiEgAyD33nvvxPQwtWvXDowTyM/PJy8vj5o1azJs2LCia2Y5X9OmTYuEXHifPffck3Xr1gEikML2k82bNzNu3DguvPBCrr76ah555BEOOeQQJkyYULTP1q1bqVWrVuQZFKU8UeGwg3Hsscdy9913F607r5kPP/yQ9u3b84c//IEuXboUCYc4DjzwQFavXs2qVasAGD9+PL/85S8D+3Tr1o1XX32V9evXs23bNp588skS3/OvfvUrvvjiC1avXs3q1avZZZddiq7tKkYQdZVTHe27777MmTOHwsJCtm3bxpw5c2jTpg2FhYV8/fXXgIRDee655zjooIMi1+zfvz+TJk1i69atfPzxx6xcuZJDDz2Url27snLlSj7++GN+/PFHJk2aFNsLatOmTdE9+u/TGMPUqVOLrtm/f38effRRjDHMmzePevXqRVRn+fn51K1bl3nz5mGM4dFHH2XAgAFFx48bJ3Eox40bV5TuuPXWWxkxYgTVq1dny5Yt5OXlUaVKFTZv3gyIB1zjxo01TIay3VHhsINx1113sXDhQjp06EDbtm25//77ATFMH3TQQXTs2JHatWvTr1+/xHPUqlWLMWPGcNppp9G+fXuqVKnC8OHDA/vk5+dz7bXXcthhh3HMMcfQuXPnom25bA5HHHEEp512Gi+//DJNmzYNuJAmPU+7du3o2LEjd911F2PHjgXg1FNPZf/996d9+/Z07NiRjh07csIJJ7B161b69OlDhw4d6NSpE02aNOHcc8+N3Fe7du04/fTTadu2LX379uWee+6hatWqVKtWjbvvvrvIhnH66afTrl27yH396le/CqjBzjzzTNq3b0/79u35+uuv+fOf/wzAcccdx3777UfLli0599xzufdez6XQqQkB7rvvPs455xxatmzJ/vvvX/R+Ro4cycyZM2nVqhUzZ85k5EhvupLPP/+chQsXFgmMyy+/nO7duzNu3DjOOOMMAGbPns1xxx2XM48VpTzQQXDK/yy/+MUveO6556hfv376zhXEySefzM0330zr1q0j27S8V27CYxvenn9hWZ1aB8EpSi5uv/32IpfhHZEff/yRE088MVYwKEp5U3m9lRQlhW7dulX0LeSkRo0aES8tRdleaM9BURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiVCpDdJTdylbL48TN68o0/MBTJ06lQMOOKAoMNw111zDkUceyTHHHFPm1yprbrrpJv74xz9W9G0oilIOaM+hgpk6dWogltL111+/UwgGEOEQhzEmNsaRoig7DyocypjVq1fTpk0bzj33XNq1a8exxx7Lli1bePDBB+natSsdO3bklFNOYfPmzbzxxhtMnz6dK6+8kk6dOvHhhx9y1lln8dRTTzFjxgxOP/30ovO++uqrnHDCCQC89NJLHHbYYXTu3JnTTjuN77//PvZebr311qIRyG5kbkFBAd27d6dDhw6cdNJJRZPP+CcB+vrrr2nevDkgk/WcfPLJ9O3bl1atWnHVVVcBMvJ3y5YtdOrUiTPPPLPouS+88EI6d+7MDTfcwKWXXlp0Lw8++CCXXXZZ2Wa2oijlhgqHciAuPPfJJ5/MggULePfdd2nTpg0PP/wwhx9+OP379y+aZGb//fcvOkfv3r2ZN28e//3vfwGYPHkyAwcO5Ouvv+bGG29k1qxZvP3223Tp0oW///3vkXuYMWMGU6dOZf78+bz77rtFlfqQIUMYPXo0ixcvpn379lx33XWpz1NQUFAU/nvy5MmsWbOGW265hdq1a1NQUFAUJG7FihUMGTKEd955hyuuuILp06ezbds2QOaOGDZsWKnzVlGU7YMKh3IgLjz30qVLOeKII2jfvj0TJkxg2bJlOc9RrVo1+vbty7PPPkthYSHPP/88AwYMYN68eSxfvpwePXrQqVMnxo0bxyeffBI5ftasWQwbNoxddtkFgIYNG/Ltt9+ycePGoiB8Q4cOLZo0KBe9evWiXr161KpVi7Zt28ZeD6BZs2Z0794dkEizRx99NM899xzvv/8+27Zto3379qnXUhRlx6BSG6QrinAY7S1btnDWWWcxdepUOnbsyNixY2PnPggzcOBA7rnnHho2bEjXrl2pW7cuxhh69+7N448/Hth3/vz5nH/++YDYLYwxxQrJXa1atSI7gT+UddzzJE1n6g89DnDOOedw0003ceCBB2qvQVF2MrTnsJ3YtGkT+fn5bNu2LRCrv27dumzatCn2mJ49e/L222/z4IMPFk0I1L17d+bOnVsUbnrz5s188MEHdOvWrWgOiP79+3PsscfyyCOPFIV+3rBhA/Xq1aNBgwa8/vrrQDCUd/PmzYvmWnjqqacyPVP16tWL1EZxdOvWjTVr1jBx4kQGDx6c6ZyKouwYVOqeQ3m4npaUG264gW7dutGsWTPat29fJBAGDRrEueeey1133RWplKtWrcrxxx/P2LFji+YEaNy4MWPHjmXw4MFFU1neeOONRbO+Ofr27UtBQQFdunShRo0aHHfccdx0002MGzeO4cOHs3nzZvbbbz/GjBkDwBVXXMHpp5/O+PHjOfroozM903nnnUeHDh3o3Lkzf/3rX2P3Of300ykoKKBBgwbZM0tRlApHQ3Yr5crxxx/PpZdeSq9evSr6ViodWt4rNxqyW6mUbNy4kQMOOIDatWurYFCUnZBKrVZSKo769evzwQcfVPRtKIpSQipdz2EnVpMpSma0nCvlTRbhsA8wG3gPWAaMsOnXAp8BBXbxT3R7NbAKWAH08aX3tWmrgJG+9BbAfGAlMBmoUbzHEGrVqsX69ev1w1EqNcYY1q9fT61atSr6VpRKTBa1UiFwOfA2UBcxZsy02/4B3Bbavy0wCGgH7A3MApwrzT1Ab2AtsACYDiwHRttzTQLuB84G7ivuwzRt2pS1a9fyn//8p7iHKspORa1atWjatGlF34ZSickiHNbZBWAT0oNokmP/AUglvxX4GOklHGq3rQI+sv8n2X3fA44GzrDp45BeSbGFQ/Xq1WnRokVxD1MURVFCFNfm0Bw4GFEBAfwOWAw8AjhH9ibAGt8xa21aUnojYCPSQ/Gnx3EesNAuiqIoSjlRHOFQB5gCXAJ8h7Ts9wc6IT2L2+1+cTEbTAnS43gA8c9N9dFVFEVRSk5WV9bqiGCYADxt0770bX8QeM7+X4sYsR1Ngc/t/7j0r4H69l4KQ/sriqIoFUCWnkMe8DBiG/DHhs73/T8JWGr/T0cM0jURL6RWwFuIAbqVTath95mO9BJmA6fa44cC04r/KIqiKEpZkaXn0AP4DbAEcVkF+CMwGFEpGWA1cL7dtgx4AvFCKgQuAn6y234HvAhURewULm71HxAD9Y3AO4gwUhRFUSqIShVbSVEUpbKgsZUURVGUHQ4VDoqiKEoEFQ6KoihKBBUOiqIoSgQVDoqiKEoEFQ6KoihKBBUOiqIoSgQVDoqiKEoEFQ6KoihKBBUOiqIoSgQVDoqiKEoEFQ6KoihKBBUOiqIoSgQVDoqiKEoEFQ6KoihKBBUOiqIoSgQVDoqiKEoEFQ6KoihKBBUOiqIoSgQVDoqiKEoEFQ6KoihKBBUOiqIoSgQVDoqiKEoEFQ6KoihKBBUOiqIoSgQVDoqiKEqELMJhH2A28B6wDBhh0xsCM4GV9reBTc8D7gJWAYuBzr5zDbX7r7T/HYcAS+wxd9lzKIqiKBVEFuFQCFwOtAG6AxcBbYGRwMtAK/s70u7fz6a1As4D7rPpDYFRQDfgUPvfCZT77L7uuL6leCZFURSllGQRDuuAt+3/TUgPogkwABhn08cBJ9r/A4BHAQPMA+oD+UAfpIexAfjG/u9rt+0GvGmPedR3LkVRFKUCqFbM/ZsDBwPzgT0RwYH93cP+bwKs8R2z1qblSl8bkx7HeXZRFEVRypHiCIc6wBTgEuC7HPvF2QtMCdLjeMAuufZRFEVRSklWb6XqiGCYADxt075EVELY36/s/7WIEdvRFPg8Jb1pTLqiKIpSQWQRDnnAw4it4e++9Ol4HkdDgWm+9CH2uO7At4ja6UXgWMQI3cD+f9Fu22T3zbPHunMpiqIoFUAWtVIP4DeIq2mBTfsjcAvwBHA28Clwmt32L+A4xC11MzDMpm8AbgAW2PXrbRrABcBYoDYwwy6KoihKBZFFOPyb5HEHvWLSDOLuGscjdgmzEDgow70oiqIo2wEdIa0oiqJEUOGgKIqiRFDhoCiKokRQ4aAoiqJEUOGgKIqiRFDhoCiKokRQ4aAoiqJEUOGgKIqiRFDhoCiKokRQ4aAoiqJEUOGgKIqiRFDhoCiKokRQ4aAoiqJEUOGgKIqiRFDhoCiKokRQ4aAoiqJEUOGgKIqiRFDhoCiKokRQ4aAoiqJEUOGgKIqiRFDhoCiKokRQ4aAoiqJEUOGgKIqiRFDhoCiKokRQ4aAoiqJEUOGgKIqiRFDhoCiKokTIIhweAb4ClvrSrgU+Awrscpxv29XAKmAF0MeX3temrQJG+tJbAPOBlcBkoEZxHkBRFEUpe7IIh7FIxR7mH0Anu/zLprUFBgHt7DH3AlXtcg/Qz+4z2P4CjLbnagV8A5xd/MdQFEVRypIswuE1YEPG8w0AJgFbgY+RXsKhdlkFfAT8aPcZAOQBRwNP2ePHASdmvJaiKIpSTpTG5vA7YDGidmpg05oAa3z7rLVpSemNgI1AYSg9ifOAhXZRFEVRyomSCof7gP0RldI64HabnhezrylBehIPAF3soiiKopQT1Up43Je+/w8Cz9n/a4F9fNuaAp/b/3HpXwP17X0UhvbPzYoVcP75xb1vRVGUnYIH3gtVhT2fKJsTv/pqpt1K2nPI9/0/Cc+TaTpikK6JeCG1At4CFtj/LRBvpEF2XwPMBk61xw8FppXwnhRFUZQyIs+YXFocAB4HegK7Iz2GUXa9E1K5rwbOR9RLAH8Cfov0BC4BZtj044A7EM+lR4C/2vT9EAN1Q+Ad4NeIQTuN1BtXFEXZWenc7d7A+tvzLyyrUy8ig2o+i3DYUdlpb1xRFCWNihYOOkJaURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmQRTg8AnwFLPWlNQRmAivtbwObngfcBawCFgOdfccMtfuvtP8dhwBL7DF32XMoiqIoFUgW4TAW6BtKGwm8DLSyvyNtej+b1go4D7jPpjcERgHdgEPtfydQ7rP7uuPC11IURVG2M1mEw2vAhlDaAGCc/T8OONGX/ihggHlAfSAf6IP0MDYA39j/fe223YA37TGP+s6lKIqiVBDVSnjcnsA6+38dsIf93wRY49tvrU3Llb42Jj2J8+yiKIqilCMlFQ5JxNkLTAnSk3jALmn7KYqiKKWgpN5KXyIqIezvV/b/WmAf335Ngc9T0pvGpCuKoigVSEmFw3Q8j6OhwDRf+hCkR9Ad+BZRO70IHIsYoRvY/y/abZvsvnn2WHcuRVEUpYLIolZ6HOgJ7I609EcBtwBPAGcDnwKn2X3/BRyHuKVuBobZ9A3ADcACu349npH7AsQjqjYwwy6KoihKBZJnzE6rut9pb1xRFCWNzt3uDay/Pf/Csjr1IqBL2k46QlpRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYmgwkFRFEWJoMJBURRFiaDCQVEURYlQWuGwGlgCFAALbVpDYCaw0v42sOl5wF3AKmAx0Nl3nqF2/5X2v6IoilKBlEXP4SigE9DFro8EXgZa2d+RNr2fTWsFnAfcZ9MbAqOAbsCh9r8TKIqiKEoFUB5qpQHAOPt/HHCiL/1RwADzgPpAPtAH6WFsAL6x//uWw30piqIoGSmtcDDAS8AipDcAsCewzv5fB+xh/zcB1viOXWvTktLjOA9RXy1M2K4oiqKUAdVKeXwP4HNEAMwE3s+xb15MmsmRHscDdsm1j6IoilJKSttz+Nz+fgU8g9gMvkTURdjfr+z/tcA+vmOb2uOT0hVFUZQKojTCYVegru//scBSYDqex9FQYJr9Px0YgvQUugPfImqnF+2xDexyrE1TFEVRKojSqJX2RHoL7jwTgReABcATwNnAp8Bpdp9/AcchrqybgWE2fQNwgz0O4HqbpiiKolQQpREOHwEdY9LXA71i0g1wUcK5HrGLoiiKsgOgI6QVRVGUCCocFEVRlAgqHBRFUZQIKhwURVGUCCocFEVRlAgqHBRFUZQIKhwURVGUCCocFEVRlAgqHBRFUZQIKhwURVGUCCocFEVRlAgqHBRFUZQIKhwURVGUCCocFEVRlAgqHBRFUZQIKhwURVGUCCocFEVRlAgqHBRFUZQIKhwURVGUCCocFEVRlAgqHBRFUZQIKhwURVGUCCocFEVRlAgqHBRFUZQIKhwURVGUCNUq+gZKy9RdWgfWT9y8ooLuRFF2LvTbUXKxI/Uc+gIrgFXAyAq+F0VRlP9pdhThUBW4B+gHtAUG219FURSlAthR1EqHIj2Gj+z6JGAAsLy8LzyparBrPegn7Vo7NG+U8qS8y9fEvOD5zzBafotDnjGmou8B4FRErXSOXf8N0A34XWi/8+wC0BpRQzl2B77OcY2defuOfG+6Xbfr9p1rezOgcY79BWPMjrCcZox5yLf+G2PMP4t5joWVePuOfG+6Xbfr9p17e+yyo9gc1gL7+NabAp9X0L0oiqL8z7OjCIcFQCugBVADGARMr9A7UhRF+R+m6rXXXlvR9wDwM7ASmAD8HngMmFKC8yyqxNt35HvT7bpdt+/c2yPsKAZpRVEUZQdiR1ErKYqiKDsQKhwURVGUCCocFEVRlAg7ygjpiqIB4iVVy5f22nY8Po6qwIvAMTm23wJcWYpr5AFnAvsB1wP7AnsBb9ntU4BHgBmIs0AczZBnnwXURsrSJt/20uRND6AA+C/wa6AzcCfwid1+GvCCvd6f7fYbgbcznv93iPPDNxn3z0rDlO0b7O/xwL9IztvSsj/iHr4V6Al0AB4FNvr26Q8caf/PAZ4NneMgJISN//09Wkb3V9r3tz2oCuxJsI78NOWYk1O2P+37fyzB/J/p25Ylfxog7v/++wvnX0OC769YwwN2RoP0fsDVwBbgNnK/sF8B7Qhm0PX29xxgBDKmogDoDrwJHG23twJuJvqB7FdGx98E3Ir3wTYALkcKw3RklPi3Cc/1CtALCL+8TTFpfnazv/chFdPRQBt77ZeArnb7McAw+0xPAmOB933nORcZqd4QqYhaAffbe4LkvHkE8US7LOH+/m5/FwMdkUptPPAw8uH90re9A/ALJI9vA/6IjKon4fzfIh4bBciHNgj5mB5BhLE/39Le3QGIcG5G8ONsYc+Thwjcb+z/+kg5bWH3eww4DBHCY4D3Yu43V9lizFVpAAAgAElEQVQ9GRgN7GHPn2ev695vAdAFaG6fbToSUeA4u/1mJGTNBLs+GFiIfFcAoxCh0hYRYv2AfyORDGohwu0IYG/kO1wKPA8ss8d/THw5dPmX9P7aJhznyEvYHn7+psA/7fl/tvc+AvhDyvkvtr+/R/LgSzwBbuw9g5TnUXjv311/rt2+B3A48p0CHAW8iic8rrdpj9v1gXb7KLueVr5vAM4CPvQ9j8Gre34F/MPmw3rkPa0EDszx7FFKMnKugpe3jDHnGWMuNsasMsb0SNjvfmPMo8aYNcaYUcaYJcaYh33blxhjahljCuz6gcaYyb7t/zbG9DLGLDbGNDPGXGuMua4Mj38n5p7ftr9PGGM+tfd7l29x+91ujJluZCT5yb7Fbb/eGHOhMaauMWY3Y8wFxpirYq7jv4d3Y+6nnjFmuM3DN4wxw4wx1e0z1wgdvyRD3pxv10fFLNfE3N81xpizQ2n++77ZGHNGzLNMNMZ8YPPpdmPM+8aY8caYBb58yDPG9DHGTDJSjm4yxuyf8d29a/P0UGPMIb7FX/aO8633s/fhz9vdbH7MM8a8aaRM1/Udn6vsrjLGtIl5X+H8u9IY8/uY/FlsjKniW69q0/zvr4rxysSexphnbT4sss9yhjHmGGPM8caYy+z2mcaYDsaYRr6liTHmEiNlMuv7Syu/actMI2W1ml3OsmlD7fKAfce/t8trxph/hPK3UY7zv2eMOcEYs7fNG7e47c8ZY/J96/nGmKdD+V/dt149lP9p+bPCyPeXdH8FxpjGvmN6GylTWfMPY8xOKRz8mdjJSGHdaKRy/HfMfu63jjHmJd/2Bb6MrOn777YvMt6H4tJeL8PjF/uOwxhT2xizzP4fmrC4fcfELI/4ts+Pybf5of9VjVeJ+AuSWxoZY0YYGXo/3Rgz0EhIk1d953LHVAu9l7S8iRPo/rQ5xpirjVTwe9l79efjc8aY/zPGfGiMqW+v4RduLxp53269jjHmBZvHy33pHY0xdxgRHvfZ57k1w7tbZKL3T8r2uBAGuxupOFcbY2YYY1YaqazSyu7clOvPN8YMNsYsNca0sGlLfdsXG2Ma+tYbht7fW77n2M2IIF1mjPlVynX3MMZ0Sdjm/zbT3l9a+fVfb1/f4tILYvb1p8020cp5dmh7tZT8zZUPS0PrVUJpS4w0vNx6PVO88j3FPnvS9V1Ze9e+O/87zbzsjDaHL5Eu12Kk+3yIb5tfp7fF/m5GulXr8br1IDrZ+sBURN/3DUGd3A+IwX4loqP+DOkultXxjwEvI2oFA/wWGGe3jUNGih9g11cA23zHDiM3PyE2hUn23INtmuMu4Bl7P39F1AV/9m1/GumCjgdOANbZ9MmI+uEVpJtbG+gNXEhQZ52WN/9E9KgkpA0EzgDOBr5AVDR/8+17OhKo8TZELZdP0AazL/Cjb30bogLYgujhLwaGIsHIHrLHbsN7X1+Q+909a5/5GXs+h7MpfI3k52NI/v8aKX+OE5D3vT+Sx4cCXwG7ICqmL+x+SWV3IfIupoau78r/MGA48m4/tsc+5tvvZuAdYDaiEjkST6Xkzl8feBBRxX2P2KOeJzdf2cX/bqsgKq66vrS095dWfvsDtyN58xXybt9D1HAg+f9rPLXNYIL5v7e9H/e+6tg0p478CFHzPE8wf53a8xUkD58ObV9sf19F1HmP2/sfhOS14zYk/19C8r8XnsoQ0vPHvb+loev3t7/fArsi6rRHkTwqtn1rZ7Q5NEb0fOtS9vsLUuH0QuaKMEhF8JeYfX8J1EOMQK5S6YoUuPqIjq8eYiOYV4bH97P3l4cUlBdtek9EQKy22/ZBKjNn0HU61R72uZxOda3d3hwx4Lrtc4FL7PkcB/qu/TJBvffRePrSOKogFfex9vgXkbyNK0z+vDkE0cVeguhEHbsBJyF2huKwB0GdvLM//cWeb5pdPwHRu98OPICEh38Ez8Dtpw1SWeR6dx/HHGfwdOoNEf2xMzi+BlyHVxk9iuRXnIG+F5JHucrumITr/9a3nqtxAVLhdEXe33w8gRSmOfJ+FvvSZiJGU7+9bBLQx677K8JCJL9uJxhF+ReIbWcM8k3XwcvX5uQuv+8iZXQWcDCivx+MF7F5X+BuxK5jgDeQ78O972HAtb77/KVdb56QB9jzuAr89YTtR/rWT0bsMiDv+ZnQ/vsitos8xB4Xtp3myp9lwP8BSwhW+nPsb12kIZQHDEHK73jgPzmeL8LOKBxKQk2kEvmW7B4lSewGfJfjPOHjd0MKzqaYfZNYhLSc3cd0ANIKcb2kmcBE5IWDtJLORFrxWeiOFDB3T3URY+B83z6HIx+Lv3fpvFV2RXpGrjVXFS+Pc9EeEXzDEQO2YxPSGn+bbAb1cMtxX8Rg3s63bxekcslDhOdCm14FqegOSrnXHQV/2c1KT3I3Lk5ChL87Z317zFS77q/k/Ljj30EqZT8urQoiOCbnuL9RyPtpjZTtvRHHhx45jvGz0B7/rr3mz0jP5tCMx4N45zkDb1g4nmbvh5S0khI3kdm3SO/akJ4/c/CcM8qNyigcXKs3ya3sdrJ5lCR5pGxGvDU+9p3H4W89dkGkvutOf4u07O5EWgVhzyK/x4XzVvDjTysAOoW2+9MaIx5FzUP37lqW7yBdf3f9KsgH59QB4xGVRwGeADB43hzzEI+m7+16HaTnk080Txz+vGlGfKvdcT3ysY7Hc7uti7TeIb3lCLldEScgapRwa+0OpIX6LPFCqr/vfy5XzwOAK4jmf1fi33nY2+Yie4/+lvlg4F67XgvpuYW9mdz7TWtcxJUff4XvVxHWQirdRXjeMIsQAePyrxnSMnbl5zWSBYy7/sFIY8Bd01++08rvLOBERL2yO9JA6Io0aEAE4wiC+Xc7wZ5VE6LfthN+bxNVe4bT+hDN/5vsb5o32dv2Wd+32w5AJjbb1T73P8idP39H1EnTCaqV/oEIjW+IL2dpDeMAO6PNIY1fIsLhhJhtBq/yvx/J3H/Z9X4ExxY8afd5kKC+0wWw8uuA43gE0Uu7LugvEGHhXnDduIMsCxH3TdczOJNg4Kw0neo0e91ZoXt3hF0CfyZYFrqQ262wFp5gwP7fhfQ8cZXv3QnndpVvH7xWHYjr7Xw84bANed4qdpmNfIwOvyviT3jP6/I+H+k5vYWMpXBcZ39vS3mOJFdPJxxc2XmI+LKTxrmIOsnxjU1zwmE8UrH0QQTpmQTVgtUJqnA+sGmOuMGv/vcf/nb2wct7gD8hz+vUGEcC5/u2z0SE42SC+et61T8i78OVgV1D10srvwOQnuulyLPXI6iz70BwTMc3BHs6oxG71jKCrqq7Iu6+TRC7nGM3RD3muBdpTB6JfNOnEFQX34rkYZyLMjb9bEQggwjqi5ByN4n0/HHP0t2XZpBGEojALDWVUTg4X+E0o21XRL3hmIHolx2FSKWUi5ORSt8ghXmqb9smgrrJf9u0LGqtC5DCcjFSsb2GVzGAtIDuRloKTqfqbxXtgvh0J/GRPbd7vgvxpmgFMXTtRbJd579IK8oNujkEzwHAETcIzgm7tMo3zSC5EemtvIa0sL8i+PGOQLrkfoHp57qEdFd5z0nY7jgVsY+8g5SzPRFB4MhSdiDZZlKFoACvitgQHC0RNccApJU8Ec9eBemNi4VI69PZM35PbsG1lqAa7gXk/Tud+aUEZxpzZfEiX5q/5/gEojOvjwi93yKNMEda+fULnHEx26sg5c8NcmxIsK47ESkfW0PHdUTypj/B/NiEPKPjF4gAehexA91KMIr0lyQLBpBGxTu+dTcuZQWSn3H54y9fR5GbW5FvZ0HKfjmpjGqlpAFWDudx8CJSefs9So7EM6pdi1Q6SR4p9yIfqX8gy4fIRwkyiG0XPI+FgUhhPYNsqpfScCMiMP6VsH0PpGV0tL3my0iL/iu7fTbSmnmLeG+Irkjhcx5I+cjzuQ8qbYBgGs3JbZDcFRFGVfBajhPwhMFsxP7iFxhZWEJum4freTj99iLkQ92ECFRn87iW3GUnzdvmb0ge3G/vZziwBhkk6b/+a4hg/8KmubJTE6mYf0GwceHuZVekUjsGzxniRrxK95++fKiClIXVyDcCUl7cgEdypOWiN0GHBv8I4bTyGzfY81ukYr8cee6rgafsttMQzy0nLGfYtO+Jpxq5y858pGc7HxHQ65FeiHMAuBNpXCV5kz2NqFUn2fWBSK97IPLcXcidP5B7kOTZ9lzNEaE1GfkOi0VlFA6u59AaqcTcpEEnIB+Jm6c6zaMkzSNlGdKa8n9ES/Aq2Dj8oxjjSKuc5qRsdzaBTUgFsBVRwYR1nmkkGbv8LerqSB7nISoOvzfMEiTv5yEVy4FI3g6029NGIOciLbwIiIBuTbIrYnekAmyDtMirIhVje7vdtXj9Le/NeB/fvYgr7yCkMvoe+fhcbzWt7KTZTKogahq/J5tfRXUO8tF3QNQadZDK/v8S8qO4DPX9L0QEw1zkXe2CCN+eeA2c3ZAKt41d3wVppO1rn6kV8j6ey3j9tPJ7HdIwmWi3DUIq4xVIr7snUraOxvPGW+47/xSkl/AywfLhvh9nTwzj3t+1iIq0N1KOfkJ6MH+029O8yXZFGjtOeP/bnm8L0tD5A9Ge02hf2v1IHh+FlItTkcbB2aFjGtttA5H8KdYI6cooHBwvIbpAv0fOk4j/cFnwNNLVdIbVZkjMo8HFOEdYLeW6mkmVk7tWD6TwO4+Q05BWrL/rm4s0g18a7uNvZs8T/vgXIMKhAGlhbSVoBP03Ipj/gQjtYchH4gR72v2lhRcZlZDu1EkLkQrlSaSVNsQ+g/u45xL1nHFpeUiPaI1Nb07U1TONsvC2yUWS8J1OdoN7HCPs8XsTHLfyHaIWutuuT0bK4xCkAVUb6Tm6959msE3Dtdz9zENa2q+TrHZxDb+hCdudiqqRL60W8n01BK6JOaa2XdK8HItDnEHcb5B2/91vHaQ+OjZ0TGdEMJyMuG/3K85NVEabgyM8EOpHgn7MjYGriHbNbiS3t9MwpCDXQ1QBb9n1bkiX0BFXkCDY+vSrpYYjaqmLkErIXzmNJFhhnYV8AK61fj8iDP3kCnyXZvBLalm7j3cM8vEfZtfXIhXtc771XIPgaiOttjxE4F1r78dV6mn39wPSO5lJUP/sWn5OCNRF3k2c+mCVfa6f7PP4392uiND+t10/HM8oaOxzOc+f1THnhtzeTEk2kyeQAVBJPUhXOTRC8syp3V5H7GVOrTYGT/gehSd8XS86zeYTd32ntumCqEb/meP4/ZFKyTWUnM+9I81gC7nL789IPjm10an2d6K970Wh+3fCx7X84+wUfsK2qjuQsuC+6dn2Xl5Hyk1YMKR5k7VA3le4fPwTURPuR7CxURcvbhOkD/B1A1vXIIK6W8w9plKZhcN4pOJ2g09OJFgoJiAZdzxSMQ9FBomkeTulfVgOf6XlgpX5P4ZfElRLjUM+SshdOUHyCE9Hms4/zeB3N/Eta0fax3+S/b0W+ZDcIDhH2ujxtPt7ntyjdQ9C3r8z/n9tn8EFhtuMCL0CpKJaRzB/z0a8zerZ9Y0Ee1XzkJ5RksEvzZtpAJJnfm+b6xBbAUhZycUkpHI6xa6fiZRlp2pLE77vEVV/tvb9n4EIzYl2fZD9/Q4JwjgIGQGepDb60d6DK9v7E1TfpBls08rvmYhe/157jXmIPeQzRGj/m9ykqTXTRnifj3yfZyK2u03I+3CjmNO8ycYhPafRyLcyDGnoTUTy/makQejYRLByfw5pfP0Nb2yQ32C9DlGXf5mUAZkobryNnWzpbCQ+0MXGmIND21z8G39MmTkluMZuRmLTuCVpv5pGYv649aeNBHVz682MMY/b/4fYuCir7VJgn8XtO8wY84kxZqxdPjbB2EtpQQFvNMHAcEmxWfx580bof23jxWba30RjtzQwEoSts29x27oaiRfU1EhcqKeNMd2LcX9pyxvGmKN86z1D99/M3v9uRgLb/d0Y0zLh3daLSV9ujCk0Evtmsc3vLIHr3PbRMeeMS0ta0mI3zbXXf9oY8ztjzElGgrW57SuMMaf71i83wZhTcbGbXNoSI2XpKuPFC6ptgrGLjjXyLf3HGDPBSBnu6dt+pz3HYBMfODKt/BZ3aW2MedC3nhZYcbZvmWmPbR065x7GmFPts7xvjJnl2+ZijrkyUd0Y80rM+0uK3eW/RlzsKP9S08SX0XpGvrnDfUux8q0y9xxAWj8/I5I1HFvEqWTWIZb/z5GWiqMm0jJrTrCH5dRC5yFdwy323OGua5hd7Dan782lllqEGMx2s+cN69bHIC0Mp3cdSXCE5w92cc/xPsGW4QhEv55k8EtrWY9CegL7ID2wHoiqy+FCCn9E0I/ctfxci/t74l2O0+4vzWC4K8EQDq+G7t/ZbrYQ79aa9u7TdLeuTBTae/6KYLnoTbRn1M+XlqbWm4203p+w66cS7EldgpS3i5F3cRTSc3L0RMKInIa44b5H0N5RB88bB7utjv1fSHrP8SWkDDtX1xEEXV13Q8qYX0du8Lx50srvGOLf/x1Iz35vRPX3T6R30Q3xDnOk9azSXEVXIL3JJ5DyfzlB7yZXt2xEerFfEFRpb7XX/gjpJX2GvAfHCYjzRJI3G+SOYPBbe09NCDqH9Ex5rgCVWTiMQIyaU5AX8RjyQThd6Y1IBX25TduNoEF3Gt4cAGF/aJAuZDuChd6PX29bFbFxXI+nOkojl6sa9p7W2e0H2MXpZNN0/rkG4IEYe6siKp9LESFwim/7TKQ7m/Txn45UIH6bDyQbQh3OIJp2f118//0GQ8dHiPeOP7yI34Mol079RuSDj3v37hppoVCSAtddQDadcpxar6Vv+/mIQ4ALplcFER6XERSifuF7G15lvw4R7lcjQuxqgnaZcxC1Wh3k/X5n03ZFVB6XEK822gMR6i2RPL7ZHhsmbQxSWvn1ez3VQlQznyP5fR+iguqLlNGJiFrnB98xaWrNegQ9Gecg355rpD2AqJVORQT4HOTb+8S3vQFSBqcj+ei3QV5h00YgeVSPoKfRjci3FfZmcyRFMHDC4VKk3LyJxHdqRzCwZiYqs7fSYsRg6nT/uyKZFQ5LkcRScsffeQExWm9O2N7M978Q0f9l9btPc1UrzjiCXxINCgilm6nNhbTYj+SZ5C4gqtf+pe/4B/Hcih1+V9ni3t+/kQ/WHXsdQT//a/EGRd1KVKfuemi/QIx7ce/e9ViKM0alOZ43Uz17b2k6ZWf49XuovIEXHqIkfIq8J5AKdx3Ss2iKCILXkErLTz3kWTeG0nsjlU1bpJfgeo4jEWH4GmI3qUuwR3kVkvf+cRR+Lo5JSyq/fqogFWlDgmFB1iD5H3ZqSAuKOQX5/p2N8jdITz7spLIL8k1egeRj1YT7S6Imkg/h50rzZnuP3BEM/N6Ch9rzx8XDykll7jnkESwULoyCI81d8g3E7z2ppX+13Wc+wdbleGT4+ozQ/icgrRs3UMw/kKcGMm7AqQ4Ox3NVuw7pEvvDkY/A6yoehTeOIG70tbv/OngVUJpwOR75aJoRnOnKtUjvxZtJ7nr7LFPwZpJLCykM0lJNGomcdn9pBsNviK9oHGFvsCV43mC/Jvndp4UHCbsfhretRlrSF8Vsb4j3ftLUelB84ekv+/fgjebfiJS3q0P75+q5JvUc70BCa4CMRQlPW+mMsguJJ2v5DdMKEXyFSAXonvV75Dty6+5+0tSa+xPsKV9HcBDZaKQR0Qj5Bq9H1FJZB+B2RBp9To39KVIXud5kWgSAtAgG6xDB9yzyHjZQAuN0ZRYOY5CK+xmkcAzAG70Mye6STuVQDSk4H+HpCA1eS+7/EK+mcNjcvxFsLTneQ7qbroILq05OxGsZpLmqJelknQtfWss2Sbg47kBaSUkuld2Qys6Ny/iGYHgH540Rzpvw/SSRdn9+/bEbpHU62dVWaTr1XyDv8GPi330St+fYZvCmEYXoO/K/nzS1XpLwPJV43FgCx1SCc4BXR965I6nn6mc9Yue4Fk/Nk4cILXetqqF1F9DPtcjDEYuz9szCI6S/QOw1v8OrgF26WzdI4ytL+dhC0FuwB8HwMAWIl9JnoePT1KGOcYha2o16PgZRCbleT5I3m2N3ZFBfUgQD9/sXZCBlPdLn4ohQmYXD3xFDpFM1DCMYzyTJXTKpVROmkPiWwhXE+76vIji4JsxUPFVDmqtakk42HGkziTSD3xqkdZL0IW1DPny3vTFBIfA1wcBlDn/LMFxxgNcyTLu/JIOhczNOUls50nTq8xOOSyPNkJmVNIN5kvDM1Tjwqy7Cc4A3JTgHeFrP1U9/RECAVEKLQtd3rXV/5e6PWOzUVr8lvWfmSKqEpySkO5JG/ocZjlTWTq22AWkstELsFMuQbzn8Pce9qzg2EwyHMYugevoapG76GU+Q+kdIX5tw3rhBhK6XVJN422kilVk4OPLwvIn8PIdEYAzHb9mD3Goh9+HORj6wZwlmeu0c9+JXDfj1l0414ipbFwBwir3PcDz/tHEEceqNb+29F5Ju8LsKyZc5xIefSJtJbhFSyYZDCk8hWHn51Q7+yiPp/rJ22yG32moBojYK69QbIh9qaSlt+Ig0tV6S8MxauV6E9JacEFxJ0CDrzp3Uc/Xj/66aZ7x+WsRiEKHjDMKvEsy74sR2egAvLIkrDyOQcRJ+Rvi2v4vnLQieUf1hxMZwD1GMvcdcNhU3h8k8e31/3LWXffulebMdF7N9NF6cuKSe174x6YlUZuFwDeLF4ryVxiDeHzfa7Unukm+TTS10hv3162oNYqD7K1JZ+gvIdQRnV/MPsnOqkQF23e926Md5I9yJDHp6g/gK8F5EQCxGnqs9UuAbIa2iNOHyV6RyrUVQXeSYgAgAF/vnRIKDfJJCCmetvJLuz+V1UtwsP7nUB0muqsMom6CIbgS5MyCHR5CnkabWSxPuaWwl2JOoFrrOs0R7rv6oqX4OSUjPRVLEYsctyPudYNdHIKqd6xDBuzvBXuduBAeB+ukSkzaUqHA4C1EhL8ZrAF6ClJNP7D04h5AjiMd900nah4dD6373YYO8w7A3Wx7Sw/V7syUJj30SrlsiKrO30ntIJeVaQbWRgt4m8QhhCV4AtjCuRZGLXREV0KF4RiwXCvgckiNB+vGHJqiFVMJv4+mUhyKtjQOQFryb29kxCWl5uhHBbREd5w2IeqAauT2xnLdEHFUov5nUss7SlxQ36wzfvrMJBofzH/8Cnquq396Uy2ZQHFz++T1EspQdx2zknWeZ9zeLN0+YW5He0hAkXPeFiA77T8j77Y435sY/E11Si9iRywnAzz+Ij1js1EJjERWpe/6qSF4+jBfb6TO8dxuO7eTnBbx4aoORMvILgsKpLlIO9kCe3U3o9Xd7zMFIQ7OP75gDiY6wnkjpSPNm87tCfxi6/zcQ+wT2GRbb53D3fxfeNMKZqMw9h9XIi/N3vz8M7RPn8ZFVLZSrdT8YeYFu0MoygvMlYLffibxIgxgUL7X7/T60r5sD1jHOLg2RSnI00mV0IS4OxBMMIB/+wb57eNfu/ynxzEIGKIXjNYF8sGnH74nMirU30qJpi7gVh1tOYeJ05m7d33JPipsVPj5JbdWUsgvAGEda+Ig0ktR6Y2P2dd481ckuHEYireAlyJiJf+HZtH5GhKSLm7XVdw9Z7XFpONvYqFD64Xh5Vh9PmLswJnciAuCPBOdeSaIuQSP9G4gnz+4EGwKbkMp0EZ7u/2SkvC6yy4W+/f+MfB8HIt5AfZDejxMOjZGWfVh4OK1DHfsM/nEUNyMajM/wxjS0RlRInyCNuqzhNR5AGiId7HXGIr2wrDYXoHIKB9e62YpUkDPtem+CMVeSPD5mkU0t1NX339+6d6qfj4gKBD8TEd2lU6EMQlpS4WiTIAW2VUx6S6SANicYkngFMhjIHy/+A0RAbiN5JjTn5XARUkEljVBOO34solpxbo0fIL2bNOHQAm/O4yTBA8G4WQbJw0fxpmlMI81NubSkjSBPI0mtl2RwNngzvY3EU8ck8TPS0k5SFbme2dMEv4H/IqqxH+IOKgZphvvBSE9hNvKsR+KpFH9CKsxcwqE9Uh78sbWGIk4WnyCCb0+8b/g9RLXrVDibke/ZP8GWv5IfiAi4txHPsnyC4dJd3LZfEYzb5ngYabw6W8hvEDvMXojQXol822/acx2PaCJGIj24wUjvpxXyne2OfDtuoGch8t4GIAL1IbxeRWYqo1ppaMp2Z/1PmnPAzbpUXLWQa92nhT12JIUd7k7QJbMK0gJ5Aq+1MBpp2Xxo058mOFCpNtLS8ceLvxf5qHchWU88h2yVc1ILxNk/3CAcv1olbt7iJBbluEfHIXieaK8R9ERLYzny8RXXVTULeUiDYzPeOIB5JI+kjyOXWi8XjZF3EDeBPaSHFXfP7+ZTKETKjMuflxFB9wLSkHmJ+Ki5aTRCBKgLV/9vZKyAPxpqPlKG8pBvxR8e5jr7LGHh5XgDaZjMtus9kYaDswGdhni2vWrPfwSidt0NaWl/h4wtcL3Lg+3+zuDtn+ypJ1InLMFTtbry6x/EOAfvu0maA74qnkr7BkS4XYQ0EBb5to1CykdrRLW8N6JWdWN3Xkfscefaa36J9PaT1OWxVMaew7j0XYBkj4//kk0tFCapdZ/EbKSyd1NhDkR8kRsirRCnTy9EWjt+feHHSOsnqcLZgnSbwzr07khFleTFg72XZ8hdOec6HiQPG+F9uN1JnnshjrSopyAf0zq8MpxLzRWmWHHti4nBC+ldbN9ySy61Xi7+Q+5oti7O2ESkARKe2tWRy19/N6SndjHSAp6GCIqso+shOarsGWQLv3EZIrx+wovr5O/ZpsXW+jNSvtwI/sZInndE1ER7IJWp4wuCg+XeQdRejyCC/DuCKsy0uG1bCZbvLjbNr9I+GnEIAFEX+u1PJ8bs7ZIAAB4qSURBVCECy13zc4LvbCAymPN8ew/7EvTky0Rl7Dk40twBn0Fe+CXIi/gG6Zofl/H8aa37ND7Osa0q0iLwG9P3JN1g6wpLD8TTxz27YyOem+ubeHrlMPcgqqFw5Xy2vQdXaNfiBQe8Cm/e5M6Ieu8gpCvfGGmt+T+4XCxHBPVqRNCEW/a/R1pPX+KNfC9Oyz/JpS+rcEkjKf+yUtqZ/HJxINL4OQHJ54mIEAqHdskyArsRotO/ECkXWb1l4nqGC5HGTq7wG1l5BvkW/LG1uiBedRB1OqlCtpZ1XAOkJfJe/MLheKT1vg9e3Lbr8LzruuDFxcpDyvCvEaH3BWJ3GImoijYjgmgOnkOD67m4SYHiQgPtjtf7dHlbLCqzcFhFbndAPyXx+PCrVuJa96VhIdIFdvdSA3Fly+XpZPAMXu8jxu2wN44L5AW5Y60kVc5bka626/67c9RCKhhnYKtpr+umEV2BfIBZjbLNEtKdi+EqRCUXnpQlK65M5CH33sLeY7tcBxWD5Yhw/4R44bajMBARZKPxBD5ki93VABEMgxEhMgVpaGXhNqSM+6PKtkN05H51S9yMaI5c4yD8sbXAi63lVK9/Q96Ff/73JUgDJxe57icLA5CelsPNhOdCW9RG8j0f6ZW4xtThiFODE3ZXIHneG+ld/RYR8s7L8RTEI+x1e/7DkfrAzW2TicosHJLcAbsSP8itPyKxF7F9yDVQKk4nWRxXyDh7hjtHT6SifoVkV8+kyvlpgi2+P+IZgZ2dAeI/ouJ+WH6DW2PEUOh6W7ORDyNrIMM0OiNd8PPL6Hxpwi0LpQmMmIsmiPPDSUhv+Qmk0vA3PJLscecgre/BSJ5NR1REs0lvgPlxPSPX63NRZXexv83tfmF3ZFc+w+MgBiPfreu1n4bo4P2E09wUvXlIvmapOLMGr0uK29aJ4guXzkRjVIGU/2OR+3+R4Ijrd+02J3T2RBpvWesPoHILh66IWinsDtgf6aquDu3fkuAgtyTCcV0cxe3655pndybSCnDd0AGIjtc/AjTXNJS3IKqppwk++9PEjxaH6CCvuMp5JsHQ0Y4qSGv+cKTyeQzRH/sHKd1P9gnO0wxuD9ttzxM/grsklLZVCNnHaaRRnKi7xWEOoqp5ApliM3w/bj1pDvCmSEU0Cellb6NsWU228rmY+HEQrmeW1jhpgejiw2rb1Sn39xWeB2AcbpzHG0irPdxz/1PMfaVRknJZUrVZgMpokHYkuQM2omSxjxxZg2ulkWvClOFIq8gN6llLcFzFKHJPQ+l6DX6PF0P28Ab+ynkMYot5DGl93Eg0Nvz1dlsfRPA2JVhRb0J6GVlJM7h9apcaxI/gTsMfhqMK8vH9J2Hf4pA18GEaaYEHS0ozex/n47lRQnQcSdII7MMJxgCqjjRSPiManj2OAxGVZ1Jl1zzDORxx4yD6ITbDJgRje+1GsJf5JMHw5z/ZNL97ehxbyKZZSIrbNp74XoDL/7h88ZclF5Y+3EANN0xfQuoFf0j6FzPcd4DKLBwaEpxpyvGbHMeEwyKn0RFvKP1rpLsK+sk1UOpDpLXoAsOFJ5c51V77HcSovifBwHxpfuRpJFXOV9rrrMLTh4bdfMchOs+0IGi5+BHJF5c34ffiKsq6dp8so879+AVNIdIDKc39OrKGB0kjLfBgSWmecb+k8CV3IT3aZTbtTaRibYjowR8PnyjE5Yi6JW4kut9mloYLCR8eB/E5Uhb7E6zENxGcyKsa0UGUWRoZ68nmDZkUt+1jRL1VHPyNAmdDSWugXoFEKe6B5M84pKdYLCqzcEhyB8w6yC0NN9Oci1Y5geBMc2nEDZTyj0ANBwcbi+e5kTQN5R14RsFcx6eRVDnHufkuJzryfArpM9nl4gnEnbc+kse/JThg6yCkFeYf5DSE4KjwXJRFK7w8KW3spNLSHcnLTXiqqIORhtBwu88wZHDjicjgrRmkC4dz7W9pGy+PI0ZoNw7iD3jjIJYi332uSvw/iADxq22zePOkOau4Fn0e8XHbPiT6rfiJ6zl86ku/Hnn2Z0ieZAx7rcl2KTGV2eaQ5A6YT+ljH0HpZ5oDUWP5B0q9hFcQwrpG//q9SOEbhLTGvrfP0jHj8WmkeUOkkTaTXRZyGdzSBjklkXW+hx2JknjSlZZ3kLLid9VeiLwLZ5B9HlHFjPUdk2asDc+kFiYpLLgj6zSkLyDvMim/9kcaZHsjz7QGaVysSrl+Gs3I7XRwHxIfKQlXnmvhzQSXh9Qp8xEvq0HI/A+vIILiX0Sf8xuSp8G9knTbClC5hUMaxR3kFsZ5dLjufy28UNAloTXirrq7XQ9/bEmVe3O8aSj9x2Q9PolclXMabmSo+62DfPhxar6SEOe5lcWby7kf55E+TWlFkMugvZVgqJLyJM5bbjGiVrkdsTHMRmwIXyAaiKWkOxyMybHN4M3CmMQLZBsH8X943lT+PAs7LCSpbUtKcb+xvyICtgBx73XTtE6y21x4l4PstrPsem1E+A1CGqj/QgSF+0avRzyVJiLPNwhxKlmFlPlMPbfKrFaC3O6AabGP0hiDN9McSPc6LXYQSGV5G9JqmYq0xu/F8wppgLTUqhCdVasZ4qvtRhsfZa/7CaKXrpJyfHGYSfEEgp+0mezSOBnxvXd+4GGD20fILFf+QU65BhU6/JV/rvkeKoqyip1UWj5CPG/coMYLbdpViN1hL0R96VQ5vcg2GnxY+i452Yvc05A6PrdLFYL6+RMIhuS+jGBI7ixlKBdxjgi5WIo8TyuCA0QPJBj3aylBYb0FT23UAVGhDcX7xo8lGC7/XrzQPGljOYqozD2H8nIH9NOZoK90lvg+85GP7k1kQNlViIT/C1LB53Ll+w9iLHSzvs1CutYdENXZMSnHp3nLZB0BncZfEKHXCxlkZRD10l8yHr8K+ZDfS9juH+Tk8v5apDudlbJwXd3epMVOKiv2QITA0XgxlS4hm0dSLn6NeL0lTdqU5orsxum48p00DsKxK8Gew2Kyh+QuCWmurkuQ3s8au17L7t8Y6eWMtumP2/t2k/f8GunlOM/GPRGD8yBETf6kPcapyechYdmdmu5kxC7TjexjNSq1cEgayDOwlOct7SC6cJd9DaIayhLAzB/I6zZEEFyFtJAKKP0I3AVkGwFdHPzzAWRlLt6YhrLEr7YJVyyQfRxCRXIC3lzM25vwfA4GMeTOJhjxOInzEZXPqITtaY4Cq8nW+HHh4esgg0w72mv3wFM9PoKMincVclk0Fj5BJhlL4nK8b7QeIhCeRxpj8/Em/6mF2Cbc9/Ya0jD7DSIgWiMV/ySCkwA5WiLvqhuSL28hDeW1SP2VqcdcmdVK5eUO+Dfi9ZzLyTaIrhZS4boC/j1SYNx6UlcZgh/F0XhhjLNMCpOFKgRDUrgRpT+Qe56LMGkz2SXhDJYLkS7zVIKD3IZROoNy1vkedmTKUzBcRe5pLuPmc3A9zcmIt1wuXFjrknqLNc+43x1IL8B5I72LVLQ/ky0kd0lJc3W9GvmOdsdTKY+12/zf1w+IU8e/EAHmOBwZ4DqL3N/8KpKDS2ZWpVZm4VBe7oClHUS3jmD3+Qvfepqv9yuIm+c6RLXiXG/zKRtPlnqhdRcaowrZns2RNtdFEv6pUzcTNGAbpLcEyQblNMpqHEJlxanxkib1Sar47kc8yNKEgyMpvESaQbo4rAmt/4S4dhcgHk7v4T3nwcg3VVrSvsE7kLqjGuIE8xNikxtK0FOqPyJwayBlthNiZM7qTfcg8cL9vJi0RCqzWslPWboDriI+hETatrIgD1GL5SNC4jObfjCiJy72KMgQ9yKqlfAI6BuR1s7wyBHZKO5cFz2IdpfDaZl1p8p2oTjvIym8RFkMRAQZ8PV3JMJAd8S43gXR0TfBC8ntWt/5iMG/rKLy5sI5FlRFeml9kIbTCDybziKkkfgqXp76Vcpp+FXntRA75RqiM0zmpDIKh/IOrHc/0n2MG0SXTzGls+WBEh4HYljLOnF9Gm7+664kj4AuCdWRwp02f7cjS+C+ndGgvKMzhmS1nSF+nEo1RBd+MsGeXy6KM/FTSdgd6SUcgzSoXkIq35JG8d3euMCZfoFbHOEQpgqiPemVtqOfyqhWKq1NII3L8UJIxA2iKwklmfXLcT1lJxyyjoBOI2muizQOQ/SqjQl6tOyGtLT8BuWqBF11YecwKO/IxJWjfRFPparEB53cguixixPRNim8RFnxNSWYFnM78A9y28xcmV+KBK6siri5Xoz0tkpKC5IjBSdSGYVDaW0CaZR0prhclMZFsLi+1Vko7RiQ23z/izPXRQ3EYFiNoH/6d8go68pgUN6R8at19kNGIx+JGEEfpvQq2bTwEmUxmREk94DK0qZREpba3+7IwDb/fBb+iaF+j4x/2Iq4ub9I7jmzw/hHSFdBGk1ZJyErojKqlSrSJlARHIq4qlUmXBiCsJ+6Uv60QSqmg5Fe+GPknjfjWrvsSJzi++907p/jhdSuaF5BbA0u5HkNxB7qtBpZ5qOIowpiR/EPeHVTwxabyigcysMmUB4cgMQ5CU/lmUvtVdrYNOVNWQ2iS/JTv7Asb1aJ8CSi4rwNadWGx97Eqe2KY/vxx0ZajPRI4mIjlTVVEPfPshwAWxpWIDYFNzNdfcTO4FztSzpZVgEyPuLNsrjJyigcnFG1tIH1ypt3EUEW9tjIZTAvbWya8qasBtHNR7ra0/EMckuRrrhSfqzGa1C53zzfepzarjheSlljI5U1bmKoHUVrcA7SeJ1l149GPALXIbaY0wlGVN0NsdsdSm66IWMn3kUaY8WJGBChMtocysMmUB4Ukr0l7ShtbJrypqwG0UG8n7pSvjQvwTGHpO9SRNbYSKUlbDj/gvjJdyqKhxBvShf/aBTiSekasWnzUSThvJyG2/PMIDhYrlhqtcooHBylNaqWN88iapJnCI4CzuVxU1bzNZQXZTWIbg3itWQQfezFJMdZUrY/LRCjaXOCdUjaOJY8osEg/etl5W1WVrM1liffI4H+aiGq5WaIR9K7SGDFks6P3hBxRf8PImBKHD2hMqqVdhbiIkCmedz49Y47ot9/WQ2i29n91Cs77yI2oSUEK5+00AyrKV1gyDQqyqZRXH6LuMQ3IRgD7itEpbSEeCNy2jiH4Ygd829IqJJSVe4qHHYuynK+hvKgvAbRKTsWTn2xo1FRNo3isgSxH7yJDAZshzSoLkPsDkljEnJNJATS47iU0kfPBSq3Wmln4CDE0OQP+pUr/lBZztdQHpR2EF2uiJaG4vl6K+XHnYie/CWCKtHysiFkZXvZNErLD3hzntRAbKIH4sV3ShMCSZTpwD8VDhXHKCRkdFtkpGg/JOxxLuFQD2kZJQ0C21Eoqb0nbkzDroiLbCNUOOwotEdCZhyNp1ZKCxq5PdheNo3Ssg5xX30WEWIbkJnbHGmTXW0XVK1UcSxBVC7v2N89EZVM1vg0lZ26iJ3hbMTn/nbKqLuslJr3Ef339prTOiurKV+bRnnQC2n0PY/XC0ub7Gq7oD2HimMLUpALkRbBV+yYhXd70xDRvZ6JhIjuTCn9tZUy512k5bujCevmFX0DKcS1/F3YjJp4wuFLdgDvPBUOFcdC5AN7EFEVfU/lC4NRXP6GdKkfQFQXasDeMdkT6T0sIGhzyBqS/X+VZXixpfZGxi/kIZEAPkOiAUDyZFfbNQKCqpV2DJojrYrFFXwfFc3PyMdQSPwI3e2qc1US+WVCeuZZxv7HuRfxrHIz1Z2ARA+40q7HRULY7hEQVDhUHCchAbjc3Mr1EQP11Iq6IUVRtgsLiYbpj0urUFQ4VBxxE57o7GZRzkPUTMqOQ3ckhk8bxBWzKuJppj27bLyENAwfQ3oEv0YGfL5P0OvQIHNTzEY8GbcrVbb3BZUi4vJebUBRSjo1qVJ+3I2MZ1mJxMw6x6Yp2TgD2AeJffQCYmsYzP+3d/fBUtV1HMff94oOiCAQTj6hpJGOoqFoNvmQMyqjozZkilM+4ENmjmKMmTYmaTapKdmDQ2M+5WMEmYQ6DaEooimkIIjmU6Y5TlqYSCCkIrc/PufM7t6zu/cs7J7f2bOf18zOvXv2PnzvhXu+5/dwvl+NHhaXPZagdbdrKZXNyYxHDuHcikr2TkNXCJPQnuzTAsaURx5N5U88BVLeuvIJVA/Lmm8A+v1m+nfgK9VwJgFT0K6EuH7QuUEjyiff95E/a9F00lLgGnRT18CgEbWX4ai20p5UVkcYV+Pj19U43lJODuG8z0a07iu4C/p4/bpMorC+nILWGc5DtXxGUNl9zeq7C1Vj/jK6IJyIyopX0w/9vtO02W0qTytlLy67fT/VS1508l7xy6K3u6HifeVb/RaguW2zdrcY9cGIp+W60KLzWJLnhHVoi/Bk1Oo0Mx45ZO/O6O3UoFHk0w+it3PRndGro+eX03f/XMvOa1S/sPEd/unEvaPfRr2k/4lGX7nqQ+HkkL24w5NvGKptJyrr9nxI/ksjdJLy/fj9gRNQ2RNL50pUT+lCtCFlMKUb4HLD00rhHIiuiHdGSTquvOirL5VdnoDmZXvQ3OxMSp3lLH8eBw4KHYQ1j5NDOC+ixbzFVPZHdrczGUvpZLMAbWm1fChvKtWNRhLnoOrC1rfhqBTGSCpnb74RJJoaPK0Uzip0E4xVtxRtkYz/j+4EvBEuHCvzk7L316NS2RPChNKWZqO2oI9TeWGYKx45hHM12g54L/nqppUHk9DOpX+hP554yq2vHrpm7aBa6ZzccXII55Eqx/LQTSsP/oZ6FHuKLV92RFMhcZ2fC1C5aYDfoH8369tV6O9/buhA6nFysDx6BDgCTVlYfkxHTewfiJ6/hIoibol6IDe1h3GBrUS7ldainXjxyDhXO7685pC9k9EdkrXuBvZdwOo/PZ/K1ong301ou1FKDKCTW7z+8Fj24bSt4aEDSMPJIXtxDZpc3fCSM29Ejy2ih+VD/17PDyt7/xNZBtKmRqFKtnvWeD1Xzb48rWRmaS1CdX5e7nV8d+AO4HOZR9RebgHOpPooqwd1g8sNJ4dwPoV25YykcgTXybWVYtsAF5GsWunF+rCOBH4B/IjSrrqxwCXAt/DW7DS6URJdGDqQvjg5hLMMXUksR72TYy6roV0cM1B5gW+iqpUrgItDBmUAjKaUuAGeQ81ongsWUftZiLrp5ZqTQziL0HZNS+pdtRKUNGs1tjdrJz9EDZNmhw6kHi9Ih/NzdKPXXHwTXG9x1cq3gKNR1codw4VjkRtR7+jlVV4bCJyI/i/fnWVQbeg8tJX1A1SSO5dbWT1yCOcqtLj3KqVpJd8EJ8egRbsR6GQ0GJXzvq/eJ1nLjUHrC3uhaaQVaE1oFPo3uhW4gcqLHSuJS8BsVuP1XJXScHII50U0ZfJhXx9oljNboWJ726Er3xfQDXFW3xIqixbmmqeVwlkGDAH+HTqQHLme6k1kYudnFYjVtQbdpLg5WqBeGTSa9tEVOoBGODmE80k0eniKymF4J29lfTp0AFbXDSiBP4/mzJ9EUyHD0M6y6eFCaws7oK3AteTq4sfJIZzL+v6QjnN7r+eD0EhiTYBYLOlgtLUY4HR0M9x4YFt0j4OTQ33rKHWCzD0nh3AeRaOH/aPnf8FTTLHRqNf2MDQUXwGciq5YLZzy9bEjKPX1fjtALO3oPyQvgHKrO3QAHWwCSggnRO8vAo4PGlF+3IgKE+6Mdnh8G7gpaEQG8B7aSbYPanM7JzreDxgQKqg20labTzxyCOd7aNQQjxa2AR4C7gkWUX4MpLLfxXxKBQstnLPRnPm2wGRKI4bDUAVdqy/3d0WX81bWcJaj/eKxbrSDaa/qH95RZqFtf3dGz09GWyfHB4vIrMN45BDOHOBPlBbxTgT+GC6cXDkD3fR2L1pzWIAWQC2s3luNe4B30Cjv8aqfYW3LI4ewjgMOonQCnBU2HLO6JlY5Ngytmc0AfpZtONZKTg7hDEFlB0BbAlcFjCUv7qf+TXCdfA9Ing0AnkAL1VYQnlbK3hZoN8541A6zG+3KmYX2kLfVjoYmmxq97UK7k74eMBZLb13oAKz5nByydykqOzACWB0dGwRMA6ZEj05V3stiDe5t0Q76oQKSb4YOxJrL00rZew51glrb6/hWqAnI6Mwjyqe2KlLWIVaTnPZbh5L4ZFRa3QrCI4fsbSCZGEBXyp2eqcvr2W8GDKWyWNm72YZjvQwKHYBlx8khez0kT3qxDVWOdZLF6PcT/27KGx/1ALtkHpH15fLoYQXjaaXsvY6SQLXk4BOgtRtP/xWURw7ZGxk6ALMmaqseBZaeRw5mtim68XRoIXnkYGaNqtawZhVq1jQ741isRVyy28wa1R8YA7wSPfZGO83OxCU0CsPTSmbWqIeBccD66Hk/YC5qALQc2CNQXNZEHjmYWaN2oLK/xkBge9RP+oOqn2Ftx2sOZtaoa4ClqAlTF3AIcCVKEg+FC8uaydNKZrYxtkNlYLpQu1uXzigYJwcz2xg7oGrC5bMPCwLFYi3gaSUza9SPUefC5ynd49CDk0OheORgZo16CW1f9eJzgXm3kpk16u+oJ4kVmKeVzKxRa9FupXlUjh7ODxOOtYKTg5k16r7oYQXmNQczM0vwyMHM0poJTEAlMqpdVe6dbTjWSh45mFla2wFvofsbqvlHhrFYi3nkYGZpvRW9PRa4C3gvYCzWYt7KamaN2hb1bpgJHIm7wRWSp5XMbGN0obLdpwP7oURxC/BqyKCseTxyMLON0QO8HT3WA0OBe1DFVisAjxzMrFHnAxOBd4CbgT8AH6GLzVeAXcOFZs3iBWkza9Rw4DiSu5M2AMdkH461gkcOZpbWsD5efzeTKCwTTg5mltZraK2h2u6kHmCXbMOxVnJyMDOzBO9WMrNGzUt5zNqYF6TNLK3+wEC0ID2U0vTSYGD7UEFZazg5mFlaZwOTUSJYUnb8v8C0IBFZy3jNwcwaNQm4PnQQ1lpODmbWqFNrHL8j0yispTytZGaN2r/s/f7AYWiaycmhQDxyMLNNtTVwJ/Cl0IFY83grq5ltqrXAqNBBWHN5WsnMGnU/pTah3cAeqGS3FYinlcysUV8se389KsD3ZqBYrEU8rWRmjXoDGARshVqHOjEUkKeVzCytwah/w1hgGbpD+rPAYuBMdDOcFYSnlcwsrduA14ErUO8GUIKYAnya2vc/WBtycjCztF6h9q6keq9ZG/Kag5mlVa2PgxWUk4OZpfVn4Pskk8QUYGH24VgreVrJzNIaDNwC7AssRfc67AM8gxakV4ULzZrNycHMGrUruvGtC3geeDVsONYKTg5mZpbgNQczM0twcjAzswQnBzMzS3ByMDOzBCcHMzNLcHKwTjQebcWMXQEcHiiWRl0SOgDrDN7Kap3oNuAB4J7AcWyMNahUdm9d0WNDldfMGuaRgxXBSOAF4CZ0U9ZcYABwFvAUKi/9e2BL4Auo1/G16C7fXVGyOB44isqOZoeirmcA44AngSXA76h+gga4CFgefc+ro2NjUHmJZ4FZwNDo+Hxgv+j94ajiKcBpwL3AHFTQ7pro+NXRz7UUuLvs5/5lFNcU4KdlsZwFXFcjTrO6nBysKEYB04A9gfeAr6AT7P6o58ALqMTDE8B9wHfQSbv87t4Hgc8DA6PnJwIz0In7UjT1tC/wNHBBlRiOQlNWB0TfMz6p3wFcDOyNEsdlKX6eMdH33yt6OwL4LrAueu2k6ON2i77+PsBUlPg2j147Hfh1iu9lluDkYEXxGrqiBjWfGQmMBh5DJ+STUOKoZz26Wj8WNcI6GpiNEsYeqPDcUmAisHOVzz8cnYzXRs/fBbYGhgCPRsduBw5J8fPMQ7WK/gf8tcb3A7XojIvevQ88DBwD7I6SxPIU38sswZ3grCg+KHv/YzT9chu6kl+GpmoOTfF1ZgDnohP7U8BqNJf/IPDVXh97APCr6P24Wmkji3jrKV2g9e/1Wu+fp9bf6vu9nt+MFq1fxKMG2wQeOViRDUI9jjenNA0DOuEPqvE589HU0VkoUYCuzA9E3c5AaxefARahKZ4xaKpqLnBG9DrAMHT1vxI4ODp2CqVRxOuo5SZozSONjyhNG1WzCE1BfQ2YnvJrmiU4OViRTUEnywfRlXTst2jN4Rm0IF3uY7ST6ajoLcAKNPKYjhaVF6Jpm97moCTxNJp+ujA6PhEtgD+LEskV0fGpwDloHWR4yp/pxujr3F3nY2aiKbCVKb+mWYK3spoVzwNo19K80IFY+/LIwaw4hgAvox1NTgy2STxyMDOzBI8czMwswcnBzMwSnBzMzCzBycHMzBKcHMzMLOH/16P7WqV/aLIAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "dark"
- },
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAFUCAYAAAAtaOuGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3XmYVMXZ9/HvsM2IsrsBo48oiIIi6CAYoqIoawIkQYIaRSXBNS7RROISCcSo0UTkcXs1LmgMBjURHoOibGpUNgFRFgWXwAAisqqsA+f9466ebpqeoQdmTh36/D7X1decrj7dXTTd5z5VdZ+qvCAIEBGR+KnmuwIiIuKHAoCISEwpAIiIxJQCgIhITCkAiIjElAKAiEhMKQCIiMSUAoCISEwpAIiIxFQ2AaAlMDflthG4HmgIvAEsdn8buP3zgJHAEmAecHLKaw10+y9223sS6KabbrrpVuHbarKQV8GpIKoDy4EOwNXAWuBuYAgWAG4GegK/dH87AA+4vw2BWUCRq+D7wCnAunLer0KVExERwI6vRXvaqaJdQF2AT4H/An2AUa58FNDXbfcBnsEO3tOA+kBjoBvWUliLHfTfALpX8P1FRKSS1Kjg/gOA0W77MGCl214JHOq2mwLLUp5T7MrKKk832N1ERKQKVaQFUAvoDbywh/3yMpQF5ZSnewxruuyx+SIiInuvIi2AHsBsYJW7vwrr2lnp/n7lyouBI1KeVwiscOWd08qnVrTCIvti+/btFBcXs2XLFt9VEdlnBQUFFBYWUrNmzb16fkUCwPkku38AxmGZPHe7v2NTyq8BnscGfzdgQWIC8EeS2UJdgd/uVa1F9lJxcTF16tThqKOOIi8vU6NUZP8QBAFr1qyhuLiYZs2a7dVrZBsAagPnApenlN0NjAEGAUuB81z5eCwDaAmwCbjUla8FhgMz3f1hrkwkNFu2bNHBX3JCXl4ejRo1YvXqrDI+M8o2AGwCGqWVrcGygtIFWIpoJk+6m4g3OvhLrtjX77KuBBYRiSkFgBg5ucPDlXaTvbNmzRratm1L27ZtOfzww2natClt27alfv36tGrVqtLfb+rUqfzgBz+o0HM6d+7MrFmzdit/+umnueaaa8p97n//+19OOeUU2rZtS+vWrXn00UdLH+vevTsnnXQSrVu35oorrmDHjh0AzJ07l44dO9K2bVuKioqYMWMGAIsWLeK0004jPz+f++67r8z3vOSSS2jWrFnp5zp37lzA+sivvfZamjdvTps2bZg9e3bG52/evJkzzzyztD7Vq1cvfa3evXuX7vf555/ToUMHWrRowU9/+lO2bduW8fXuuusumjdvTsuWLZkwYUJp+WuvvUbLli1p3rw5d999d2n5hRdeSJs2bbjllltKy4YPH87YsWNL77/yyivccccdZX4Ge6ui1wFIlirrIDl7+lWV8joSDY0aNSo9QA0dOpSDDjqIm266iS+++CKrA3VJSQk1akT3Z9u4cWPeffdd8vPz+fbbbznhhBPo3bs3TZo0YcyYMdStW5cgCOjXrx8vvPACAwYM4De/+Q133HEHPXr0YPz48fzmN79h6tSpNGzYkJEjR/Lyyy/v8X3vvfde+vXrt0vZq6++yuLFi1m8eDHTp0/nyiuvZPr06bs998knn+THP/4x1atXB+CAAw4o/T9KdfPNN3PDDTcwYMAArrjiCp544gmuvPLKXfZZsGABzz//PPPnz2fFihWcc845fPLJJwBcffXVvPHGGxQWFtK+fXt69+5NSUkJAPPmzeP0009nw4YNbNq0iRkzZnD77beXvm6vXr24/fbbufnmm6ldu/YeP49sqQUgEhE7duzgF7/4Ba1bt6Zr165s3rwZsDPyW265hTPPPJMHHniA1atX85Of/IT27dvTvn173nnnHQDefPPN0jPXdu3a8c033wDw7bff0q9fP4477jguvPBCEtO/TJo0iXbt2nHiiSdy2WWXsXXr1t3q9NRTT3Hsscdy5plnlr5PeWrVqkV+fj4AW7duZefOnaWP1a1bF7Agtm3bttL+67y8PDZu3AjAhg0baNKkCQCHHnoo7du33+sUx7Fjx3LxxReTl5dHx44dWb9+PStXrtxtv+eee44+ffqU+1pBEDB58uTSIDNw4MCMgWns2LEMGDCA/Px8mjVrRvPmzZkxYwYzZsygefPmHH300dSqVYsBAwYwduxYatasyebNm9m5cyfbtm2jevXq/O53v2PYsGG7vG5eXh6dO3fmlVde2avPoizRPZUQqWrXXw8ZzvT2Sdu2MGLEXj118eLFjB49mscff5z+/fvz0ksv8bOf/QyA9evX8+abbwJwwQUXcMMNN/D973+fpUuX0q1bNxYuXMh9993HQw89RKdOnfj2228pKCgAYM6cOcyfP58mTZrQqVMn3nnnHYqKirjkkkuYNGkSxx57LBdffDGPPPII119/fWl9Vq5cyR133MH7779PvXr1OOuss2jXrh0A48aNY9asWbsdqACWLVtGr169WLJkCffee2/pAR2gW7duzJgxgx49epQeTEeMGEG3bt246aab2LlzJ++++26FP7tbb72VYcOG0aVLF+6++27y8/NZvnw5RxyRvCSpsLCQ5cuX07hx49Kybdu28dlnn3HUUUeVlm3ZsoWioiJq1KjBkCFD6Nu3L2vWrKF+/fqlra/Ea6Vbvnw5HTt23O09gd3qMn36dI4//niOPPJITj75ZC666CKWLFlCEASln3OqoqIi3n77bfr371/hz6csagGIRESiHxvglFNO4Ysvvih97Kc//Wnp9sSJE7nmmmtK+6g3btzIN998Q6dOnfjVr37FyJEjWb9+fenB6tRTT6WwsJBq1arRtm1bvvjiCz7++GOaNWvGscceC9gZ7VtvvbVLfaZPn07nzp055JBDqFWr1i516N27d8aDP9iBbt68eSxZsoRRo0axatWq0scmTJjAypUr2bp1K5MnTwbgkUce4f7772fZsmXcf//9DBo0qEKf21133cWiRYuYOXMma9eu5Z577gEg00SX6VkzX3/9NfXr19+lbOnSpcyaNYu///3vXH/99Xz66adZvVZ571ne80eMGMHcuXO58cYbuf322xk2bBh33nkn/fv35/HHHy/d/9BDD2XFihWZPoK9phaAxNdenqlXlUTXCdhAZKILCODAAw8s3d65cyfvvfceBxxwwC7PHzJkCL169WL8+PF07NiRiRMnZnzdkpKSjAekTPYlzbBJkya0bt2at99+e5f++YKCAnr37s3YsWM599xzGTVqFA888AAA5513Hj//+c8r9D6JM/r8/HwuvfTS0gHjwsJCli1LTj9WXFy8S2sErL8//arwxD5HH300nTt3Zs6cOfzkJz9h/fr1pWMwmV5rT++5p7qMHTuWoqIivvvuOz766CPGjBnDGWecwYUXXkjt2rXZsmXLbv/n+0otAJH9TNeuXXnwwQdL7ycGLD/99FNOPPFEbr75ZoqKili0aFGZr3HcccfxxRdfsGTJEgCeffZZzjzzzF326dChA1OnTmXNmjVs376dF17Y0zRgdmBLBK5169bxzjvv0LJlS7799tvS/veSkhLGjx/PcccdB9gBN9G9NXnyZFq0aJHtRwFQ+rpBEPDyyy9zwgknANZKeeaZZwiCgGnTplGvXr1dun8AGjRowI4dO0qDwLp160rHQr7++mveeecdWrVqRV5eHmeddRYvvvgiAKNGjco4btC7d2+ef/55tm7dyueff87ixYs59dRTad++PYsXL+bzzz9n27ZtPP/887tkGG3fvp0HHniAX//612zatKk08CbGBgA++eST0n9bZVELQGQ/M3LkSK6++mratGlDSUkJZ5xxBo8++igjRoxgypQpVK9enVatWtGjRw/ee++9jK9RUFDAU089xXnnnUdJSQnt27fniiuu2GWfxo0bM3ToUE477TQaN27MySefXJoqWdYYwMKFC7nxxhtLuz1uuukmTjzxRFatWkXv3r3ZunUrO3bs4Oyzzy59v8cff5zrrruOkpISCgoKeOyxxwD48ssvKSoqYuPGjVSrVo0RI0awYMEC6tatS8+ePfnrX/9KkyZNuPDCC1m9ejVBENC2bdvS1NOePXsyfvx4mjdvTu3atXnqqacyfhZdu3blP//5D+eccw4LFy7k8ssvp1q1auzcuZMhQ4aUpufec889DBgwgNtuu4127dqVdlWlfhatW7emf//+tGrViho1avDQQw+VZhc9+OCDdOvWjR07dnDZZZfRunXr0jo89NBDDBw4kNq1a9OmTRuCIODEE0+kZ8+epV1UU6ZM4a677sryW5Kdii4IE7ZIV648UUwDrcz8/f01PXXhwoUcf/zxvqshETJnzhz+8pe/8Oyzz/quSplWrVrFBRdcwKRJk3Z7rIzvdJUsCCMiklPatWvHWWedVdq6iaKlS5fy5z//udJfV11AIhJ7l112me8qlKt9+/ZV8rpqAYiIxJQCgIhITCkAiIjElAKAiEhMaRBYYq2yp7beX9NjJZ7UAhARiSkFAJGQ9e3bl1NOOYXWrVuXXvX6xBNPcOyxx9K5c2d+8YtflC68UtbUzyKVQV1AIiF78sknadiwIZs3b6Z9+/b06tWL4cOHM3v2bOrUqcPZZ5/NSSedBMB1112XcepnkcqgACASspEjR/Kvf/0LsBkiExOxNWzYELAZMROrSE2cOJEFCxaUPjcx9XOdOnXCr7jknGy7gOoDLwKLgIXAaUBD4A1gsfvbwO2bB4wElgDzgJNTXmeg23+x2xaJlalTpzJx4kTee+89PvjgA9q1a0fLli3L3D8x9fPcuXOZO3cuy5cv18FfKk22AeAB4DXgOOAkLAgMASYBLdzfIW7fHq6sBTAYeMSVNwTuADoAp7rtRNAQiYUNGzbQoEEDateuzaJFi5g2bRqbNm3izTffZN26dZSUlPDSSy+V7l/W1M8ilSGbLqC6wBnAJe7+NnfrA3R2ZaOAqcDNrvwZbCbPaVjrobHb9w1grXvOG0B3YPS+/ANE9kXYaZvdu3fn0UcfpU2bNrRs2ZKOHTvStGlTbrnlFjp06ECTJk1o1aoV9erVA8qe+lmkMmQTAI4GVgNPYWf/7wPXAYcBiRWWVwKHuu2mwLKU5xe7srLK91kUp14WySQ/P59XX311t/KioiIGDx5MSUkJP/rRj+jatSsABx98MP/4xz/CrqbERDZdQDWwfvxHgHbAdyS7ezLJtIZcUE55usHALHcTiYWhQ4fStm1bTjjhBJo1a0bfvn19V0liIJsWQLG7TXf3X8QCwCqsa2el+/tVyv5HpDy/EFjhyjunlU/N8H6PuRvsxwvCiFREYh1bkTBl0wL4Euu6SaQqdAEWAONIZvIMBMa67XHAxdgZf0dgAxYkJgBdsYHfBm57wj7/C0QqKOKr4IlkbV+/y9leB/BL4DmgFvAZcCkWPMYAg4ClwHlu3/FATywNdJPbF2zwdzgw090fRnJAWCQUBQUFrFmzhkaNGpUuvC2yPwqCgDVr1lBQULDXr5FtAJhL5vUlu2SqF3B1Ga/zpLuJeFFYWEhxcTGrV6/2XRWRfVZQUEBhYeFeP19XAkus1KxZk2bNmvmuhkgkaDI4EZGYUgAQEYkpBQARkZhSABARiSkFABGRmFIAEBGJKQUAEZGY0nUA4lVlzeQKms1VpKLUAhARiSkFABGRmFIAEBGJKQUAEZGYUgAQEYkpBQARkZhSABARiSkFABGRmFIAEBGJKQUAEZGYUgAQEYkpBQARkZhSABARialsA8AXwIfAXGCWK2sIvAEsdn8buPI8YCSwBJgHnJzyOgPd/ovdtoiIeFKRFsBZQFugyN0fAkwCWri/Q1x5D1fWAhgMPOLKGwJ3AB2AU912ImiIiEjI9qULqA8wym2PAvqmlD8DBMA0oD7QGOiGtRTWAuvcdvd9eH8REdkH2QaAAHgdeB87qwc4DFjptlcCh7rtpsCylOcWu7KyytMNxrqZZmV4TEREKkm2K4J1AlZgB/k3gEXl7JuXoSwopzzdY+5W1uMiIlIJsm0BrHB/vwL+hfXhr8K6dnB/v3LbxcARKc8tdM8vq1xERDzIJgAcCNRJ2e4KfASMI5nJMxAY67bHARdjZ/wdgQ1YF9EE99wG7tbVlYmIiAfZdAEdhp31J/b/O/AaMBMYAwwClgLnuX3GAz2xNNBNwKWufC0w3D0PYJgrExERD7IJAJ8BJ2UoXwN0yVAeAFeX8VpPupuIiHimK4FFRGJKAUBEJKYUAEREYkoBQEQkphQARERiSgFARCSmFABERGJKAUBEJKYUAEREYkoBQEQkphQARERiSgFARCSmFABERGJKAUBEJKYUAEREYkoBQEQkphQARERiSgFARCSmFABERGJKAUBEJKYUAEREYkoBQEQkpioSAKoDc4BX3P1mwHRgMfAPoJYrz3f3l7jHj0p5jd+68o+BbntbaRER2XcVCQDXAQtT7t8D3A+0ANYBg1z5IHe/uXv8HlfeChgAtAa6Aw9jQUVERDzINgAUAr2Av7r7ecDZwIvu/iigr9vu4+7jHu/i9u8DPA9sBT7HWgKn7kPdRURkH2QbAEYAvwF2uvuNgPVAibtfDDR1202BZW67BNjg9k8tT39OqsHALHcTEZEqkk0A+AHwFfB+Sllehv2CPTxW3nNSPQYUuZuIiFSRGlns0wnoDfQECoC6WIugvnt+CdZFtMLtXwwc4f7WAOoBa1PKE1KfIyIiIcumBfBb7GB9FDaIOxm4EJgC9HP7DATGuu1x7j7u8cnYmf449/x8LIOoBTBjX/8BIiKyd7JpAZTlZmxQ9w9YeugTrvwJ4FlskHctdtAHmA+MARZgrYargR378P4iIrIPKhoAprobwGdkzuLZApxXxvPvdDcREfFMVwKLiMSUAoCISEwpAIiIxNS+DAKL5KSTOzxcaa81e/pVlfZaIpVNLQARkZhSABARiSkFABGRmFIAEBGJKQUAEZGYUgAQEYkpBQARkZhSABARiam8IMi0JktEfPxxwOWX73G3WbMrZ1mBopObVMrrQG7XCSqvXqqTSBWYOvV9slhUSy0AEZGYinYLIPOSkbuprEv3K/Oy/VyuE1RevVQnkSqhFoCIiJRNAUBEJKYUAEREYkoBQEQkphQARERiSgFARCSmsgkABcAM4ANgPvB7V94MmA4sBv4B1HLl+e7+Evf4USmv9VtX/jHQbd+qLiIi+yKbALAVOBs4CWgLdAc6AvcA9wMtgHXAILf/IHe/uXv8HlfeChgAtHav8TBQvTL+ESIiUnHZBIAA+NZt13S3AAsKL7ryUUBft93H3cc93gXIc+XPYwHlc6wlcOq+VV9ERPZWtmMA1YG5wFfAG8CnwHqgxD1eDDR1202BZW67BNgANEorT3+OiIiELNsAsAPr/inEztqPz7BPYtqGvDIeK6s83WBglruJiEgVqWgW0HpgKjYGUB+o4coLgcQUisXAEW67BlAPWJtWnv6cVI9hc1jscR4LERHZe9kEgEOwgz3AAcA5wEJgCtDPlQ8Exrrtce4+7vHJ2Jn+OGwQOB/LIGqBZReJiIgHNfa8C42xQd3qWMAYA7wCLMAGdf8AzAGecPs/ATyLDfKuxQ76YCmkY9zzSoCrsa4lERHxIJsAMA9ol6H8MzJn8WwBzivjte50NxER8UxXAouIxJQCgIhITCkAiIjElAKAiEhMKQCIiMSUAoCISEwpAIiIxJQCgIhITCkAiIjElAKAiEhMKQCIiMSUAoCISEwpAIiIxJQCgIhITCkAiIjElAKAiEhMKQCIiMSUAoCISEwpAIiIxFQ2awKLSATsnHhtpbxOtXNGVsrryP5PLQARkZhSABARialsAsARwBRgITAfuM6VNwTeABa7vw1ceR4wElgCzANOTnmtgW7/xW5bREQ8ySYAlAA3AscDHYGrgVbAEGAS0ML9HeL27+HKWgCDgUdceUPgDqADcKrbTgQNEREJWTYBYCUw221/g7UEmgJ9gFGufBTQ1233AZ4BAmAaUB9oDHTDWgprgXVuu/s+/wtERGSvVDQL6CigHTAdOAwLDri/h7rtpsCylOcUu7KyytMNdjcREalCFQkABwEvAdcDG8vZLy9DWVBOebrH3K2sx0VEpBJkmwVUEzv4Pwf805Wtwrp2cH+/ctvF2MBxQiGwopxyERHxIJsAkAc8gfX9/yWlfBzJTJ6BwNiU8ovd8zoCG7AuoglAV2zgt4HbnrBv1RcRkb2VTRdQJ+Ai4ENgriu7BbgbGAMMApYC57nHxgM9sTTQTcClrnwtMByY6e4Pc2UiIuJBNgHgP2TuvwfokqEswFJFM3nS3URExDNdCSwiElMKACIiMaUAICISUwoAIiIxpQAgIhJTCgAiIjGlACAiElMKACIiMaUAICISUwoAIiIxpQAgIhJTCgAiIjGlACAiElMKACIiMaUAICISUwoAIiIxpQAgIhJTCgAiIjGlACAiElMKACIiMaUAICISUwoAIiIxlU0AeBL4Cvgopawh8Aaw2P1t4MrzgJHAEmAecHLKcwa6/Re7bRER8SibAPA00D2tbAgwCWjh/g5x5T1cWQtgMPCIK28I3AF0AE512w0QERFvsgkAbwFr08r6AKPc9iigb0r5M0AATAPqA42BblhLYS2wzm2nBxUREQlRjb183mHASre9EjjUbTcFlqXsV+zKyirPZLC7iYhIFdrbAFCWvAxlQTnlmTzmbuXtIyIi+2hvs4BWYV07uL9fue1i4IiU/QqBFeWUi4iIJ3sbAMaRzOQZCIxNKb8YO+PvCGzAuogmAF2xgd8GbnvCXr63iIhUgmy6gEYDnYGDsTP5O4C7gTHAIGApcJ7bdzzQE0sD3QRc6srXAsOBme7+MHYfWBYRkRBlEwDOL6O8S4ayALi6jP2fdDcRyRGfndGmUl7n6LfmVcrrSMXoSmARkZhSABARiSkFABGRmFIAEBGJKQUAEZGYUgAQEYkpBQARkZhSABARiSkFABGRmFIAEBGJKQUAEZGYUgAQEYkpBQARkZhSABARiSkFABGRmFIAEBGJKQUAEZGYymZFMBGR/cZrDVtW2mt1X/txpb1WFKkFICISUwoAIiIxpQAgIhJTPgJAd+BjYAkwxMP7i4gI4Q8CVwceAs4FioGZwDhgQcj1EBEJzZialTcw3X975Q1Mh90COBU78/8M2AY8D/QJuQ4iIkL4AaApsCzlfrErExGRkOUFQRDm+50HdAN+7u5fhLUKfpmyz2B3A2iJjRdUhoOBryvptSqL6pS9KNZLdcqO6pS9yqrX/wCH7GmnsMcAioEjUu4XAivS9nnM3SrbLKCoCl53X6hO2YtivVSn7KhO2Qu1XmF3Ac0EWgDNgFrAAGwQWEREQhZ2C6AEuAaYgGUEPQnMD7kOIiKCn7mAxrtb2KqiW2lfqU7Zi2K9VKfsqE7ZC7VeYQ8Ci4hIRGgqCBGRmFIAEBGJKa0HEJ6Ts9hnO/BhVVck4n6VxT7fAf+vqiuyH4jiZ6XveXYaZrHPTmB9VVYiV8cARmaxz0bgtqquSIpvsDTYvHL2aQYcFUptTDYpuGuBS6q4HqlWAo9Q/ud0IXBsONUptXEPj+dhdQ+zXlH8rKL4PZ+XxT6rgS5VXZEUW7BroMr7nKoDR1ZlJXK1BdAH+N0e9hlCuAFgJnD2HvaZHEZFUhxP8qrsTPKwyfvC9CwwbA/7HBhGRdJ8CrTbwz5zwqhIiih+VlH8nlcHepbzeB7hX4+0kAh8n3K1BXA9MKIS9sl1/YExlbBPHByNTWK4r/tI+L4P/KcS9qlMBVgrYF/32Se5GgCirCbWB5oqqvOSRMVk9nxWGba62FXtnwHrPNXhWuBf7DrBYhScAazC5vH6PtARO+P9t89KRVAeNhdaUyDAuoRmuO1QxDELaE9dQ1XlLGwupBXA6+zaB/q6jwoBh2N9yA8BjYCh2ODcGKCxpzrNS7t9CHRKue/L37BADTah4XzgHmAuNsmhD8OB6cDbwFVkMflXCEYAd2PdU8OBPwEHADcA93qq00FYV9l8YAPW3z+NcMe20nUFFmO/uZ5AL+D3rqxrWJWIYwtgKVU8sFKGmdgXbj7QD7gLmw11GtbXt6f+wKrwGnZWdiBwAfAcMBobQzkHP2s1jMMGXP8AbMbOkt7GziQB/uuhTmCB6ES3/S72eX2BBYVJwEke6jQHOAX7v/op0Bt4H/s//Cc2IBu2+cAJ2EF/OXZ2uwlr+c5xj4VtLNZSmoh1aR6IrUVym6vjLR7qtBDogX2HUjXDZko4PoxK5GoLYGMZt2+AJp7qVIvkvEcvAn2BUcCPCLHJl+Yw4H+xM7b62BntUlf2P57q1Bt4Cbsk/iTsB7IdO/D7OviD/Vbquu2d2OcE1nXnK5kicHV5HRiEfbcfxpZd9TUWEaTUK3Efd9/X8eYo4GmsBf4X7Du2GLgU+LGnOtVw9Um3HAuWoVUiF60H2mP9kOl89Zdux7pcvnT352NpZ68Ax3iqU+oP8plyHgvbv7CD2nAsS6mWx7ok/B6YgnWXvQO8gJ1Zno21pHxITyHcjrWgxmFn4D78G2uxFQB/xboTpwFnAm95qtN3JAd5f4ilNoMFpfLSMKvSk1ivwPMkj0lHYDMkPxFWJXK1C+gP2I9gRobH7gFuDrc6gDXTVwMfpJXXw2ZIvTP0Glm/6J+Ab9PKm2Otgn6h12h3JwGnAY/6rgj2ufwCy6tPnMG9jM1u68OxwCee3rs8p2Fn/tOwk5sfYS2mF0m2DMLUBgtGLbGuvEHYAPUhwPlkd91QVTge62ZtigWiYkJeIz1XA4Dklj/ip592f9McC5gLCfEgIvuvXB0DKM9xnt63Ljbw+yw2gJjq4fCrA9hZR38siyUP65IaiWWU+PpujMxwuypl25eD0+7/DKvPYPx1I0whWa+LsMHDHsA/2HWZ1TCtxc62u+Dvc0nXEMv+G4TV6Vas6/VeoIHHepVlaFhvFMcA4Cvl8insy/cS1s/3EpDvHuvoqU4PYQHgIiwwXYEtSXcGcL+nOv0Y+8HOwjJa3sf6thPbvqR+b27DPrP3gXOxgUUfDiF5/ci1WNfLz4EOWFeVD6ux1NhhWJfGA/j7fif8DctAN6dzAAAY/UlEQVT8KcKC5uFYV/BmbHA4akL7nudqF1BZZ4p5wECS2Rxhmgu0Tbl/K5b/2xt4g+wm0apsidTGmtjgdGNgG9a/PYdk2mOY6mCDv4cCv8ayIj7DrrL1KTVVdzZwOja4WNPd9/FZzQF+gH1GU7Cz/y3Y1AfzgNYe6jSb5Hf5SOxkZwCWZfY8frryEr+9RD970wyPxVKuZgFdCtwIbM3w2Pkh1yUhH2txJQbB7sS+jG9hF6r4UOL+bscyErallO/wUiNL1b0ey2//G5ZVEoWW6gFYAKiGHWC/c+Xb8fdZ3YC1TF7CssomYxlJp2MtTh9Su32WYkkGf8IGYAd4qZH9nzXATi4OwtJCv8AufvSVYVYD65L6EZa+m7gSeCyWBZQ+W0CVVSIXzQQ+wi7YSTc03KqU+j8sZXBiStkoLFX1f73UyM76D8KygLqnlB9OMhj48j72eV1FuHO0lGUlya6etVhraSV2ECkp60lVbCrwPWxMqQ72mW3F+v8XearTlDLKP8ZSaX24i+TncRk2RgGWheOrTs9i6epDSV4PUIj1UPwNu7CvyuVqF1BDrCm8yXdF9lMHuttXvivi9Cb82RqzVR1r3em7Fm3VsdZJCXbi2xbrOlvpqT4fY62iTD4hpCm8o9C0rgprieYP8jgsOyK9y6d7hn3Dcri7gQ0q/hhrIvs6+P84w+2xlO2oOAjr666Dv+/aNSSzgI7BuhPXYfMD+RiTAGsldfL03uXpRPKCy45AZ/yMuyWsw7LvUo/B1bAz/9AmF8zVFkB5XsUGy8J2LXA1lqPdFrgO6++DXQfOwnQ5ti5CHpYVcQnWl9wJ67cN7YrEFCVYP/ZXJPuT+2EXEQVYE96Hh7HuKLCrSv+OrRHQHPscx3uo03ySA73/xro2/oUd3O7Ez4F4NTZlxyFYOupowl8nId0IbNbNGthFe12w48CZWN1+7aFOR2G/ubOxA34edlHoFOw3+XkYlcjVAFDWwTQPy//1MdPlh1ia3rfYf/6LWD/gA/ibDO5DLGXwAOxH2xwbF2iAfRF9ZEe0x65CfhG7+jfAfgzNPNQlVWqQnoIlGczGspPGYCmGYUvtRpiJfXYJ87ArYMOW+C63IJkBVB0LBKPxc+VyFCeoS9UIOzaFPiV8Lg8Cv0nmC1Hqh1yXhOokp1z4AjtLexGbdM3XBTPbsR/CJuxsNjFP0Tr8TVA3E8ut/yWW1XKzx7qUpS528AdLUa3uqR4vYnnsw7Az/+uxWUC7kJysLmyJ/6vFWDrvcCwQnY+1kpp7qlPUJqgD60bsjs0BVIJ9Zq8T4nQZudoC+AhLr1qc4bFl2AcetsnYIt5zU8pqYJNCXYifg8gsrFWyHctASGQjFGD9yD6mOE7VBGu+F+H/OoBNwBIsWB+F5bivww4g8/B3FnkJcCXWv52Pfb9fxroXNnioj6/WbHnuwbKlCrDMqeNITlD3GXYBZNj6Y11PH2BrhbyLfZdOxI4HH4ZRiVwNAP2wD/DjDI/1xX4gYSvEovyXGR7rhM0wGbYjsdzj9DTGpliK3MTdnhFf6dNjr8AC58HYldP/DL1G0ZRIK46aqE1QNw8bjN6EfYeewxYaaoN1fX4vjErkagCQ3DQYywiSPUudelyi50PsYB9gYxPvkmw5fURILcpcTQMtj8/Ur7K84rsCGUTxQBuVycXSDfVdgQx8ZHDtyew97xI6X9/z8Vi22y1Yv/8LrrwhIX7P49gCeBx/E2WVJXFVaZScgt/J1/YnP8Su9Jb9j8/veU+gFTYO8IYrq4ZlJ2WaxqbSxTEASPQl+mhTsyNG42dQc3/TkOSKV1ERxToJ8ekCSly16SsFFCzz4FXsgp1jsPS99diqZaEsAF1BvprG12KDYAVYXvsBWCB4D0ud9SWKV7jelrLdCsuxfx9LM+7go0LYZ7QQy73vgJ3ZzsKyk07zVKfyRLGrMzxBEOTi7eGU7e8HQbA0CIIpQRAsC4Kgp6c6vRUEwQ+DIDg/CIL/BkEwIAiCPFc2yVOdGpZxaxQEQbGnOn0YBEF1t107CIKpbvvIIAjmeKoTQRCsDoJglvu/+1MQBO081iVxm52y/e8gCHq47VODIHjXU51mBEFwYhAEpwVB8HVgvz+CIDg5CIJ3PNUpit/zSNxy9UKw1AUohmOpn6lXbfq4bL8OyX7i4djc6LgyXzMSJi7bTx10Ctz9Q73UyNTApljOxz43sJS9mt5qZNdIFJG8wvVv+L/CNVUTrIUJ1qr0tSh8TZI57KtJzuQ6G391iur33LtcDQCponLVZur7pq8g5WtO8s8o+6rRZSHXJeGv2NXA07D8+ntc+SH47UeO4hWuR2OzpOZh15nUJjkxna9gmdqt/Nu0x/Q937NR2P/hQ1g6aJXK1QBwHHahReKqzQYkr9r09cN4iORFMqlrADfH3wVXI7DPJtMP408h1yXhAezzOB4LlIl53FdjAcGXTKl589wt/UAXlj5p9xMH38OAR0KuS8LtJANR6gWXxwDPeKlRNL/nZXkQu0DzImwalCqVq1lAumozt1zFrkHTh6he4Sqy13I1AERRbWz+9gBbAWwANr/9Imwyr6gcXJ4BLvb4/r9Ku5+HnWH/0d33tQB7uoOwRTs+w7K5fLgGG0v6GmtJPol1S32MLTdY5V0IGfzT3V4mOt/pWtjvbQXWurwAm2phIZYFFMryi2mqYfM4/YTkNDGLsQy4qWFVIlcDQF3soFGIDYz9PeWx1HndwzQG6288AJvCd6Er+yF22f5FHuqUvspWHjYx1WR3v3e41QFsTeDxWBphotvleqwZD/4GzLUeQHaWYym7ieVPR7u6+Vxi9Dmsu7s2FqwPIjlrah62DGPYnsIGpidic5dtBN7Gun3GEtIysbkaAF7Couk0bAGR7VjU34q/xVfmYvPr52FX/TYmmYnwAX7mbp8NLMAOHIm6jCa5ePebHup0JHaW/yl2sN+EnWX7ng1U6wFkJzEbaB0s++58V69XsO/W6x7qlPgsamABqgmWZebzt5f+/zMNy17Mx44VoVwblKsXgh2DrarzMnYWOxs7q23ks1JOgJ0tBin3fUXhIuzCoVuxq2ynApuxA7+Pgz/YQF0/bHKsN9x21EQlsyyxHsDRJNcDOBK4FP/rAXyDLXjUEwtS07HfpA/VsG6gOlgroJ4rz8dfUsh2kktUnkyyhbSVEI8HuZoFlI/9pyemeb0Ty+N+i93X4w3LLJIDianLGh6D/Vh82Ancj01EdT+wiuh8J8ZiAeD3JNcp8CmKmWW3Yv3Io0muBzAYO/G50FOdMvX7r8X6th8NuS4JT2BjbdWxz+wFLHB3JHk9Tth+jbUkt2Dfn0Sr+xBCnBwyV7uA/oQ1NdPTK7tjfWstQq9R+fKIxqpXvbB+41t8VySClFm2f2vi/q7ApoQ5B2slzfBWI/vdN8LDUpClFcjRACAiEmWRyExSABARCV8kMpMUAEREwheJzKRczQLanzTGBu+kfH/EcqSjkMkVdVH8TkWxTj5FIjMpbgGgCFvwPEqexTIU7vNdkRQTsQvofuC7IilmYFdL3u+7ImmiGJii+J2KYp18fs8TmUlzSWYmPY5dzxFaZlLcuoBGYU2rT4Cfeq5LqjxsQY/5viviNMHO2Dpik9hJ2fpiKZgn4XcKjXRR+05B9Ork+3vuPTMpbgEgoQ7+cu8z0URjSfvLnElR1BwLRAuxK7x9qI+/uZEq4mA8pl86R2JTQKzHri0pwr7noc3hlMtdQPWws/xfATe47cSSkFE6+IO/H2td4C6seX5B2mO+Zt98GpvOuBk2h0wR1m2Qh78pjsviexGYKdiBDGwuqfFAD+AfwC891elrrGtlEH6XYE3VA/gcW5ymHdYCmY5dYNjFU52GYFfbTwN+DrxG8v8ufULEKpOrLYCLgTuwi8GWu7JC4FzsylIf85KX9Z+ah/UBNgyxLgmaMyl735C8WC8xSV1i3vsAC6Zh+wg4wW3PxC50XOPqNQ0/n9WH2ESM57v6/Ae7UnksNs2ID3NdfepjV9n2wj6f47F0TB/f8/nYyU1tbA3no7E1Lw7EgtMJZT6zEkXlsv/KditwCrs3RRtgH66PAPBH4F5sIDOdr5bYMdh0tGDTB9yKzZnkYxbQdFGaMwmsZVIPu4R/lSv7HGup+LIdS2pYjnWNfefKt+JvfqLt2EH2FWzm2x9i3XgPARPYvaUZhp1YtxhYwJ7mthfi77e3AwuI29zfNa78uzKfUQVyNQCUNbXCTjKv7BSG2dhB9v0Mj/085LokaM6k7P0SO6kYjf0/Poj/6TtuwFq5L2FnlJOxroTTsemGfUj9fW3GZkodgwXPvl5qZCeCl2OttHXY5zYGG3T1NaY0G5tS/EBgEpag8ho2jXZoXcK52gU0EPgd9uNIrPl5JNYFNBw7mwtbSyzKZxp4OozkWWWYNGdSxVXDBqnPw4JSk/J3r3L1sLPqY7ETumKsu2VReU+qQjcRrVRPgCOA27ATnd9j3UGDsPn4byLZOghTDew7FGCzup6K/T8uxVpLobQEcjUAgHX3dMOayHnYD2MCdgYg0XYq9sOYiaUNdscOaD4WXSlLY2xAMUp1EqmQXM4CWoddUPFn7IzkeaJ78H/M43sfh2VCpHf5dPdQF7DB+5FYxs9dWFfLQVjWxK2e6pTJSpJT+PqSOshbEzvLHYeNN9X2UiNrHSUyk5pj3YnrsbG3Ez3V6S/4WR1tbw0N641yuQVQlsewOdPDVlaWTyK7pTDEuiRcC1yNNYHbAtdh3QfgLwvoQ1eXfOBL7HPZiA0oTsdfFlAUl89M/T/6M3Y18lNYX3sj/FyYFsVlKldj3T2HYGmWo7GVy6Lqh8D/hfFGuToIXJ7/5+l9E1/C1EGyRHrjoV5qBL/ABja/xS5EedH9fQB/g+UlWIbEJmxZyI2ufDPJwWofCtl9+cwi7MDrS+r/URds6cXt2Fn3B15qtOsx5VDs4A+22lyd0GtjirH/qxZYq+1vWJbUaHfzfT1HulAO/pDbXUBlyZSFE4bPsLOgZim3o91fHwPAYD+CRBbEF1j9emBNZl8BYBvJ7otTUsrr4TcARHH5zHrAj7BU3nySc8j7TJmN8jKVi7EkkNZAf6CAaI7h/C6sN8rVLqB/utvLRGfqgKuxi2IynZn9Esu6Cdtk7AK1uSllNYAnsSUFfeSS52N57OkOxgZePwy3OrspJLl8Zm/s4OZLeqrnEKxeh2MXOPm6yvUS4EqSy1Quw36L92DBM2yJher3F0sJ6XuVqwFgOfAellM7EWvm/ZvkwstiCrEuly8zPNYJeCfc6pRKtEx3YlPmnoC1UNZ6qk8mWj5z/xHFubY2llGeh413hdI9n6tdQF8B/bB1XP8P6+tejp0xdfVYr7Kc6+l9i8l88Ad/B/++WIbNcqAP8DaWxTUPGxyLin8TjcXqUzXDJs47zmMdjsS6VsAOZpdirdsr8TfmeLSn9y3PemxMom7arQ72/Q9FrrYAMmWwNMT6/fpjLYMoCa3Jl+ZEbA7ypti86DeTTJWdgeXjh20ONg5xANZd1h74GAvmL2F98T5kmsvpFizlEmzcJGwvk7y6tg8wAhub+B6WQvu0hzp9hH1vNmFdPsdg9Uz85i4r43lVaQc2bUdi0NfX5Iup/oBllmWa+vke7LdY5XI1CyhTc28t8Ki7+ZCeRpiQh7/FRB7Bco4TMxL+B+vX/pQQVyXKINEqWYod/MEyqHy2WH+PDRjOJzlAXh1/mS1gQTHhZuwg+zk2XjIJPwGgGnbwB5tqoT3Wlfc3/GUmzcNmSz0f+x1+hwWC57GuRR9uK+exUA7+kLsB4AzfFcjgdOBn7B6c8vBzpg3WN/qa274Py3J5Dfux+GwaJuYnSj1brI6NB/jSGjvLPxALBpuwKUd+77FOqf9HNbCDP9h0I74yppZhgWgydnA9AgvePldMC7CWya3udiqWDvo2Vt/vearXGdig/cfA97GFaRZi3YuhyNUAUJ5zgTc8vO807KCRKWXw4wxlYcjDUgkTmRlTsJTCl/AzPTXYRXq1gC3s2jw+ArjbS43MUmxcqQ/2/YnC0pQnYYOJeVi2zeFY66kW/mYD/Tk22+5Q7Hs1F+vWa0CI89ynSU9pnuFuN+LvZHEEFohqYFPUdMG6YW/A0rF/HUYlcnUMoDy++tuj6ALs+oRpaeVHArdjg+eyu9rYmX8HotnarI/Ndf+exzocz64T1M3EX6vkAmzmzSiZj2W3HYAlPDTFThBrYgEzlPUAcjUAlNfffjbWjJf9z1BCnCdFpAolFvMpwLJ+mmAXFlbHrnVpFUYlcjUN9HRsyoc/Z7hFLR8Y/E4GVxYf8yXtia+ruPdkqO8KZBDF71QU6zTU0/v+GxuDeBubXmQMNj7xKjaVRyhydQwgiv3t5fE1P1F5fE0FUZ7Q5kipoCgGpih+p6JYJ1//dzcDp2ED1NOwdNkfYcHgxbAqkatdQJKbfgcM810JkUqQzeJGVb4AUq52AWVz9hr2GW4U527Pwy6MO89td8Hm4r+KaH43fC2dmXAWtj7BWCxT6m5szntf/omlFvtavjOTKH7PawO/wTJrCrC5isZhK+L5+uymYHOApSek1MLGKUdhacZVKldbAFOxH+hYdp2BsBaWbzsQ+w94OsQ6RXHu9oexKXtrYemE+Vg3S08sP/k6D3WKxBwpGdyNLd05Cfs/+xybRvgq7OD2goc6RXHOqyh+z8dg+f4HYEuzLnRlP8RSZy/yUKcC7DqXC7EpPNa7+lXDlml9iF0naawSuRoAMn24BdgIe2gfbprUGQnnkpy7PbEgjI+FTj7EpoOoieWPN8YOHjWw+vpYwWkp9tlkmiJ7GXY9gA+Jzwrs83kTmwyuATaQF0raXprEd6oOdoA9H/vsXsGCwese6wTR+Z7PxRYZysMybhqTXNPBV51S1cSu3t6MHatCk6uDwFuws9uH8fjhpknM3V6N6MzdXuL+bsfytLellO/wUiO7iOh/yBwAfOZy78QujluLpewlLrRah78B88T35hvgWXdLzHk1BD8BIIrf84QAm84jSLnvu05gn1FoE8ClytUAkMrbh5vmTZLLBk7DuhMSc7d/7alOX5KcKjd1DeDD8deNEIk5UjL4I3Z2+zE22+aVrvwQ/M1xE8U5r6L4PZ9F8nueOr3IMVjwjK1c7QKSfXOgu33luyLOH4nGvPsNsamFl+C3NSmVp8ozbaIsDi2AKKmLnTF+mlbeBpux0IfD3d8vsbqdjp3lzvdUn5Fp9/OwQbpEtsa14VZnF2vZdVGaqASmhGZY//sCYJGnOhyJnThswf7vLsEGhRdgU4+XlPnMqtMb6w7bkuGx2B78IZqpfrmqP/ajfAk7uLZPeexpHxUCLseySKZhXRqvAD/A0gsHearTj7Ez7VnYRTqzsG689/F7wdXItNv/YhlAifs+vJyy3QebgfOHWPbbJT4qhPWxJ44rd2Mrp03Hvu++rgT+BzYf0bNYhpuvifIiR11A4ZmLLXSyEpsF8Bns7PGf+Fuz9ENsQrMDsCl7m2MtgQZYmmxbD3Wqgy3cfSiWt70cm7DO96pOxVh68eskB33vA25y26M81Cn1e/MulvWWuh7ASR7qtIDkPDbvk1wPAGysxEed5mCpsv2waaBPwBasH03m2QJiQy2A8FQnORg9A7uo6FasS8NXFN6OTZmxBuuWSizEss5jnb4BrsdyyP+GHWCj8D09HhvE7I7l3I/C6joKPwd/iPZ6AJBcDwD8rwewDuuC6oIFoQVYC2WZx3p5F4UfVlx8g2UdJKzE5v3ugy024sNOkit/9UopL8D/d+N97ECyGVupzLcoBqbEegDfYK21xHiO7/UAbscmNKuFtXwnY0EzKusBfIl1252GXRgaW+oCCs9J2Nn24rTymtj4wHOh18gG7Faw+8BcU+yMd2LoNYrIHClZvP9V2AHkZx7rURatB7Crzlj3naRRAAhPFA9sUazTVKI3jQdE87NSnbITxTpFgu8mbJxEYvKn/aBO3bGrkEdjrZMFWN/2Ymyqg/vxkzUVxc9Kddp/6xQJagGEJ4rzE0WxTqmiMo0HRGTyrizq5Pv/T3XajygA+BGlA1tCFOsUVVH8rFSn7ESxTt4oAIiIxJTGAEREYkoBQEQkphQARERiSgFARCSmFABEyvYyNiXFfGCwKxuErQU8FZtb5kFXfgh2AdtMd+sUZkVF9oaygETKllgC8gDsoN4NeAeb3/4bbI6bD4BrsOUqH8bmLToSmIBNhyASWVoQRqRs12Lr24LNankRNn1wYlGYF7D5bgDOITkNMtjiP3WI+ZKDEm0KACKZdcYO6qdhk/hNxVZKK+usvprbd3MIdROpFBoDEMmsHjaH/CZsEfiOQG3gTGzBnBrAT1L2fx3rCkrwsZiOSIUoAIhk9hp2kJ+HrVA2DVud7I/YEocTsYnqNrj9rwWK3P4LgCtCrq9IhWkQWKRiDgK+xYLDv4An3V+R/Y5aACIVMxSbOfIjbJrql8vdWyTC1AIQEYkptQBERGJKAUBEJKYUAEREYkoBQEQkphQARERiSgFARCSm/j8/up9GWtAwJgAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "dark"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "ims = xd.show_imbalances(cross=[])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 67,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEoCAYAAACzVD1FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAH9RJREFUeJzt3Xt4VNWh9/FvuBkUFUFBIFTQUCCARG5SQ6XQw125VBDQtmipqBWtWM8rLVo9pTdPLXoQtdXqEVsVFS9Ai6ACalFUroJIKSiggXARBOFAhEDeP/bOMLAnIYbABOf7eZ79zJ41e+2sGYb5zdpr7zVphYWFSJIUr1KyGyBJqngMB0lShOEgSYowHCRJEYaDJCnCcJAkRRgOkqQIw0GSFGE4SJIiDAdJUkSVZDfgKDjvhyR9dZ8BZx1pI3sOkpRa1pVmI8NBkhRhOEiSIgwHSVLEiTwgLX1l+/btIzc3l/z8/GQ3RTqm0tPTycjIoGrVqmWqbzgopeTm5nLqqafSqFEj0tLSkt0c6ZgoLCxk69at5Obm0rhx4zLtw8NKSin5+fnUrl3bYNDXWlpaGrVr1z6qHrLhoJRjMCgVHO373HCQjqOtW7eSnZ1NdnY2Z599Ng0aNCA7O5uaNWuSlZVV7n/v9ddf55JLLvlKdb7zne+wYMGCSPnjjz/OyJEjS6y7ZMkSvvWtb9GiRQvOP/98nnnmmdhjEyZMIDMzk7S0ND777LNY+R/+8IfYa9KyZUsqV67Mtm3bALj33ntp0aIFLVu2ZOjQoZFvwjfeeCM1atQotj2/+93vyMzMpGnTpsycOTNWPmPGDJo2bUpmZia///3vi61/88038+abbwIwa9Ys2rRpQ3Z2Np06dWL16tUAfPnllwwePJjMzEwuvPBC1q5dm3Bfxf3NNWvWcOGFF9KkSRMGDx7M3r17Abj//vtp2bIlvXv3jpXNnTuXW265JVZ3y5Yt9OzZs9j2Hw3HHKTjqHbt2ixZsgSAu+66ixo1anDrrbeydu3aUn2IFxQUUKVK+fy3/XDF5oTlu3fv4+M12zj5lEMfX7/hC7Z9vqfYegAb8vbwy1/eyzmNzmXz5o0MGtiNcxq14bTTTqdeveY89KdJXDXse6z89xY2bzkAQJ9LhtHnkmEAzJkzkyee+DMbNxXw/tL3+eMf72XqtH+Snl6dW0Zdwx/HPcyAAUMA+OCDJaxbt5EDBwoTtmn16pU8PvFvTH5+Dps3b+THwwfxj+nzABgx4joe+cuz1K1bn8GDe5DVIofMzKaH1N++/XPmzPknI679BR+u2Mzw4SO4f8JEzjvvmzz99P9y63/ezm9/O56nn/5fIJ3Vq1czadIkbrvttkNCEWD//v3ccMMNvPrqq2RkZNC+fXv69u1LVlYWt912G6NGjWLIkCFcd911PProo1x//fX85S9/YenSpdxxxx3MnDmTSy65hLFjxzJp0qTYfs866yzq1avHW2+9RU5OTrH/LmVhz0GqIPbv388111xDixYt6N69O3v27AGCb/K/+MUv6Ny5M//zP//Dli1buOyyy2jfvj3t27fnrbfeAuCNN96IfQO/4IIL2LlzJwC7du1i4MCBNGvWjCuvvJLCwmDmmXfmvcll3/su/ft15vYxP2Xv3i8jbXrxhafp3etbDPthfxYvfu+Iz6FRo/M4p9G5ANSpcza1ap/J59u2AtA8qxUNGnyjxPrTp79I794DDnlN8vPzKSgoID9/N3XqnB0rv+ee/+Jnt/6y2H3NmT2D3r36U63aSWRknEPDbzRm2bJFLFu2iIbfaEzDho2oVq0avXv1Z87sGZH6r7wyjU6dusbup6Wl8X+7wtd05xfUOasuALNnz6Bf/8sBGDhwILNmzYq9xkXee+89MjMzOffcc6lWrRpDhgxhypQpFBYWMnv2bAYOHAjAsGHDeOmll2L19u3bx+7du6latSp//etf6d27N2ecccYh++7fvz9PPvlkia9rWdhzUOq6+WYIv8WXm+xsuO++MlVdtWoVTz/9NI888giXX345zz//PN///vcB2L59O2+88QYAV1xxBaNGjaJTp0588skn9OjRgxUrVnDPPffwwAMPkJOTw65du0hPTwdg8eLFLF++nPr165OTk8Nbb71Fu3btGDPmpzz62GQaNTqPn48eyaRJj/PDH14ba8+WLZuYMOEPPDf5FWrUOI2rr/4ezZu3AoIPxOXL3+fGG28r9vksXbqIgn37aPiNRqV6/nv27GbuP+cwZszvAKhbtx5XXX09//HdNqSnV+eiizqTk/MdAJ566lG6dOnBWeEHdCKbNm+k9fltY/fPrluPTZs2AlDv7Pqx8rpn12fp0kWR+osXz6d794O9uV/9ahzXXXcl6enpnHLKqTw9aToAmzflcfbZDQCoUqUKp59+Olu3buXMM8+M1V2/fj0NGzaM3c/IyODdd99l69at1KxZM9YbzMjIYP369QDceuutdOzYkRYtWpCTk0P//v2ZMSMaYu3ateP2228v9nUoK3sOUgXRuHFjsrOzAWjbtu0hx64HDx4cW3/ttdcYOXIk2dnZ9O3bly+++IKdO3eSk5PDLbfcwvjx49m+fXvsA6dDhw5kZGRQqVIlsrOzWbt2LStXrqRBg2/QqNF5APTrdzkLF7xzSHuWvr+QDh0uolatM6lWrRq9evaLPda1a88Sg2HLlk38fPRIfv2b+6hUqXQfM6+//goXtGlPzZrBN+MdO7Yze/YMXnl1PnNef589e3YzbepkNm/eyMyZ07jyyh+XuL/Dv71DOEibqDxB/c+2bKJWrdqx+0888Wf+9KcnmT1nCQMGDOG/7/5l+HeidQ8fDC6uLcW2EfjBD37A4sWL+dvf/sa4ceO46aabePnllxk4cCCjRo3iwIHgsFydOnXYsGFDgmdwdOw5KHWV8Rv+sXLSSSfF1itXrhw7rARwyimnxNYPHDjAvHnzqF69+iH1R48eTZ8+fZg+fTodO3bktddeS7jfgoKChB9KCZXhjJddu3Zy/XVXctNNo2ndul2p6708/aVDDim9M+9NMhp8g1q1gm/g/9GtD4uXzOe000/nk3Vr6NWzIwD5+Xvo2eNCZsx895D9nV23Hhs3ro/d37gpjzp1gp5G3saDH6abNm6IHa6Kd9JJ6Xz5ZXCobdu2z1i5cjnntw56Ij179ePaEUMBqHt20d/JpqCggB07dlCrVq1D9pWRkcGnn34au5+bm0v9+vU588wz2b59e2wsqag83oYNG5g/fz533nknHTp0YN68eYwZM4ZZs2bRrVs38vPzI++F8mDPQTrBdO/enQkTJsTuFw1wf/TRR7Rq1YrbbruNdu3a8a9//avYfTRr1oz16z9l3bo1AEydNpl27b91yDbnt27L/PfeZvv2bezbt4+ZM6cdsW179+7lphuvom+/QfTo2bfUz2nnzi+YP38eXbsePPOmXr0GvP/+Ivbs2U1hYSHvvPNPzju3CZ07d+PNf37Aq68t4NXXFpCeXj0SDABduvRg+ssvsXfvl+TmruOTdR/TqlUbWra8gE/WfUxu7jr27t3L9JdfokuXHpH6557XhE8+CV6f006ryc6dO1m79iMA5s17g3PPaxL7O1NeehaAyZMn07Vr10jPoX379qxatYo1a9awd+9eJk2aRN++fUlLS6NLly5MnjwZgIkTJ9KvX79D6t5xxx2MHTsWgD179pCWlkalSpXYvXs3AP/+979p2bJlqV/r0jIcpBPM+PHjWbBgAeeffz5ZWVn86U9/AuC+++6jZcuWtG7dmurVq9OrV69i95Gens5vfnMft4z6Mf37daZSWhqDBw87ZJuzzqrLDTfcyhVD+/Dj4YPIymoVe2z27Bncf//dkf3OnDGVhQvf4aUXn+F7A7ryvQFdWbHiAwD+9tdH6Nolm02bNjCgfxd+eceoWL3XXptOTk5nTj75YA/p/NZt6d79EgYN7Eb/fp0pPHCAQZf/oMTXJr5dmU2a0bNHX/pe+m2uHTGU22//PZUrV6ZKlSqMGfM7RlwzhL6XdqJnj75kNmkW2Vfni7sx/723gWAs4b9+9Udu/umPGDCgC9OmTubWcDD8ssuuYPv2z8nMzGTcuHGx01Q3bNhA7969Y/UnTJhAjx49aN68OZdffjktWrQA4O6772bcuHFkZmaydetWhg8fHmvD4sWLAbjgggsAGD58OK1atWLRokWxU1jnzJlDnz59SnxdyiKt1N3LiueEbbiSZ8WKFTRv3jzZzagQSjolVYHvf/9SHnzwb5x22ulH3DareZ3j0KKoiy++mClTpkTOYoJi3+8LgSMe77PnIEnF+H//eRd5ebnJbkaxtmzZwi233JIwGI6WA9KSVIyiAeiK6qyzzqJ///7HZN/2HCRJEYaDJCnCcJAkRZQmHBoCc4AVwHLgp2H5XcB6YEm49I6r83NgNbASiD+BuGdYthoYHVfeGHgXWAU8A1T7ak9DklSeShMOBcDPgOZAR+AGoGhu4XuB7HCZHpZlAUOAFgRh8CBQOVweAHqF2wyN28/d4b6aAJ8DB0/0lXREV111VexCKqk8lOZspbxwAdhJ0INoUML2/YBJwJfAGoJeQofwsdXAx+H6pHDbFUBX4IqwfCJBr+Sh0jwB6Wi0ufDBct3fond/Uq77O1YKCgqS3QRVcF91zKERcAHBISCAkcBS4DGg6ETbBsCncXVyw7LiymsD2wl6KPHl0tfS2LFjadasGd26dWPo0KHcc889fPTRR/Ts2ZO2bdvy7W9/Ozb1xVVXXcVNN93ERRddxLnnnhvrHRQWFjJy5EiysrLo06cPmzcfvKBt4cKFdO7cmbZt29KjRw/y8oLvdodP/S2V5KuEQw3geeBm4AuCb/bnERxSygP+GG6XaKauwjKUJzICWBAu0glnwYIFPP/88yxevJgXXngh9otrI0aM4P7772fhwoXcc889/OQnB3sgeXl5zJ07l7///e+MHh0M1b344ousXLmSZcuW8cgjj/D228E0D/v27ePGG29k8uTJLFy4kB/96EeMGTMmtq+iqb9/9rOfHcdnrRNRaS+Cq0oQDE8CL4Rlm+IefwT4e7ieSzCIXSQDKJoCMVH5Z0DNsC0Fh21/uIfDBZw+QyeguXPn0q9fv9gsmpdeein5+fm8/fbbDBo0KLZd0WygEPyYS6VKlcjKymLTpuC/3ZtvvsnQoUOpXLky9evXp2vX4EdpVq5cyQcffEC3bt2A4Edx6tWrF9tX/NTfUklKEw5pwKMEYwPj4srrcXAsYgDwQbg+FXgq3LY+wSDze+F+mhCcmbSeYND6CoIP+TnAQIJxiGHAlLI+IakiSzSX2YEDB6hZs2ZsdtXDxU+5HV8/0Q/IFxYW0qJFC+bNm5dwX/FTf0slKc1hpRzgBwSDxvGnrf43sIxgzKELUDTF4nLgWeBDYAbB2U37CXoFI4GZBEHzbLgtwG3ALQQD1rUJwkj62unUqRPTpk0jPz+fXbt28Y9//IOTTz6Zxo0b89xzzwHBB/z7779f4n4uvvhiJk2axP79+8nLy2POnDkANG3alC1btsTCYd++fSxfvrykXUkJlabnMJfE4wLTE5QV+U24JKqTqN7HHDyjSfraKvph+datW3POOefQrl07Tj/9dJ588kmuv/56fv3rX7Nv3z6GDBlC69ati93PgAEDmD17Nq1ateKb3/wmnTt3BqBatWpMnjyZm266iR07dlBQUMDNN98cmx5aKi2n7FZKqQhTdu/atYsaNWqwe/duLr74Yh5++GHatGlz3NvhlN3lK1lTdpfkaKbsdlbWY6y8z6NPZSfKNQRHMmLECD788EPy8/MZNmxYUoJBOhLDQTrOnnrqqWQ3QToiJ96TJEUYDko5J/A4m1RqR/s+NxyUUtLT09m6dasBoa+1wsJCtm7dSnp6epn34ZiDUkpGRga5ubls2bIl2U1Juo15O5PdhK+VNLYmuwmHSE9PJyMjo8z1DQellKpVq9K4ceNkN6NCuPIqz6QrT1+Xs+mKeFhJkhRhOEiSIgwHSVKE4SBJijAcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiJO3F+CW7mykGuvTXYrjmjBog3JbsLXRrs29ZPdhK8V35vl64R5f77+eql+Cc6egyQp4sTtOZwgvyHtz4SWn6/bxGbJ5nuzfJ1A7097DpKksjEcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiIMB0lSRGnCoSEwB1gBLAd+GpbXAl4FVoW3Z4TlacB4YDWwFGgTt69h4farwvUibYFlYZ3x4T4kSUlSmnAoAH4GNAc6AjcAWcBoYBbQJLwdHW7fKyxrAowAHgrLawF3AhcCHcL1okB5KNy2qF7Po3hOkqSjVJpwyAMWhes7CXoQDYB+wMSwfCLQP1zvBzxBML3FO0BNoB7Qg6CHsQ34PFzvGT52GjAvrPNE3L4kSUnwVcccGgEXAO8CdQmCg/C2TrjeAPg0rk5uWFZSeW6CcklSklT5CtvWAJ4Hbga+KGG7ROMFhWUoT2REuEiSjqHS9hyqEgTDk8ALYdkmgkNChLebw/VcgkHsIhnAhiOUZyQoT+RhgtkEjzijoCSp7EoTDmnAowRjDePiyqdy8IyjYcCUuPIfhvU6AjsIDjvNBLoTDEKfEa7PDB/bGW6bFtYt2pckKQlKc1gpB/gBwammS8KyXwC/B54FhgOfAIPCx6YDvQlOS90NXB2WbwPGAvPD+78KywCuBx4HqgMvh4skKUlKEw5zKf66g+8mKCskON01kcfC5XALgJalaIsk6TjwCmlJUoThIEmKMBwkSRGGgyQpwnCQJEUYDpKkCMNBkhRhOEiSIgwHSVKE4SBJijAcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiIMB0lShOEgSYowHCRJEYaDJCnCcJAkRRgOkqQIw0GSFGE4SJIiDAdJUoThIEmKMBwkSRGGgyQpwnCQJEWUJhweAzYDH8SV3QWsB5aES++4x34OrAZWAj3iynuGZauB0XHljYF3gVXAM0C1r/IEJEnlrzTh8DjBB/vh7gWyw2V6WJYFDAFahHUeBCqHywNAr3CboeEtwN3hvpoAnwPDv/rTkCSVp9KEw5vAtlLurx8wCfgSWEPQS+gQLquBj4G94Tb9gDSgKzA5rD8R6F/KvyVJOkaOZsxhJLCU4LDTGWFZA+DTuG1yw7LiymsD24GCw8olSUlU1nB4CDiP4JBSHvDHsDwtwbaFZSgvzghgQbhIko6RKmWstylu/RHg7+F6LtAw7rEMYEO4nqj8M6Bm2I6Cw7ZP5OFwgZJDRJJ0FMrac6gXtz6Ag2cyTSUYkD6J4CykJsB7wPxwvTHB2UhDwm0LgTnAwLD+MGBKGdskSSonpek5PA18BziToGdwZ3g/m+DDfS1wbbjtcuBZ4EOCnsANwP7wsZHATIIzlx4LtwW4jWCA+tfAYuDRMj8bSVK5KE04DE1QVtIH+G/C5XDTOXjKa7yPCc5mkiRVEF4hLUmKMBwkSRGGgyQpwnCQJEUYDpKkCMNBkhRhOEiSIgwHSVKE4SBJijAcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiIMB0lShOEgSYowHCRJEYaDJCnCcJAkRRgOkqQIw0GSFGE4SJIiDAdJUoThIEmKMBwkSRGGgyQpwnCQJEUYDpKkiNKEw2PAZuCDuLJawKvAqvD2jLA8DRgPrAaWAm3i6gwLt18VrhdpCywL64wP9yFJSqLShMPjQM/DykYDs4Am4e3osLxXWNYEGAE8FJbXAu4ELgQ6hOtFgfJQuG1RvcP/liTpOCtNOLwJbDusrB8wMVyfCPSPK38CKATeAWoC9YAeBD2MbcDn4XrP8LHTgHlhnSfi9iVJSpKyjjnUBfLC9TygTrjeAPg0brvcsKyk8twE5ZKkJKpSzvtLNF5QWIby4owIF0nSMVTWnsMmgkNChLebw/VcoGHcdhnAhiOUZyQoL87DQLtwkSQdI2UNh6kcPONoGDAlrvyHBD2CjsAOgsNOM4HuBIPQZ4TrM8PHdobbpoV1i/YlSUqS0hxWehr4DnAmwTf9O4HfA88Cw4FPgEHhttOB3gSnpe4Grg7LtwFjgfnh/V9xcJD7eoIzoqoDL4eLJCmJShMOQ4sp/26CskLghmK2fyxcDrcAaFmKdkiSjhOvkJYkRRgOkqQIw0GSFGE4SJIiDAdJUoThIEmKMBwkSRGGgyQpwnCQJEUYDpKkCMNBkhRhOEiSIgwHSVKE4SBJijAcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiIMB0lShOEgSYowHCRJEYaDJCnCcJAkRRgOkqQIw0GSFGE4SJIiDAdJUsTRhsNaYBmwBFgQltUCXgVWhbdnhOVpwHhgNbAUaBO3n2Hh9qvCdUlSEpVHz6ELkA20C++PBmYBTcLb0WF5r7CsCTACeCgsrwXcCVwIdAjXiwJFkpQEx+KwUj9gYrg+EegfV/4EUAi8A9QE6gE9CHoY24DPw/Wex6BdkqRSOtpwKAReARYS9AYA6gJ54XoeUCdcbwB8Glc3NywrrlySlCRVjrJ+DrCBIABeBf5VwrZpCcoKSyhPZAQHQ0iSdIwcbc9hQ3i7GXiRYMxgE8HhIsLbzeF6LtAwrm5GWL+48kQeJhjbaFfM45KkcnA04XAKcGrcenfgA2AqB884GgZMCdenAj8k6Cl0BHYQHHaaGdY9I1y6h2WSpCQ5msNKdQl6C0X7eQqYAcwHngWGA58Ag8JtpgO9CU5l3Q1cHZZvA8aG9QB+FZZJkpLkaMLhY6B1gvKtwHcTlBcCNxSzr8fCRZJUAXiFtCQpwnCQJEUYDpKkCMNBkhRhOEiSIgwHSVKE4SBJijAcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiIMB0lShOEgSYowHCRJEYaDJCnCcJAkRRgOkqQIw0GSFGE4SJIiDAdJUoThIEmKMBwkSRGGgyQpwnCQJEUYDpKkCMNBkhRhOEiSIipSOPQEVgKrgdFJboskpbSKEg6VgQeAXkAWMDS8lSQlQUUJhw4EPYaPgb3AJKBfUlskSSmsooRDA+DTuPu5YZkkKQmqJLsBobQEZYUJykaEC8AugjGKCm3Ruz9JdhNK40zgs2Q3QsfXCfLeBN+f5e2c0mxUUcIhF2gYdz8D2JBgu4fDReVrAdAu2Y2QiuH7MwkqymGl+UAToDFQDRgCTE1qiyQphVWUnkMBMBKYSXDm0mPA8qS2SJJSWEUJB4Dp4aLjz0N1qsh8fyZBWmFhonFfSVIqqyhjDpKkCsRwkCRFGA6pqzrQNNmNkIpxDvAf4Xp14NQktiUlGQ6p6VJgCTAjvJ+Npw6r4rgGmAz8ObyfAbyUvOakJsMhNd1FMJ/V9vD+EqBRshojHeYGIAf4Iry/CqiTvOakJsMhNRUAO5LdCKkYXxJMwFmkComn09ExZDikpg+AKwguOGwC3A+8ndQWSQe9AfyCYKyhG/AcMC2pLUpBXueQmk4GxgDdCSY9nAmMBfKT2SgpVAkYzqHvz79g7+G4MhwkSREVafoMHXvTKPnbV9/j1RApgWWU/P48/3g1RPYcUk3nIzz+xnFphZTYkX5nYN1xaYUAw0GSlIBnK6WmJgQXGX1I8LvdRYtUEXQk+I2XXQSntO7n4DUPOk4Mh9T0v8BDBNc7dAGeAP6a1BZJB00AhhJc/FYd+DHB6dY6jgyH1FQdmEVwmuA6giumuyazQdJhVhNch7Of4MtMl+Q2J/V4tlJqyif4YrCK4Bf41uP0BKo4dhP8XPAS4L+BPOCUpLYoBTkgnZraAyuAmgQXv51O8J/wnWQ2SgqdA2wGqgKjCN6fDxL0JnScGA6SpAgPK6WmdgTTZ5zDoe8BLzJSMi09wuO+P48jwyE1PQn8J8EVqQeS3BapyAGCK6SfIriaf09ym5PaPKyUmuYCnZLdCCmBZgSnsV5KcB3OU8ArBKdd6zgyHFLTdwn+A84imDu/yAvJaY6U0GDgAeBu4A9JbkvK8bBSarqa4BtaVQ4eVirEcFDyNQCGAAOAzwnOVnoxqS1KUfYcUtMyoFWyGyEd5g3gVOBZguldth32+OH3dQwZDqnpEeBegmO6UkWxloNTdsd/MKWF98893g1KZYZDaloBnAesIRhzKPrP56mCkgDDIVUVN2++8+VLApx4L1WtAxoSTLa3jmAuG98LkmLsOaSmOwmukm4KfBOoDzwH5CSzUZIqDr8tpqYBBL8X/X/h/Q0EZ4lIEmA4pKq9BAPQRd1Gp0OWdAjDITU9C/yZYMrua4DXCE5vlSTAMYdU1g3oTnAa60zg1eQ2R1JFYjiklo74gz6SSsHDSqnlwbj1eUlrhaQKz3BILWlx6+lJa4WkCs9ZWVNLJeCM8LZoPT4wnNhMEuCYQ6pZSzBFd1qCx5zYTFKM4SBJinDMQZIUYThIkiIMB0lShOEgSYowHCRJEYaDJCnCcJCOj8eBgcluhFRahoNUMTl7gZLKcJCi7gD+RTCN+dPArcB5wAxgIfBPoFm47ePAeOBt4GMO9g7SgAnAh8A/gDpx+28LvBHuayZQLyx/Hfht+NhPy/tJSV+F306kQ7UDLgMuIPj/sYjgQ/xh4DpgFXAhwQy3XcM69YBOBIExFZhM8FOsTYFWQF2CkHgMqArcD/QDtgCDgd8APwr3VRPofAyfn1QqhoN0qE7AFGBPeH8awQy2FwHPxW13Utz6SwRzVn1IEAQAFxP0OvYT/Eb37LC8KdCSgz+uVBnIi9vXM+XxJKSjZThIh0o0KWElYDuQXUydL4upn2jisjRgOfCtYvb1f0dqoHQ8OOYgHWoucClBb6EG0AfYDawBBoXbpAGtj7CfN4EhBD2DekCXsHwlcBYHw6Eq0KKc2i6VG8NBOtR8gnGD94EXgAXADuBKYHhYvpxgzKAkLxKMTywDHiIYZAbYSzBofXe4ryUEh6ykCsUpu6WoGsAu4GSCHsAIgoFpKWU45iBFPQxkERxamojBoBRkz0GSFOGYgyQpwnCQJEUYDpKkCMNBkhRhOEiSIgwHSVLE/wfD7joINCqDZgAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "dark"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "xd.set_threshold(0.8)\n",
- "im = xd.show_imbalance(\"gender\", cross=[])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 68,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEoCAYAAACzVD1FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAH9RJREFUeJzt3Xt4VNWh9/FvuBkUFUFBIFTQUCCARG5SQ6XQw125VBDQtmipqBWtWM8rLVo9pTdPLXoQtdXqEVsVFS9Ai6ACalFUroJIKSiggXARBOFAhEDeP/bOMLAnIYbABOf7eZ79zJ41e+2sGYb5zdpr7zVphYWFSJIUr1KyGyBJqngMB0lShOEgSYowHCRJEYaDJCnCcJAkRRgOkqQIw0GSFGE4SJIiDAdJUkSVZDfgKDjvhyR9dZ8BZx1pI3sOkpRa1pVmI8NBkhRhOEiSIgwHSVLEiTwgLX1l+/btIzc3l/z8/GQ3RTqm0tPTycjIoGrVqmWqbzgopeTm5nLqqafSqFEj0tLSkt0c6ZgoLCxk69at5Obm0rhx4zLtw8NKSin5+fnUrl3bYNDXWlpaGrVr1z6qHrLhoJRjMCgVHO373HCQjqOtW7eSnZ1NdnY2Z599Ng0aNCA7O5uaNWuSlZVV7n/v9ddf55JLLvlKdb7zne+wYMGCSPnjjz/OyJEjS6y7ZMkSvvWtb9GiRQvOP/98nnnmmdhjEyZMIDMzk7S0ND777LNY+R/+8IfYa9KyZUsqV67Mtm3bALj33ntp0aIFLVu2ZOjQoZFvwjfeeCM1atQotj2/+93vyMzMpGnTpsycOTNWPmPGDJo2bUpmZia///3vi61/88038+abbwIwa9Ys2rRpQ3Z2Np06dWL16tUAfPnllwwePJjMzEwuvPBC1q5dm3Bfxf3NNWvWcOGFF9KkSRMGDx7M3r17Abj//vtp2bIlvXv3jpXNnTuXW265JVZ3y5Yt9OzZs9j2Hw3HHKTjqHbt2ixZsgSAu+66ixo1anDrrbeydu3aUn2IFxQUUKVK+fy3/XDF5oTlu3fv4+M12zj5lEMfX7/hC7Z9vqfYegAb8vbwy1/eyzmNzmXz5o0MGtiNcxq14bTTTqdeveY89KdJXDXse6z89xY2bzkAQJ9LhtHnkmEAzJkzkyee+DMbNxXw/tL3+eMf72XqtH+Snl6dW0Zdwx/HPcyAAUMA+OCDJaxbt5EDBwoTtmn16pU8PvFvTH5+Dps3b+THwwfxj+nzABgx4joe+cuz1K1bn8GDe5DVIofMzKaH1N++/XPmzPknI679BR+u2Mzw4SO4f8JEzjvvmzz99P9y63/ezm9/O56nn/5fIJ3Vq1czadIkbrvttkNCEWD//v3ccMMNvPrqq2RkZNC+fXv69u1LVlYWt912G6NGjWLIkCFcd911PProo1x//fX85S9/YenSpdxxxx3MnDmTSy65hLFjxzJp0qTYfs866yzq1avHW2+9RU5OTrH/LmVhz0GqIPbv388111xDixYt6N69O3v27AGCb/K/+MUv6Ny5M//zP//Dli1buOyyy2jfvj3t27fnrbfeAuCNN96IfQO/4IIL2LlzJwC7du1i4MCBNGvWjCuvvJLCwmDmmXfmvcll3/su/ft15vYxP2Xv3i8jbXrxhafp3etbDPthfxYvfu+Iz6FRo/M4p9G5ANSpcza1ap/J59u2AtA8qxUNGnyjxPrTp79I794DDnlN8vPzKSgoID9/N3XqnB0rv+ee/+Jnt/6y2H3NmT2D3r36U63aSWRknEPDbzRm2bJFLFu2iIbfaEzDho2oVq0avXv1Z87sGZH6r7wyjU6dusbup6Wl8X+7wtd05xfUOasuALNnz6Bf/8sBGDhwILNmzYq9xkXee+89MjMzOffcc6lWrRpDhgxhypQpFBYWMnv2bAYOHAjAsGHDeOmll2L19u3bx+7du6latSp//etf6d27N2ecccYh++7fvz9PPvlkia9rWdhzUOq6+WYIv8WXm+xsuO++MlVdtWoVTz/9NI888giXX345zz//PN///vcB2L59O2+88QYAV1xxBaNGjaJTp0588skn9OjRgxUrVnDPPffwwAMPkJOTw65du0hPTwdg8eLFLF++nPr165OTk8Nbb71Fu3btGDPmpzz62GQaNTqPn48eyaRJj/PDH14ba8+WLZuYMOEPPDf5FWrUOI2rr/4ezZu3AoIPxOXL3+fGG28r9vksXbqIgn37aPiNRqV6/nv27GbuP+cwZszvAKhbtx5XXX09//HdNqSnV+eiizqTk/MdAJ566lG6dOnBWeEHdCKbNm+k9fltY/fPrluPTZs2AlDv7Pqx8rpn12fp0kWR+osXz6d794O9uV/9ahzXXXcl6enpnHLKqTw9aToAmzflcfbZDQCoUqUKp59+Olu3buXMM8+M1V2/fj0NGzaM3c/IyODdd99l69at1KxZM9YbzMjIYP369QDceuutdOzYkRYtWpCTk0P//v2ZMSMaYu3ateP2228v9nUoK3sOUgXRuHFjsrOzAWjbtu0hx64HDx4cW3/ttdcYOXIk2dnZ9O3bly+++IKdO3eSk5PDLbfcwvjx49m+fXvsA6dDhw5kZGRQqVIlsrOzWbt2LStXrqRBg2/QqNF5APTrdzkLF7xzSHuWvr+QDh0uolatM6lWrRq9evaLPda1a88Sg2HLlk38fPRIfv2b+6hUqXQfM6+//goXtGlPzZrBN+MdO7Yze/YMXnl1PnNef589e3YzbepkNm/eyMyZ07jyyh+XuL/Dv71DOEibqDxB/c+2bKJWrdqx+0888Wf+9KcnmT1nCQMGDOG/7/5l+HeidQ8fDC6uLcW2EfjBD37A4sWL+dvf/sa4ceO46aabePnllxk4cCCjRo3iwIHgsFydOnXYsGFDgmdwdOw5KHWV8Rv+sXLSSSfF1itXrhw7rARwyimnxNYPHDjAvHnzqF69+iH1R48eTZ8+fZg+fTodO3bktddeS7jfgoKChB9KCZXhjJddu3Zy/XVXctNNo2ndul2p6708/aVDDim9M+9NMhp8g1q1gm/g/9GtD4uXzOe000/nk3Vr6NWzIwD5+Xvo2eNCZsx895D9nV23Hhs3ro/d37gpjzp1gp5G3saDH6abNm6IHa6Kd9JJ6Xz5ZXCobdu2z1i5cjnntw56Ij179ePaEUMBqHt20d/JpqCggB07dlCrVq1D9pWRkcGnn34au5+bm0v9+vU588wz2b59e2wsqag83oYNG5g/fz533nknHTp0YN68eYwZM4ZZs2bRrVs38vPzI++F8mDPQTrBdO/enQkTJsTuFw1wf/TRR7Rq1YrbbruNdu3a8a9//avYfTRr1oz16z9l3bo1AEydNpl27b91yDbnt27L/PfeZvv2bezbt4+ZM6cdsW179+7lphuvom+/QfTo2bfUz2nnzi+YP38eXbsePPOmXr0GvP/+Ivbs2U1hYSHvvPNPzju3CZ07d+PNf37Aq68t4NXXFpCeXj0SDABduvRg+ssvsXfvl+TmruOTdR/TqlUbWra8gE/WfUxu7jr27t3L9JdfokuXHpH6557XhE8+CV6f006ryc6dO1m79iMA5s17g3PPaxL7O1NeehaAyZMn07Vr10jPoX379qxatYo1a9awd+9eJk2aRN++fUlLS6NLly5MnjwZgIkTJ9KvX79D6t5xxx2MHTsWgD179pCWlkalSpXYvXs3AP/+979p2bJlqV/r0jIcpBPM+PHjWbBgAeeffz5ZWVn86U9/AuC+++6jZcuWtG7dmurVq9OrV69i95Gens5vfnMft4z6Mf37daZSWhqDBw87ZJuzzqrLDTfcyhVD+/Dj4YPIymoVe2z27Bncf//dkf3OnDGVhQvf4aUXn+F7A7ryvQFdWbHiAwD+9tdH6Nolm02bNjCgfxd+eceoWL3XXptOTk5nTj75YA/p/NZt6d79EgYN7Eb/fp0pPHCAQZf/oMTXJr5dmU2a0bNHX/pe+m2uHTGU22//PZUrV6ZKlSqMGfM7RlwzhL6XdqJnj75kNmkW2Vfni7sx/723gWAs4b9+9Udu/umPGDCgC9OmTubWcDD8ssuuYPv2z8nMzGTcuHGx01Q3bNhA7969Y/UnTJhAjx49aN68OZdffjktWrQA4O6772bcuHFkZmaydetWhg8fHmvD4sWLAbjgggsAGD58OK1atWLRokWxU1jnzJlDnz59SnxdyiKt1N3LiueEbbiSZ8WKFTRv3jzZzagQSjolVYHvf/9SHnzwb5x22ulH3DareZ3j0KKoiy++mClTpkTOYoJi3+8LgSMe77PnIEnF+H//eRd5ebnJbkaxtmzZwi233JIwGI6WA9KSVIyiAeiK6qyzzqJ///7HZN/2HCRJEYaDJCnCcJAkRZQmHBoCc4AVwHLgp2H5XcB6YEm49I6r83NgNbASiD+BuGdYthoYHVfeGHgXWAU8A1T7ak9DklSeShMOBcDPgOZAR+AGoGhu4XuB7HCZHpZlAUOAFgRh8CBQOVweAHqF2wyN28/d4b6aAJ8DB0/0lXREV111VexCKqk8lOZspbxwAdhJ0INoUML2/YBJwJfAGoJeQofwsdXAx+H6pHDbFUBX4IqwfCJBr+Sh0jwB6Wi0ufDBct3fond/Uq77O1YKCgqS3QRVcF91zKERcAHBISCAkcBS4DGg6ETbBsCncXVyw7LiymsD2wl6KPHl0tfS2LFjadasGd26dWPo0KHcc889fPTRR/Ts2ZO2bdvy7W9/Ozb1xVVXXcVNN93ERRddxLnnnhvrHRQWFjJy5EiysrLo06cPmzcfvKBt4cKFdO7cmbZt29KjRw/y8oLvdodP/S2V5KuEQw3geeBm4AuCb/bnERxSygP+GG6XaKauwjKUJzICWBAu0glnwYIFPP/88yxevJgXXngh9otrI0aM4P7772fhwoXcc889/OQnB3sgeXl5zJ07l7///e+MHh0M1b344ousXLmSZcuW8cgjj/D228E0D/v27ePGG29k8uTJLFy4kB/96EeMGTMmtq+iqb9/9rOfHcdnrRNRaS+Cq0oQDE8CL4Rlm+IefwT4e7ieSzCIXSQDKJoCMVH5Z0DNsC0Fh21/uIfDBZw+QyeguXPn0q9fv9gsmpdeein5+fm8/fbbDBo0KLZd0WygEPyYS6VKlcjKymLTpuC/3ZtvvsnQoUOpXLky9evXp2vX4EdpVq5cyQcffEC3bt2A4Edx6tWrF9tX/NTfUklKEw5pwKMEYwPj4srrcXAsYgDwQbg+FXgq3LY+wSDze+F+mhCcmbSeYND6CoIP+TnAQIJxiGHAlLI+IakiSzSX2YEDB6hZs2ZsdtXDxU+5HV8/0Q/IFxYW0qJFC+bNm5dwX/FTf0slKc1hpRzgBwSDxvGnrf43sIxgzKELUDTF4nLgWeBDYAbB2U37CXoFI4GZBEHzbLgtwG3ALQQD1rUJwkj62unUqRPTpk0jPz+fXbt28Y9//IOTTz6Zxo0b89xzzwHBB/z7779f4n4uvvhiJk2axP79+8nLy2POnDkANG3alC1btsTCYd++fSxfvrykXUkJlabnMJfE4wLTE5QV+U24JKqTqN7HHDyjSfraKvph+datW3POOefQrl07Tj/9dJ588kmuv/56fv3rX7Nv3z6GDBlC69ati93PgAEDmD17Nq1ateKb3/wmnTt3BqBatWpMnjyZm266iR07dlBQUMDNN98cmx5aKi2n7FZKqQhTdu/atYsaNWqwe/duLr74Yh5++GHatGlz3NvhlN3lK1lTdpfkaKbsdlbWY6y8z6NPZSfKNQRHMmLECD788EPy8/MZNmxYUoJBOhLDQTrOnnrqqWQ3QToiJ96TJEUYDko5J/A4m1RqR/s+NxyUUtLT09m6dasBoa+1wsJCtm7dSnp6epn34ZiDUkpGRga5ubls2bIl2U1Juo15O5PdhK+VNLYmuwmHSE9PJyMjo8z1DQellKpVq9K4ceNkN6NCuPIqz6QrT1+Xs+mKeFhJkhRhOEiSIgwHSVKE4SBJijAcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiJO3F+CW7mykGuvTXYrjmjBog3JbsLXRrs29ZPdhK8V35vl64R5f77+eql+Cc6egyQp4sTtOZwgvyHtz4SWn6/bxGbJ5nuzfJ1A7097DpKksjEcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiIMB0lSRGnCoSEwB1gBLAd+GpbXAl4FVoW3Z4TlacB4YDWwFGgTt69h4farwvUibYFlYZ3x4T4kSUlSmnAoAH4GNAc6AjcAWcBoYBbQJLwdHW7fKyxrAowAHgrLawF3AhcCHcL1okB5KNy2qF7Po3hOkqSjVJpwyAMWhes7CXoQDYB+wMSwfCLQP1zvBzxBML3FO0BNoB7Qg6CHsQ34PFzvGT52GjAvrPNE3L4kSUnwVcccGgEXAO8CdQmCg/C2TrjeAPg0rk5uWFZSeW6CcklSklT5CtvWAJ4Hbga+KGG7ROMFhWUoT2REuEiSjqHS9hyqEgTDk8ALYdkmgkNChLebw/VcgkHsIhnAhiOUZyQoT+RhgtkEjzijoCSp7EoTDmnAowRjDePiyqdy8IyjYcCUuPIfhvU6AjsIDjvNBLoTDEKfEa7PDB/bGW6bFtYt2pckKQlKc1gpB/gBwammS8KyXwC/B54FhgOfAIPCx6YDvQlOS90NXB2WbwPGAvPD+78KywCuBx4HqgMvh4skKUlKEw5zKf66g+8mKCskON01kcfC5XALgJalaIsk6TjwCmlJUoThIEmKMBwkSRGGgyQpwnCQJEUYDpKkCMNBkhRhOEiSIgwHSVKE4SBJijAcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiIMB0lShOEgSYowHCRJEYaDJCnCcJAkRRgOkqQIw0GSFGE4SJIiDAdJUoThIEmKMBwkSRGGgyQpwnCQJEWUJhweAzYDH8SV3QWsB5aES++4x34OrAZWAj3iynuGZauB0XHljYF3gVXAM0C1r/IEJEnlrzTh8DjBB/vh7gWyw2V6WJYFDAFahHUeBCqHywNAr3CboeEtwN3hvpoAnwPDv/rTkCSVp9KEw5vAtlLurx8wCfgSWEPQS+gQLquBj4G94Tb9gDSgKzA5rD8R6F/KvyVJOkaOZsxhJLCU4LDTGWFZA+DTuG1yw7LiymsD24GCw8olSUlU1nB4CDiP4JBSHvDHsDwtwbaFZSgvzghgQbhIko6RKmWstylu/RHg7+F6LtAw7rEMYEO4nqj8M6Bm2I6Cw7ZP5OFwgZJDRJJ0FMrac6gXtz6Ag2cyTSUYkD6J4CykJsB7wPxwvTHB2UhDwm0LgTnAwLD+MGBKGdskSSonpek5PA18BziToGdwZ3g/m+DDfS1wbbjtcuBZ4EOCnsANwP7wsZHATIIzlx4LtwW4jWCA+tfAYuDRMj8bSVK5KE04DE1QVtIH+G/C5XDTOXjKa7yPCc5mkiRVEF4hLUmKMBwkSRGGgyQpwnCQJEUYDpKkCMNBkhRhOEiSIgwHSVKE4SBJijAcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiIMB0lShOEgSYowHCRJEYaDJCnCcJAkRRgOkqQIw0GSFGE4SJIiDAdJUoThIEmKMBwkSRGGgyQpwnCQJEUYDpKkiNKEw2PAZuCDuLJawKvAqvD2jLA8DRgPrAaWAm3i6gwLt18VrhdpCywL64wP9yFJSqLShMPjQM/DykYDs4Am4e3osLxXWNYEGAE8FJbXAu4ELgQ6hOtFgfJQuG1RvcP/liTpOCtNOLwJbDusrB8wMVyfCPSPK38CKATeAWoC9YAeBD2MbcDn4XrP8LHTgHlhnSfi9iVJSpKyjjnUBfLC9TygTrjeAPg0brvcsKyk8twE5ZKkJKpSzvtLNF5QWIby4owIF0nSMVTWnsMmgkNChLebw/VcoGHcdhnAhiOUZyQoL87DQLtwkSQdI2UNh6kcPONoGDAlrvyHBD2CjsAOgsNOM4HuBIPQZ4TrM8PHdobbpoV1i/YlSUqS0hxWehr4DnAmwTf9O4HfA88Cw4FPgEHhttOB3gSnpe4Grg7LtwFjgfnh/V9xcJD7eoIzoqoDL4eLJCmJShMOQ4sp/26CskLghmK2fyxcDrcAaFmKdkiSjhOvkJYkRRgOkqQIw0GSFGE4SJIiDAdJUoThIEmKMBwkSRGGgyQpwnCQJEUYDpKkCMNBkhRhOEiSIgwHSVKE4SBJijAcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiIMB0lShOEgSYowHCRJEYaDJCnCcJAkRRgOkqQIw0GSFGE4SJIiDAdJUsTRhsNaYBmwBFgQltUCXgVWhbdnhOVpwHhgNbAUaBO3n2Hh9qvCdUlSEpVHz6ELkA20C++PBmYBTcLb0WF5r7CsCTACeCgsrwXcCVwIdAjXiwJFkpQEx+KwUj9gYrg+EegfV/4EUAi8A9QE6gE9CHoY24DPw/Wex6BdkqRSOtpwKAReARYS9AYA6gJ54XoeUCdcbwB8Glc3NywrrlySlCRVjrJ+DrCBIABeBf5VwrZpCcoKSyhPZAQHQ0iSdIwcbc9hQ3i7GXiRYMxgE8HhIsLbzeF6LtAwrm5GWL+48kQeJhjbaFfM45KkcnA04XAKcGrcenfgA2AqB884GgZMCdenAj8k6Cl0BHYQHHaaGdY9I1y6h2WSpCQ5msNKdQl6C0X7eQqYAcwHngWGA58Ag8JtpgO9CU5l3Q1cHZZvA8aG9QB+FZZJkpLkaMLhY6B1gvKtwHcTlBcCNxSzr8fCRZJUAXiFtCQpwnCQJEUYDpKkCMNBkhRhOEiSIgwHSVKE4SBJijAcJEkRhoMkKcJwkCRFGA6SpAjDQZIUYThIkiIMB0lShOEgSYowHCRJEYaDJCnCcJAkRRgOkqQIw0GSFGE4SJIiDAdJUoThIEmKMBwkSRGGgyQpwnCQJEUYDpKkCMNBkhRhOEiSIipSOPQEVgKrgdFJboskpbSKEg6VgQeAXkAWMDS8lSQlQUUJhw4EPYaPgb3AJKBfUlskSSmsooRDA+DTuPu5YZkkKQmqJLsBobQEZYUJykaEC8AugjGKCm3Ruz9JdhNK40zgs2Q3QsfXCfLeBN+f5e2c0mxUUcIhF2gYdz8D2JBgu4fDReVrAdAu2Y2QiuH7MwkqymGl+UAToDFQDRgCTE1qiyQphVWUnkMBMBKYSXDm0mPA8qS2SJJSWEUJB4Dp4aLjz0N1qsh8fyZBWmFhonFfSVIqqyhjDpKkCsRwkCRFGA6pqzrQNNmNkIpxDvAf4Xp14NQktiUlGQ6p6VJgCTAjvJ+Npw6r4rgGmAz8ObyfAbyUvOakJsMhNd1FMJ/V9vD+EqBRshojHeYGIAf4Iry/CqiTvOakJsMhNRUAO5LdCKkYXxJMwFmkComn09ExZDikpg+AKwguOGwC3A+8ndQWSQe9AfyCYKyhG/AcMC2pLUpBXueQmk4GxgDdCSY9nAmMBfKT2SgpVAkYzqHvz79g7+G4MhwkSREVafoMHXvTKPnbV9/j1RApgWWU/P48/3g1RPYcUk3nIzz+xnFphZTYkX5nYN1xaYUAw0GSlIBnK6WmJgQXGX1I8LvdRYtUEXQk+I2XXQSntO7n4DUPOk4Mh9T0v8BDBNc7dAGeAP6a1BZJB00AhhJc/FYd+DHB6dY6jgyH1FQdmEVwmuA6giumuyazQdJhVhNch7Of4MtMl+Q2J/V4tlJqyif4YrCK4Bf41uP0BKo4dhP8XPAS4L+BPOCUpLYoBTkgnZraAyuAmgQXv51O8J/wnWQ2SgqdA2wGqgKjCN6fDxL0JnScGA6SpAgPK6WmdgTTZ5zDoe8BLzJSMi09wuO+P48jwyE1PQn8J8EVqQeS3BapyAGCK6SfIriaf09ym5PaPKyUmuYCnZLdCCmBZgSnsV5KcB3OU8ArBKdd6zgyHFLTdwn+A84imDu/yAvJaY6U0GDgAeBu4A9JbkvK8bBSarqa4BtaVQ4eVirEcFDyNQCGAAOAzwnOVnoxqS1KUfYcUtMyoFWyGyEd5g3gVOBZguldth32+OH3dQwZDqnpEeBegmO6UkWxloNTdsd/MKWF98893g1KZYZDaloBnAesIRhzKPrP56mCkgDDIVUVN2++8+VLApx4L1WtAxoSTLa3jmAuG98LkmLsOaSmOwmukm4KfBOoDzwH5CSzUZIqDr8tpqYBBL8X/X/h/Q0EZ4lIEmA4pKq9BAPQRd1Gp0OWdAjDITU9C/yZYMrua4DXCE5vlSTAMYdU1g3oTnAa60zg1eQ2R1JFYjiklo74gz6SSsHDSqnlwbj1eUlrhaQKz3BILWlx6+lJa4WkCs9ZWVNLJeCM8LZoPT4wnNhMEuCYQ6pZSzBFd1qCx5zYTFKM4SBJinDMQZIUYThIkiIMB0lShOEgSYowHCRJEYaDJCnCcJCOj8eBgcluhFRahoNUMTl7gZLKcJCi7gD+RTCN+dPArcB5wAxgIfBPoFm47ePAeOBt4GMO9g7SgAnAh8A/gDpx+28LvBHuayZQLyx/Hfht+NhPy/tJSV+F306kQ7UDLgMuIPj/sYjgQ/xh4DpgFXAhwQy3XcM69YBOBIExFZhM8FOsTYFWQF2CkHgMqArcD/QDtgCDgd8APwr3VRPofAyfn1QqhoN0qE7AFGBPeH8awQy2FwHPxW13Utz6SwRzVn1IEAQAFxP0OvYT/Eb37LC8KdCSgz+uVBnIi9vXM+XxJKSjZThIh0o0KWElYDuQXUydL4upn2jisjRgOfCtYvb1f0dqoHQ8OOYgHWoucClBb6EG0AfYDawBBoXbpAGtj7CfN4EhBD2DekCXsHwlcBYHw6Eq0KKc2i6VG8NBOtR8gnGD94EXgAXADuBKYHhYvpxgzKAkLxKMTywDHiIYZAbYSzBofXe4ryUEh6ykCsUpu6WoGsAu4GSCHsAIgoFpKWU45iBFPQxkERxamojBoBRkz0GSFOGYgyQpwnCQJEUYDpKkCMNBkhRhOEiSIgwHSVLE/wfD7joINCqDZgAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "dark"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "xd.balance(\"gender\", cross=[])\n",
- "im = xd.show_imbalance(\"gender\", cross=[])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 73,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAFcCAYAAAAj53KSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xl4VNX9x/H3sAkoZSvaQPgJSJRFBdkEF0CRVcuiUEFqQFGqYkWLC660SisqVqECiooECiKVKrhSEHChgIRFEYQGlWIgIoJshUAC8/vjnEkmuZNkkrnJnZl8Xs8zz9x75t6bb+ZJ5jv3nHO/1+f3+xEREQlWwesAREQk+ig5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4VPI6gAjo0m4RkeL7CahX1EY6cxARKV/+G85GSg4iIuKg5CAiIg5KDiIi4hDLA9IixZaVlUV6ejqZmZlehyJSqqpWrUpiYiKVK1cu0f5KDlKupKenU6NGDRo1aoTP5/M6HJFS4ff72bdvH+np6TRu3LhEx1C3kpQrmZmZ1K1bV4lB4prP56Nu3boRnSErOUi5o8Qg5UGkf+dKDiIi4qAxBykVbS6e6nUIIU18sh1+fsxZb9H8zDL9+fv27aNbt24A/PDDD1SsWJF69eqxY8cO6tevz5YtW1z9eStWrGDixIm8++67Ye/TtWtXJk6cSLt27fK0z5w5k9TUVF544YVC9+/VqxerV6/msssuy/Nzhw4dSmpqKpUrV6ZDhw689NJLVK5cma1bt3LTTTexfv16/vznP3Pvvffm7PPhhx8yevRoTp48yS233MLYsWMLPVYohw4donnz5gwYMCAn9nXr1jF8+HCOHTtGnz59mDRpUshv2s8//zx16tQhOTmZjRs3ctttt5GZmUmlSpWYOnUqHTp0wO/3M3r0aN5//32qV6/OzJkzadOmjeNYBf3M/fv3c/3117Njxw4aNWrE/PnzqV27NgsWLOCxxx6jTp06vP3229StW5dvvvmGhx9+mHnz5gFw4sQJrrrqKpYtW0alSu5+nOvMQaQM1a1bl40bN+Z80Nxzzz056xUqFP3vmJ2dXQZRRua+++5j9uzZjvahQ4eydetWNm3axLFjx3jllVcAqFOnDpMnT86TFABOnjzJqFGj+OCDD9iyZQuvv/56TvIs6FihPProo3Tp0iVP2+2338706dNJS0sjLS2NDz/80LFfdnY2M2bM4IYbbgDg/vvvZ9y4cWzcuJHHH3+c+++/H4APPvgg5zjTp0/n9ttvDxlHQT9zwoQJdOvWjbS0NLp168aECRMAePbZZ1m9ejXJycnMnTsXgEceeYQnnngi55hVqlShW7duvPHGGwX+/iWl5CDl1llPPgJdu7r7uPvuEsdz8uRJbr31Vlq2bEmPHj04duwYYL7JP/TQQ3Tp0oVJkyaxd+9errvuOtq3b0/79u1ZuXIlAB9//DGtW7emdevWXHTRRRw+fBiAI0eOMHDgQJo1a8bQoUPx+01Zso8++oiLLrqICy64gJtvvpnjx487Ynrttdc499xz6dKlS87PKUq3bt2oUaOGo71Pnz74fD58Ph8dOnQgPT0dgDPPPJP27ds7vvl//vnnNG3alCZNmlClShUGDx7MwoULCz1WfuvWrWPPnj306NEjpy0jI4NDhw7RqVMnfD4fycnJvP322459ly1bRps2bXK+kft8Pg4dOgTAwYMHqV+/PgALFy4kOTkZn89Hx44dOXDgABkZGXmOVdjPXLhwIcOGDQNg2LBhOe0VKlTg+PHjHD16lMqVK/Ppp5+SkJBAUlJSnmP379+fOXPmhPz9I6HkIBIl0tLSGDVqFJs3b6ZWrVosWLAg57UDBw7w8ccfM2bMGEaPHs0999zD2rVrWbBgAbfccgsAEydOZMqUKWzcuJFPP/2UatWqAbBhwwaef/55tmzZwrfffsvKlSvJzMxk+PDhvPHGG2zatIns7GymTZuWJ56MjAzGjRvHypUrWbJkSZ4ur0WLFvHYY4+V6PfMyspi9uzZ9OrVq9Dtdu3aRcOGDXPWExMT2bVrV9jHOnXqFGPGjOGZZ55xHDcxMbHQ4wKsXLmStm3b5qw///zz3HfffTRs2JB7772XJ598Muw4C/uZe/bsISEhAYCEhAR+/NF0e44bN46ePXuydOlShgwZwvjx43n00UcdcZ5//vmsXbvW0R4pjTlIubXnwfHULeMxh8I0btyY1q1bA9C2bVt27NiR89r111+fs7x06dI8H9SHDh3i8OHDXHrppfzhD39g6NChXHvttTkfRh06dMhZbt26NTt27KBGjRo0btyYc889FzDfWKdMmcLdQWc+a9asoWvXrtSrVy8nhv/85z8A9O3bl759+5bo97zjjjvo3Lkzl19+eaHbBc5wguUfFyjsWFOnTqVPnz55PrjDPS6Y5Ni8efOc9WnTpvHcc89x3XXXMX/+fEaMGMHSpUvDOl64PzNY9+7d6d69OwApKSn06dOHbdu2MXHiRGrXrs2kSZOoXr06FStWpEqVKhw+fDjkGVtJKTmIRInTTjstZ7lixYo53UoAp59+es7yqVOnWLVqVc6ZQcDYsWO5+uqref/99+nYsSNLly4Nedzs7OyQH1ahuD3t909/+hN79+7lpZdeKnLbxMREvv/++5z19PT0nK6ccI61atUqPv30U6ZOncqRI0c4ceIEZ5xxBqNHj87TDZX/uAHVqlXLc51ASkoKkyZNAmDQoEE5Z2xFxRnYpqCfedZZZ5GRkUFCQgIZGRmceWbeLyxHjx4lJSWFxYsX06NHDxYuXMjcuXOZM2cOt956KwDHjx+natWqId+HklK3kkiM6dGjR54ZQxs3bgTgm2++4YILLuCBBx6gXbt2bN26tcBjNGvWjB07drB9+3YAZs+e7Ri0vfjii1mxYgX79u0jKyuLf/zjHxHF/corr7B48WJef/31sAbf27dvT1paGt999x0nTpxg3rx5OWcr4Rxrzpw57Ny5kx07djBx4kSSk5OZMGECCQkJ1KhRg9WrV+P3+5k1axb9+vVz7N+8efOc9wegfv36fPzxx4AZjwj0/fft25dZs2bh9/tZvXo1NWvWzOkmCijsZ/bt25eUlBTAJKD8sTz99NOMHj2aypUrc+zYMXw+HxUqVODo0aOAmQFXr169EpfJKIiSg0iMmTx5MqmpqVx44YW0aNGCF198ETB94ueffz6tWrWiWrVq9O7du8BjVK1alddee41BgwZxwQUXUKFCBW677bY82yQkJPDHP/6RTp06cdVVV+WZnlnYmMPll1/OoEGD+Oijj0hMTGTx4sUA3HbbbezZs4dOnTrRunVrHn/8ccBM6U1MTOSvf/0r48ePJzExkUOHDlGpUiVeeOEFevbsSfPmzfnNb35Dy5YtCz1Wampqzjf6wkybNo1bbrmFpk2bcs4554R8r3r37s0nn3ySs/7yyy8zZswYWrVqxUMPPcT06dMBMzjepEkTmjZtyq233srUqbnTuAPdhIX9zLFjx7JkyRKSkpJYsmRJznRdgN27d5OampqTMMaMGUPHjh1JSUnJmUW1fPly+vTpU+TvXFy+cE8vo1DMBl4eRPN1Dr9KaJSzXtbXOUhsGTBgAE8//bRjhlA0ufbaa3nyySc577zzHK99/fXXecZNrHVAO8fG+ejMQUSkABMmTHBMS40mJ06coH///iETQ6Q0IC0iUoDzzjuvVD543VKlShWSk5NL5dg6cxAREYdwksMM4EfgqxCv3Yvp+/+lXfcBk4HtwJdAcIGRYUCafQwLam8LbLL7TLbHEBERD4WTHGYCoS5lbAh0B3YGtfUGkuxjJBC45LIOMA64GOhgl2vb16bZbQP7FX7ZpIiIlLpwksMnwP4Q7c8B95N31lA/YJZtWw3UAhKAnsASe5yf7XIv+9ovgFV2n1lA/xL8HiIi4qKSDkj3BXYBX+RrbwB8H7SebtsKa08P0S5SJvzfPefq8XyN73H1eOEaPnw411xzDQMHDvTk50v8KUlyqA48DPQI8Vqo8QJ/CdoLMtI+RCQC2dnZrtf/l/hSktlK5wCNMWcNO4BEYD3wK8w3/+AqV4nA7iLaE0O0F2Q65uKNIi/gEIlWTzzxBM2aNaN79+4MGTKEiRMn8s0339CrVy/atm3L5ZdfnlP6Yvjw4dx1111ccsklNGnShDfffBMwhdzuvPNOWrRowdVXX51TyRNMmeouXbrQtm1bevbsmTNPP3/pb5HClOSrwyYg+LLSHZgP65+ARcCdwDzM4PNBIANYDPyF3EHoHsCDmDGIw0BHYA2QDPytBDGJxITU1FQWLFjAhg0byM7Opk2bNrRt25aRI0fy4osvkpSUxJo1a7jjjjtYtmwZYKqDfvbZZ2zdupW+ffsycOBA3nrrLbZt28amTZvYs2cPLVq04OabbyYrK4vf//73LFy4kHr16vHGG2/w8MMPM2PGDCC39LdIUcJJDq8DXTHTVdMxM41eLWDb94E+mGmpR4GbbPt+4AkgUHT8cXIHuW/HzIiqBnxgHyJx6bPPPqNfv345FVV//etfk5mZyb///W8GDRqUs13wjXf69+9PhQoVaNGiBXv27AHgk08+YciQIVSsWJH69etz5ZVXArBt2za++uqrnFLPJ0+ezFMELrj0t0hhwkkOQ4p4vVHQsh8YVcB2M+wjv1Tg/DDiEIl5oWqZnTp1ilq1auVUV80vuOR28P6hymn7/X5atmzJqlWrQh4ruPS3SGF0hbRIGbrssst45513yMzM5MiRI7z33ntUr16dxo0b55TE9vv9fPFF/omAeXXu3Jl58+Zx8uRJMjIyWL58OWDKPezduzcnOWRlZbF58+bS/aUkLmm6gpRrZT31tH379vTt25dWrVpx9tln065dO2rWrMmcOXO4/fbbGT9+PFlZWQwePJhWrVoVeJwBAwawbNkyLrjggpx7PIOptfPmm29y1113cfDgQbKzs7n77rtzSl2LhEslu6VUqGR3wY4cOcIZZ5zB0aNH6dy5M9OnT89zrwQRt0RSsltnDiJlbOTIkWzZsoXMzEyGDRumxCBRSclBpIzNnTvX6xBEiqQBaSlX/H5/yBlDIvEm0r9zJQcpV9J3HeXEiSNKEBLX/H4/+/bto2rVqiU+hrqVpFyZkZLGzcMgsUF1fD4fPvZ5HZJIqahatSqJiYlFb1gAJQcpVw4fyWbSlK9z1tevucPDaESil7qVRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERBzCSQ4zgB+Br4LangG2Al8CbwG1gl57ENgObAN6BrX3sm3bgbFB7Y2BNUAa8AZQpVi/gYiIuC6cO8F1Bo4As4DzbVsPYBmQDTxl2x4AWgCvAx2A+sBS4Fz7+n+A7kA6sBYYAmwB5gP/BOYBLwJfANOKjHzbNj+/+12Rm4k3Utfv9jqEsLRrU9/rEETK1ooVYd0JLpwzh0+A/fna/oVJDACrgUDpv36YD/njwHeYs4QO9rEd+BY4YbfpB/iAK4E37f4pQP8wYhIRkVLkRlXWmzHdQQANMMkiIN22AXyfr/1ioC5wgNxEE7x9KCPtA847D1asiCBsKU0jo/Qe0vmtX6GqrCKhRDog/TDmg32OXfeF2MZfgvaCTMecDhV5SiQiIiUXyZnDMOAaoBu5H+jpQMOgbRKBQOdzqPafMIPZlTBJJnh7ERHxSEnPHHphBqD7AkeD2hcBg4HTMLOQkoDPMQPQSbatit1mESapLAcG2v2HAQtLGJOIiLgknOTwOrAKOA9zZjACeAGoASwBNmJmGQFsxsw+2gJ8CIwCTmLOCu4EFgNf2202230eAP6AGbCuC7wa4e8kIiIRCmcqa7SK2cDLgzaxMiCt24RK+ePaVFYRESlnlBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEIZzkMAP4EfgqqK0O5v7Rafa5tm33AZMx94P+EmgTtM8wu32aXQ5oC2yy+0y2xxAREQ+FkxxmAr3ytY0FPgKS7PNY297btiUBI4Fptr0OMA64GOhglwMJZZrdNrBf/p8lIiJlLJzk8AmwP19bPyDFLqcA/YPaZwF+YDVQC0gAemLOMPYDP9vlXva1XwCr7D6zgo4lIiIeqVTC/c4CMuxyBnCmXW4AfB+0XbptK6w9PUR7QUbah4iIlKKSJoeChBov8JegvSDT7aOo7UREJAIlna20B9MlhH3+0S6nAw2DtksEdhfRnhiiXUREPFTS5LCI3BlHw4CFQe3JmDOCjsBBTLfTYqAHZhC6tl1ebF87bLf12X0DxxIREY+E0630OtAV+CXmm/44YAIwHxgB7AQG2W3fB/pgpqUeBW6y7fuBJ4C1dv1xcge5b8fMiKoGfGAfIiLiIZ/fH7Nd9zEbeHnQ5uKpXocQlvVr7vA6BJGytg5oV9RGbg9IxzT/d895HUKRfI3v8ToEESkHVD5DREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEIdLkcA+wGfgKeB2oCjQG1gBpwBtAFbvtaXZ9u329UdBxHrTt24CeEcYkIiIRiiQ5NADuwtyo+nygIjAYeAp4DkgCfgZG2O1H2PWm9vWnbHsLu19LoBcw1R5LREQ8EumZQyWgmn2uDmQAVwJv2tdTgP52uZ9dx77eDfDZ9nnAceA7zBlEhwjjEhGRCESSHHYBE4GdmKRwEFgHHACy7TbpmDMM7PP3djnbbl83X3v+ffIbCaTah4iIlJJIkkNtzLf+xkB94HSgd4jt/PbZV8BrBbWHMh3TjdWuWJGKiEixRJIcrsJ0A+0FsoB/ApcAtTDdTACJwG67nA40tMuVgJrA/nzt+fcREREPRJIcdgIdMWMNPswYwhZgOTDQbjMMWGiXF9l17OvLMGcIizAD0qdhzkKSgM8jiEtERCJUqehNCrQGM7C8HjOGsAHT7fMeZoB5vG171W7/KjAbM+C8H5MQwEyFnY9JLNnAKOBkBHGJiEiEIkkOAOPsI9i3hJ5tlAkMKuA4f7YPERGJArpCWkREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExCHSwnsiIjEne8YNXocQlko3z/XsZ+vMQUREHJQcRETEQclBREQclBxERMRByUFERBwiTQ61MPeR3gp8DXQC6gBLgDT7XNtu6wMmY+4h/SXQJug4w+z2aXZZREQ8FGlymAR8CDQDWmESxFjgIyDJPo+12/a2bUnASGCaba+DuQ/1xZh7T48jN6GIiIgHIkkOvwA6A6/a9RPAAaAfkGLbUoD+drkfMAvwA6sxZx0JQE/MGcZ+4Ge73CuCuEREJEKRJIcmwF7gNWAD8ApwOnAWkGG3yQDOtMsNgO+D9k+3bQW1hzISSLUPEREpJZEkh0qYcYNpwEXA/8jtQgrFF6LNX0h7KNOBdvYhIiKlJJLkkG4fa+z6m5hksQfTXYR9/jFo+4ZB+ycCuwtpFxERj0SSHH7AdAedZ9e7AVuAReTOOBoGLLTLi4BkzJlCR+AgpttpMdADMwhd2y4vjiAuERGJUKSF934PzAGqAN8CN2ESznxgBLATGGS3fR/og5nKetRuC2Yg+glgrV1/3LaJiIhHIk0OGwnd/98tRJsfGFXAcWbYh4iIRAFdIS0iIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuLgRnKoCGwA3rXrjYE1QBrwBub+0gCn2fXt9vVGQcd40LZvA3q6EJOIiETAjeQwGvg6aP0p4DkgCfgZGGHbR9j1pvb1p2x7C2Aw0BLoBUzFJBwREfFIpMkhEbgaeMWu+4ArgTftegrQ3y73s+vY17vZ7fsB84DjwHeYM4gOEcYlIiIRiDQ5PA/cD5yy63WBA0C2XU8HGtjlBsD3djkbOGi3D27Pv09+I4FU+xARkVISSXK4BvgRWBfU5guxnb+I1wrbJ7/pQDv7EBGRUlIpgn0vBfoCfYCqwC8wZxK17HGzMd1Ou+326UBD+1wJqAnsD2oPCN5HREQ8EMmZw4OYD/JGmAHlZcBQYDkw0G4zDFholxfZdezryzBnCIvs/qdhZjolAZ9HEJeIiEQokjOHgjyAGWAej5ni+qptfxWYjRlw3o9JCACbgfnAFszZxijgZCnEJSIiYXIrOaywD4BvCT3bKBMYVMD+f7YPERGJArpCWkREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHCJJDg2B5cDXwGZgtG2vAywB0uxzbdvuAyYD24EvgTZBxxpmt0+zyyIi4qFIkkM2MAZoDnQERgEtgLHAR0CSfR5rt+9t25KAkcA0214HGAdcDHSwy4GEIiIiHogkOWQA6+3yYcwZRAOgH5Bi21OA/na5HzAL8AOrgVpAAtATc4axH/jZLveKIC4REYlQJZeO0wi4CFgDnIVJHNjnM+1yA+D7oH3SbVtB7aGMtA8RESlFbiSHM4AFwN3AoUK284Vo8xfSHsp0+yhsGxERiVCks5UqYxLDHOCftm0PprsI+/yjXU7HDGIHJAK7C2kXERGPRJIcfMCrmLGGvwa1LyJ3xtEwYGFQe7LdryNwENPttBjogRmErm2XF0cQl4iIRCiSbqVLgRuBTcBG2/YQMAGYD4wAdgKD7GvvA30wU1mPAjfZ9v3AE8Bau/64bRMREY9Ekhw+I/R4AUC3EG1+zHTXUGbYh4iIRAFdIS0iIg5KDiIi4qDkICIiDkoOIiLioOQgIiIObpXPEJFStOxX53kdQliu/GGb1yGIS3TmICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4hBNyaEXsA1zj+mxHsciIlKuRUtyqAhMAXoDLYAh9llERDwQLcmhA+aM4VvgBDAP6OdpRCIi5ZjP7/d7HQPAQEy30i12/UbgYuDOfNuNtA+A8zDdUNHul8BPXgcRJ/Reukvvp7ti5f08G6hX1EbRcrMfX4i2UFlrun3EklSgnddBxAm9l+7S++muuHo/o6VbKR1oGLSeCOz2KBYRkXIvWpLDWiAJaAxUAQYDizyNSESkHIuWbqVszPjCYszMpRnAZk8jck+sdYNFM72X7tL76a64ej+jZUBaRESiSLR0K4mISBRRchAREQclBxERcYiWAWkRKX1nApcC9YFjwFeYufmnvAxKopMGpN2ViJmGezl5/wHfAz5A/4TF1Qn4Leb9TCDv+/l34KB3ocWUKzDFLOsAG4AfgarAucA5wJvAs8AhrwKMUe1w/q8vBfZ7GZRblBzc8xrQAHgX820s+B/wCqAt5h/0E68CjDEfYC6EXEjo9/PXwF/R9TDheAb4G7AzxGuVgGswU8gXlGVQMWw4cBfwHbCOvH+bl2KSxKOEfr9jhpKDe87H/FEUpArwf5gCg1K0cOrUxEotG4kvozDXYh0r4PXWQF3gozKLqBQoOZSOaphEEAuFAWPB2Zgr6Jdi3ttKwGFPI4pNZwF/wZzh9sKUxe8EvOplUBKdNFvJfX2BjcCHdr016vqIxK2YPvGX7Hoi8LZ34cS0mZgqBAl2/T/A3Z5FE/vOxZwdBHoMLgQe8S4cdyk5uG8c5v4UB+z6RqCRZ9HEvlGYftzAYGkaZtaNFN8vgfnkTozIBk56F07Mexl4EMiy619iJqTEBSUH92WjWTRuOo65AVRAJUKXc5ei/Q/TFx54/zqiv9VIVAc+z9eW7UUgpUHXObjvK+AGzOyPJMyshn97GlFs+xh4CDPW0B24A3jH04hi1x8wXZznACsxN3wZ6GlEse0nzHsZSLYDgQzvwnGXBqTdVx14GOiBuYnRYuAJINPLoGJYBWAEed/PV9DZQ0lVwtxF0YeZMJFV+OZSiCaYSqyXAD9jprb+FtjhYUyuUXIQiX/XFvH6P8skivh1OuZLTFzNoFO3knveofBvs33LKpA4sYnC388LyyqQOPDrQl7zo+RQXH8o4vW/lkkUpUzJwT0TvQ4gzlzjdQBx5CavA4gzNbwOoCyoW0mkfLkaaIkp9xDwuEexSBTTmYP7koAnMVefBv8DNvEmnJjXEVMXqDmmBElFzJTMX3gZVIx6ETNh4grMoP5AnFMxJXxVMZMl8ifbm70Jx126zsF9rwHTMPOdrwBmAbM9jSi2vQAMwVz8Vg24BZMspPguAZIxM2v+hCmd0dDTiGLbbOBXQE/MlOtE4mhQWsnBfdUwl9T7gP8CfwSu9DKgOLAdc8ZwEpN8r/A2nJgVKBR3FFNmOgto7F04Ma8ppvrq/4AUTJfdBZ5G5CJ1K7kvE5N004A7gV2o3EMkjmK6kzYCT2MuMjrd04hi17tALUwJ7/WYmUqveBpRbAtcI3IAU5X5B+KoVI4GpN3XHvga80/4BFAT86G22sugYtjZmHr5lYF7MO/nVFT6PFKnYfrJVT6j5G7B3APjQswZ7RnAY5ixnZin5CBSflTEdH00Im+vQVzMyxd3qVvJfe0w5TPOJu/7q4u2iufLIl7X+1l872C6PTehW9ZGQhfBSYnMAe5D/4CROoXpE5+L+VAr6K5bEr5ElFTdMBEzBvYBpmqwz9twSoeSg/v2opv7uKE10AwzjXUusMU+/4s4Kotcxj7AFDD8l9eBxLg2mPs2XI25h/TrmBmKcdVHrzEH93XDfKB9hPlWEaD6NZHnOnT7AAALc0lEQVS5HpgCPIWZbSPFNwD4O2Y2XRbmG68fXVAYiUsw/+9XAQ8QR18Mdebgvpsw33grk9utpOJmJdMA8w1tAObCrXuAtzyNKLY9i7nwraiihhKeesBFmGsb0jGz6uKGkoP7WhFHF8J46GNMgbP5wHBgv22vAtQJWpfwpWFuRqXEEJmbMGeyVTH3N/8NcZYYQN1KpeFl4DlMH7mU3A5yP8SC/0gDXSGqVVV8MzHvW2AgNSAuZteUoVOYs6+ddj3/h2hclOfXmYP7LgOGYe4KFZjJ4EezRIqrkdcBxKHv7KOKfUjJlIvyLTpzcN/ZBbT/t0yjECnY6Zh6QCIFUuE99/0XU+nySrt8FL3PEh06Ybo7v7brrTClSEQc9KHlvnGYKW0P2vXKmOmDIl57HlNeep9d/wLo7F04Es2UHNw3ADMgFTht3005ua2gxITv862f9CQKiXoakHbfCcwAdGAwR+WlJVp8j7loy48ZkL6L3C4mkTx05uC++cBLmJLdtwJLMdNbRbx2GzAKc3FhOqZEyShPI5KopdlKpaM7poaND1gMLPE2HBGR4lFycE9HdEOfsrAUUxdoCubOZlK0f2G+rICZKPGkh7HEszswg/0LiIPikOpWck/wlMBVnkUR/5KBRyj4ehJxqhe0PMizKOKfD3MRbFzUUVNycE9wTfeqnkURP7oX0L4bU8tmShnGEuvUPeCumgW0TwFmofIZkk8FoLZ9DiwHJwwViiueKZgqrO8FtVUAZgC/8iSi2NUEU0raF7QcLC4+zMrQR5gvLz/na+8BvIq5CDbmKTm4pybmxh+BhLA+6DUViiu+HsCHwGmY0/RABcyDwK89jCsW9QtanuhZFPHjJWA5JkHstW03AH/G3AAoLmhAWqJZIma219+AG4E1FH3/XpGycCNwP+ZLzPWYacK9MNWE44KSg0SrNvY5AdOPuwR4Ouj19Y49RMrWIMwXl51Ab3LLksQFJQeJVssLec2PKWwo4oXAnfR8mFlzezHlcuKqPL+Sg4hI8RQ1jTouyvMrOUg0a4YZTG2A+Ua2G1gIbPUyKBHrLPL+be7xNhx3KTlItHoAGALMw9QBAjNAPdi2TfAoLpHWwIuYGYq7bFsicABzlXRcjIcpOUi0+g/QElMqI1gVYDOQVOYRiRgbgd9hZs8F64iZ5tqqzCMqBbpCWqLVKaB+iPYE+5pE7g7MNExd71Q8p+NMDGBqq8VNiX79UZQ+FYormbsxV6KmkXuDmv8DmgJ3ehVUnAnUAhqKrpIujg8wV+7PIvdvsyGm7teHXgXlNnUrlb76mG+7HVE9oOKqAHTADPr5MGMPa9Hdy4qrJubK8lDaY95TKZ7e5E6WCPxtLgLe9zIoNyk5uKc7Bd+34SnMAKtEpg6qUVUSqZSDWkDiLo05uGcKzroqFYCZxMkAVRl7JGi5BWaAeh2mPMHFXgQUwwK1gIJLd99g2+OmFlAZCr7IrTLmb3UR8BeguicRlQIlB/f0AJ4FrrXrVTF/MJVRobiSuDZo+RlgNNAYU677OU8iil0vY/42l2G6OO8GHgOuAL70MK5YNTNoeQJmHOxZoBpmimtc0IC0e3YAV2EKxZ2JCsW5qT5mEBDgc8w/oRTPbCAT2ICpBXQpcVYLqAwFl+Lvhhm3yQI+Ab7wJKJSoOTgnkChuPvJLRT396D2uLgwpgwF34MgEXO6ftS+VtmroGJUcC2g6kBdTDdTXNUCKkM1gQGYnpfTyL0Wx08c3VhJycE9zwYtf4m5tD7QpkJxxdcv33qgC/QsYFoZxxLrrvE6gDjzMblTf1dj/ib3YG5C9ZNXQblNs5VEyo+4rgUk7tKZg7tUKK503I+5l0PgWYqnXNQC8lA7TG/BCa8DcZNmK7nnAUxBOB9m0HStXZ4HjPUwrngwON+zFM9MzGyv5phJE1dhvsjcDbzmXVhxIQH4N2YWXVxRt5J7VCiu9KzHDOxvAC7yOJZYlEbBf3/bMVMxpWTGAudg3t+u3obiLnUruSdQKC7/jT5UKE68Vi5qAXnkRqALZmbdOcA33objHiUH96hQnESruwhdC2gKcVQLyANXYMYTf8J0z40AHvI0IhepW8ldKhRXOtStJNHo78BcTIL9Baa8y3nESU+BzhzcdQoz7zmgDkoMblhhn5d7GUQMu5DcMhmVMZMnOgBfAePJvbhQwlcLU2n5Rrt+CPO/34c4Kc2vMwf3PIL5RwNTKO5tzD+iD3NDlVA3BxEpC4EzLzAXZtbFdIP0t8vJHsUlUUzJwT3B/4DvAS9gBgI7AM8Dl3gUVyyrjpkFElyv5v8wZ2O7Qu4hoQR3x20ktxaQD/PeqnyGOOg6h9KhQnHuyAL+Sd5bL76CmQEm4QvUArqOOK4FJO7SmIN7VCjOfVnAW5huuRmYs4Z6mJvXSPjKRS0gcZe6ldzTJd/6OuAI5h9xILpFaEk1w9yP4HLMuM4hYLKnEUl5F6hmG+k2UU3JQWLBp5g55G8Bl+G83aUUT1zWAipDK4AFmLppO4Paq2D+PodhZtbNLOvA3KQxh9Jxf75nicyrmLGGL1FiiFTc1gIqQ70wkyJexxTX3AJ8i7kAdgjmToUzvQrOLTpzKB2BmUvBM5ik5KoDGZgB1aUexxLr4rYWkEcqA78EjmGq3MYNDUiXLl/Rm0gYjmJm3Ejk4rYWkEeyMF9c4o66lUTKj1C1gERCUnIQKT9GYMZvAN4ABqHPACmA/jBEyodALaDAxZnBtYBEHDTmUDpW2GcViiu5cjGXvAwdwHlTnxtDbSgCmq0k0WsF5WAuuUi0UnJwlwrFuacqcDMwFGiM+eZbFagI/AtzxflGz6ITiXNKDu6qjJkNciHwP9v2L8zdoVQPqOTidi65SLTSgLS7ggvFgQrFuSUwl1yJoWTCud5G1+RIHkoO7nsFuMkuJ2Pmk4t4aTnwe8yXlWBVgCuBFMwYjkgOzVZy31b7fC6mzsplHsYiAqYW0M2YWkChxm+eQ+M3ko/GHErHcMw/4y5MghCJFhq/kbAoOZQOFYoTkZim5CAiIg4akBYREQclBxERcVByEBERByUH9+hCIxGJG0oO7tGFRiISNzRbyT0qFCcicUPJoXToQiMRiWlKDiIi4qAxBxERcVByEBERByUHiXdHvA6ghBoBX3kdhJRfSg4i8aGi1wFIfFFykPLCBzyD+Ta+idy79Z0BfASst+39bHsj4GvgZWAzZjpytRDHPQdYDawFHifvmcp9tv1L4E9hHLct5v7jq4BRQcepaGMPHOt3tr0r5vqauTZ2EdcoOUh5cS3QGmgFXIX5sE0AMoEBQBvgCuBZcq9kT8Jcn9ISMyX5uhDHnWQf7YHdQe097P4d7M9tC3Qu4rivAXcBnfL9jBHAQfsz2gO3Yq6lwR7/YaBFGO+BSNiUHKS8uAxzJ7STwB7gY8wHrQ/4C+Yb+VKgAXCW3ec7ci9cXIf51p9fJ+AfdnluUHsP+9iAOStphkkKBR23JlDLxgUwO9+xku0+a4C6Qcf63B5PxFW6TaiUFwXVtRoK1MN8s88CdmCubAc4HrTdSUJ3KxX2854EXsrX3qiA4/qAgi468mFKsyzO194V+F8xYhIJm84cpLz4BDPOUBGTDDpjvnXXBH7EJIYrgLPDONad9gFmvCHQLTQ4aJvFmHIqZ9j1BsCZhRzzAKbrKHDP8aH5jnU75sp7MPcnPz2MOEVKTGcOUl68hekC+gLzDf1+4AdgDvAOkIrpttkaxrGaASvt8t3A34ExwHuYD3gwA83NMYPLYAaqf4s5UyjITcAM4Ch5zxJewZxxrMecRewF+ocRp0iJqXyGSPG9ixngPoG5X/gxTMIZDAwhd8aTSMxSchCJzOXAC5hv9AcwXUnbPY1IxAVKDiIi4qABaRERcVByEBERByUHERFxUHIQEREHJQcREXH4f7gzN5tt7Nk4AAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "dark"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "im = xd.show_imbalance(\"gender\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 74,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAFcCAYAAAAj53KSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xl4VNX9x/H3sAkoZSvaQPgJaJRFBNkEF0CRVcuiUEFqQFGqYkWLIq60ihUVq1gBRUQCZZFKFVwpu0oBCYsiCA0qxUCKCLIVAgnM749zJpnkTpJJ5iY3M/m8nmeeuffMnTvfzDOZ79xzzv1en9/vR0REJFg5rwMQEZHSR8lBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMShgtcBRECndouIFN5PQJ2CNtKRg4hI2fKfcDZSchAREQclBxERcVByEBERh2gekBYptIyMDFJTU0lPT/c6FJFiVblyZeLj46lYsWKRnq/kIGVKamoq1apVo0GDBvh8Pq/DESkWfr+fAwcOkJqaSsOGDYu0D3UrSZmSnp5O7dq1lRgkpvl8PmrXrh3REbKSg5Q5SgxSFkT6OVdyEBERB405SLFodflkr0MIacKzbfDzY9Z60ybnlujrHzhwgC5dugDw3//+l/Lly1OnTh127dpF3bp12bZtm6uvt3LlSiZMmMAHH3wQ9nM6d+7MhAkTaNOmTY72GTNmkJyczKuvvprv83v06MHatWu56qqrcrzu4MGDSU5OpmLFirRr147XX3+dihUrsn37dm677TY2btzIM888w4MPPpj1nE8++YSRI0dy+vRp7rjjDsaMGZPvvkI5cuQITZo0oV+/flmxb9iwgaFDh3LixAl69erFxIkTQ/7Sfvnll6lVqxaJiYls3ryZu+66i/T0dCpUqMDkyZNp164dfr+fkSNH8tFHH1G1alVmzJhBq1atHPvK6zUPHjzIzTffzK5du2jQoAHz58+nZs2aLFiwgCeffJJatWrx3nvvUbt2bb799lsee+wx5s2bB8CpU6e47rrrWL58ORUquPt1riMHkRJUu3ZtNm/enPVF88ADD2StlytX8L9jZmZmCUQZmYceeohZs2Y52gcPHsz27dvZsmULJ06cYNq0aQDUqlWLV155JUdSADh9+jQjRozg448/Ztu2bcydOzcreea1r1CeeOIJOnXqlKPt7rvvZurUqaSkpJCSksInn3zieF5mZibTp0/nlltuAWD06NGMHTuWzZs389RTTzF69GgAPv7446z9TJ06lbvvvjtkHHm95vjx4+nSpQspKSl06dKF8ePHA/Diiy+ydu1aEhMTmTNnDgCPP/44Tz/9dNY+K1WqRJcuXXj77bfz/PuLSslByqzznn0cOnd293b//UWO5/Tp09x55500a9aMbt26ceLECcD8kn/00Ufp1KkTEydOZP/+/dx00020bduWtm3bsnr1agBWrVpFy5YtadmyJZdddhlHjx4F4NixY/Tv35/GjRszePBg/H5TlmzZsmVcdtllNG/enNtvv52TJ086Ynrrrbe46KKL6NSpU9brFKRLly5Uq1bN0d6rVy98Ph8+n4927dqRmpoKwLnnnkvbtm0dv/y/+OILLrzwQho1akSlSpUYOHAgCxcuzHdfuW3YsIF9+/bRrVu3rLa0tDSOHDlChw4d8Pl8JCYm8t577zmeu3z5clq1apX1i9zn83HkyBEADh8+TN26dQFYuHAhiYmJ+Hw+2rdvz6FDh0hLS8uxr/xec+HChQwZMgSAIUOGZLWXK1eOkydPcvz4cSpWrMhnn31GXFwcCQkJOfbdt29fZs+eHfLvj4SSg0gpkZKSwogRI9i6dSs1atRgwYIFWY8dOnSIVatWMWrUKEaOHMkDDzzA+vXrWbBgAXfccQcAEyZMYNKkSWzevJnPPvuMKlWqALBp0yZefvlltm3bxnfffcfq1atJT09n6NChvP3222zZsoXMzEymTJmSI560tDTGjh3L6tWrWbJkSY4ur0WLFvHkk08W6e/MyMhg1qxZ9OjRI9/t9uzZQ/369bPW4+Pj2bNnT9j7OnPmDKNGjeKFF15w7Dc+Pj7f/QKsXr2a1q1bZ62//PLLPPTQQ9SvX58HH3yQZ599Nuw483vNffv2ERcXB0BcXBw//mi6PceOHUv37t1ZunQpgwYNYty4cTzxxBOOOC+55BLWr1/vaI+UxhykzNr3yDhql/CYQ34aNmxIy5YtAWjdujW7du3Keuzmm2/OWl66dGmOL+ojR45w9OhRrrzySv7whz8wePBgbrzxxqwvo3bt2mUtt2zZkl27dlGtWjUaNmzIRRddBJhfrJMmTeL+oCOfdevW0blzZ+rUqZMVw7///W8AevfuTe/evYv0d95zzz107NiRq6++Ot/tAkc4wXKPC+S3r8mTJ9OrV68cX9zh7hdMcmzSpEnW+pQpU3jppZe46aabmD9/PsOGDWPp0qVh7S/c1wzWtWtXunbtCkBSUhK9evVix44dTJgwgZo1azJx4kSqVq1K+fLlqVSpEkePHg15xFZUSg4ipcRZZ52VtVy+fPmsbiWAs88+O2v5zJkzrFmzJuvIIGDMmDFcf/31fPTRR7Rv356lS5eG3G9mZmbIL6tQ3J72+6c//Yn9+/fz+uuvF7htfHw8P/zwQ9Z6ampqVldOOPtas2YNn332GZMnT+bYsWOcOnWKc845h5EjR+bohsq934AqVarkOE8gKSmJiRMnAjBgwICsI7aC4gxsk9drnnfeeaSlpREXF0daWhrnnpvzB8vx48dJSkpi8eLFdOvWjYULFzJnzhxmz57NnXfeCcDJkyepXLlyyPehqNStJBJlunXrlmPG0ObNmwH49ttvad68OQ8//DBt2rRh+/btee6jcePG7Nq1i507dwIwa9Ysx6Dt5ZdfzsqVKzlw4AAZGRn8/e9/jyjuadOmsXjxYubOnRvW4Hvbtm1JSUnh+++/59SpU8ybNy/raCWcfc2ePZvdu3eza9cuJkyYQGJiIuPHjycuLo5q1aqxdu1a/H4/M2fOpE+fPo7nN2nSJOv9Aahbty6rVq0CzHhEoO+/d+/ezJw5E7/fz9q1a6levXpWN1FAfq/Zu3dvkpKSAJOAcsfy/PPPM3LkSCpWrMiJEyfw+XyUK1eO48ePA2YGXJ06dYpcJiMvSg4iUeaVV14hOTmZSy+9lKZNm/Laa68Bpk/8kksuoUWLFlSpUoWePXvmuY/KlSvz1ltvMWDAAJo3b065cuW46667cmwTFxfHH//4Rzp06MB1112XY3pmfmMOV199NQMGDGDZsmXEx8ezePFiAO666y727dtHhw4daNmyJU899RRgpvTGx8fzl7/8hXHjxhEfH8+RI0eoUKECr776Kt27d6dJkyb85je/oVmzZvnuKzk5OesXfX6mTJnCHXfcwYUXXsgFF1wQ8r3q2bMnn376adb6G2+8wahRo2jRogWPPvooU6dOBczgeKNGjbjwwgu58847mTw5exp3oJswv9ccM2YMS5YsISEhgSVLlmRN1wXYu3cvycnJWQlj1KhRtG/fnqSkpKxZVCtWrKBXr14F/s2F5Qv38LIUitrAy4LSfJ7Dr+IaZK2X9HkOEl369evH888/75ghVJrceOONPPvss1x88cWOx7755psc4ybWBqCNY+NcdOQgIpKH8ePHO6allianTp2ib9++IRNDpDQgLSKSh4svvrhYvnjdUqlSJRITE4tl3zpyEBERh3CSw3TgR+DrEI89iOn7/6Vd9wGvADuBr4DgAiNDgBR7GxLU3hrYYp/zit2HiIh4KJzkMAMIdSpjfaArsDuorSeQYG/DgcApl7WAscDlQDu7XNM+NsVuG3he/qdNiohIsQsnOXwKHAzR/hIwmpyzhvoAM23bWqAGEAd0B5bY/fxsl3vYx34BrLHPmQn0LcLfISIiLirqgHRvYA/wZa72esAPQeupti2/9tQQ7SIlwu0ptxvX3ePq/sI1dOhQbrjhBvr37+/J60vsKUpyqAo8BnQL8Vio8QJ/EdrzMtzeRCQCmZmZrtf/l9hSlNlKFwANMUcNu4B4YCPwK8wv/+AqV/HA3gLa40O052Uq5uSNAk/gECmtnn76aRo3bkzXrl0ZNGgQEyZM4Ntvv6VHjx60bt2aq6++Oqv0xdChQ7nvvvu44ooraNSoEe+88w5gCrnde++9NG3alOuvvz6rkieYMtWdOnWidevWdO/ePWuefu7S3yL5KcpPhy1A8GmluzBf1j8Bi4B7gXmYwefDQBqwGPgz2YPQ3YBHMGMQR4H2wDogEfhrEWISiQrJycksWLCATZs2kZmZSatWrWjdujXDhw/ntddeIyEhgXXr1nHPPfewfPlywFQH/fzzz9m+fTu9e/emf//+vPvuu+zYsYMtW7awb98+mjZtyu23305GRga///3vWbhwIXXq1OHtt9/mscceY/r06UB26W+RgoSTHOYCnTHTVVMxM43ezGPbj4BemGmpx4HbbPtB4GkgUHT8KbIHue/GzIiqAnxsbyIx6fPPP6dPnz5ZFVV//etfk56ezr/+9S8GDBiQtV3whXf69u1LuXLlaNq0Kfv27QPg008/ZdCgQZQvX566dety7bXXArBjxw6+/vrrrFLPp0+fzlEELrj0t0h+wkkOgwp4vEHQsh8Ykcd20+0tt2TgkjDiEIl6oWqZnTlzhho1amRVV80tuOR28PNDldP2+/00a9aMNWvWhNxXcOlvkfzoDGmREnTVVVfx/vvvk56ezrFjx/jwww+pWrUqDRs2zCqJ7ff7+fLL3BMBc+rYsSPz5s3j9OnTpKWlsWLFCsCUe9i/f39WcsjIyGDr1q3F+0dJTNJ0BSnTSnrqadu2benduzctWrTg/PPPp02bNlSvXp3Zs2dz9913M27cODIyMhg4cCAtWrTIcz/9+vVj+fLlNG/ePOsaz2Bq7bzzzjvcd999HD58mMzMTO6///6sUtci4VLJbikWKtmdt2PHjnHOOedw/PhxOnbsyNSpU3NcK0HELZGU7NaRg0gJGz58ONu2bSM9PZ0hQ4YoMUippOQgUsLmzJnjdQgiBdKAtJQpfr8/5IwhkVgT6edcyUHKlNQ9xzl16pgShMQ0v9/PgQMHqFy5cpH3oW4lKVOmJ6Vw+xCIr1cVn8+HjwNehyRSLCpXrkx8fHzBG+ZByUHKlKPHMpk46Zusda+qqIqUdupWEhERByUHERFxUHIQEREHJQcREXFQchAREQclBxERcVByEBERByUHERFxUHIQEREHJQcREXEIJzlMB34Evg5qewHYDnwFvAvUCHrsEWAnsAPoHtTew7btBMYEtTcE1gEpwNtApUL9BSIi4rpwrgTXETgGzAQusW3dgOVAJvCcbXsYaArMBdoBdYGlwEX28X8DXYFUYD0wCNgGzAf+AcwDXgO+BKYUGPmOHX5+97sCNxNvJG/c63UIYWnTqq7XIYiUrJUrXbsS3KdAg1xt/wxaXgv0t8t9MF/yJ4HvMUcJ7exjO4Hv7PI8u+03wLXALbY9Cfgj4SSHYhANX2j6MiubouGzCdHz+dT7WTA3qrLejukOAqiHSRYBqbYN4Idc7ZcDtYFDmCOQ3NuHMtze4OKLYeXKCMIOsfNSet3jYBtXRkcV0Wh4L0Hvp9v0frrLy/cz0gHpxzBf7LPtui/ENv4itOdlKuZwqMBDIhERKbpIjhyGADcAXcj+Qk8F6gdtEw8Ejt9Ctf+EGcyugEkywduLiIhHinrk0AMzAN0bOB7UvggYCJyFmYWUAHyBGYBOsG2V7DaLMEllBdljFkOAhUWMSUREXBJOcpgLrAEuxhwZDANeBaoBS4DNmFlGAFsxs4+2AZ8AI4DTmKOCe4HFmEHo+XZbMEnmD5gB69rAmxH+TSIiEqFwupUGhWjL7wv8GXvL7SN7y+07smc0iYhIKaAzpEVExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERBzCSQ7TgR+Br4PaamGuH51i72vadh/wCuZ60F8BrYKeM8Run2KXA1oDW+xzXrH7EBERD4WTHGYAPXK1jQGWAQn2foxt72nbEoDhwBTbXgsYC1yOuV70WLITyhS7beB5uV9LRERKWDjJ4VPgYK62PkCSXU4C+ga1zwT8wFqgBhAHdMccYRwEfrbLPexjvwDW2OfMDNqXiIh4pEIRn3cekGaX04Bz7XI94Ieg7VJtW37tqSHa8zLc3kREpBgVNTnkJdR4gb8I7XmZam8FbSciIhEo6mylfZguIez9j3Y5FagftF08sLeA9vgQ7SIi4qGiJodFZM84GgIsDGpPxBwRtAcOY7qdFgPdMIPQNe3yYvvYUbutzz43sC8REfFION1Kc4HOwC8xv/THAuOB+cAwYDcwwG77EdALMy31OHCbbT8IPA2st+tPkT3IfTdmRlQV4GN7ExERD4WTHAbl0d4lRJsfGJHH9tPtLbdk4JIw4hARkRKiM6RFRMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMRByUFERByUHERExEHJQUREHJQcRETEQclBREQclBxERMQh0uTwALAV+BqYC1QGGgLrgBTgbaCS3fYsu77TPt4gaD+P2PYdQPcIYxIRkQhFkhzqAfcBbYBLgPLAQOA54CUgAfgZGGa3H2bXL7SPP2fbm9rnNQN6AJPtvkRExCORHjlUAKrY+6pAGnAt8I59PAnoa5f72HXs410An22fB5wEvsccQbSLMC4REYlAJMlhDzAB2I1JCoeBDcAhINNuk4o5wsDe/2CXM+32tXO1535ObsOBZHsTEZFiEklyqIn51d8QqAucDfQMsZ3f3vvyeCyv9lCmYrqx2hQqUhERKZRIksN1mG6g/UAG8A/gCqAGppsJIB7Ya5dTgfp2uQJQHTiYqz33c0RExAORJIfdQHvMWIMPM4awDVgB9LfbDAEW2uVFdh37+HLMEcIizID0WZijkATgiwjiEhGRCFUoeJM8rcMMLG/EjCFswnT7fIgZYB5n2960278JzMIMOB/EJAQwU2HnYxJLJjACOB1BXCIiEqFIkgPAWHsL9h2hZxulAwPy2M8z9iYiIqWAzpAWEREHJQcREXFQchAREQclBxERcVByEBERByUHERFxUHIQEREHJQcREXFQchAREQclBxERcVByEBERByUHERFxUHIQEREHJQcREXFQchAREQclBxERcVByEBERByUHERFxiDQ51MBcR3o78A3QAagFLAFS7H1Nu60PeAVzDemvgFZB+xlit0+xyyIi4qFIk8NE4BOgMdACkyDGAMuABHs/xm7b07YlAMOBKba9FuY61Jdjrj09luyEIiIiHogkOfwC6Ai8addPAYeAPkCSbUsC+trlPsBMwA+sxRx1xAHdMUcYB4Gf7XKPCOISEZEIRZIcGgH7gbeATcA04GzgPCDNbpMGnGuX6wE/BD0/1bbl1R7KcCDZ3kREpJhEkhwqYMYNpgCXAf8juwspFF+INn8+7aFMBdrYm4iIFJNIkkOqva2z6+9gksU+THcR9v7HoO3rBz0/HtibT7uIiHgkkuTwX0x30MV2vQuwDVhE9oyjIcBCu7wISMQcKbQHDmO6nRYD3TCD0DXt8uII4hIRkQhViPD5vwdmA5WA74DbMAlnPjAM2A0MsNt+BPTCTGU9brcFMxD9NLDerj9l20RExCORJofNhO7/7xKizQ+MyGM/0+1NRERKAZ0hLSIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4uBGcigPbAI+sOsNgXVACvA25vrSAGfZ9Z328QZB+3jEtu8AursQk4iIRMCN5DAS+CZo/TngJSAB+BkYZtuH2fUL7ePP2famwECgGdADmIxJOCIi4pFIk0M8cD0wza77gGuBd+x6EtDXLvex69jHu9jt+wDzgJPA95gjiHYRxiUiIhGINDm8DIwGztj12sAhINOupwL17HI94Ae7nAkcttsHt+d+Tm7DgWR7ExGRYhJJcrgB+BHYENTmC7Gdv4DH8ntOblOBNvYmIiLFpEIEz70S6A30AioDv8AcSdSw+83EdDvttdunAvXtfQWgOnAwqD0g+DkiIuKBSI4cHsF8kTfADCgvBwYDK4D+dpshwEK7vMiuYx9fjjlCWGSffxZmplMC8EUEcYmISIQiOXLIy8OYAeZxmCmub9r2N4FZmAHng5iEALAVmA9swxxtjABOF0NcIiISJreSw0p7A/iO0LON0oEBeTz/GXsTEZFSQGdIi4iIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIg5KDiIg4KDmIiIiDkoOIiDgoOYiIiIOSg4iIOCg5iIiIQyTJoT6wAvgG2AqMtO21gCVAir2vadt9wCvATuAroFXQvobY7VPssoiIeCiS5JAJjAKaAO2BEUBTYAywDEiw92Ps9j1tWwIwHJhi22sBY4HLgXZ2OZBQRETEA5EkhzRgo10+ijmCqAf0AZJsexLQ1y73AWYCfmAtUAOIA7pjjjAOAj/b5R4RxCUiIhGq4NJ+GgCXAeuA8zCJA3t/rl2uB/wQ9JxU25ZXeyjD7U1ERIqRG8nhHGABcD9wJJ/tfCHa/Pm0hzLV3vLbRkREIhTpbKWKmMQwG/iHbduH6S7C3v9ol1Mxg9gB8cDefNpFRMQjkSQHH/AmZqzhL0Hti8iecTQEWBjUnmif1x44jOl2Wgx0wwxC17TLiyOIS0REIhRJt9KVwK3AFmCzbXsUGA/MB4YBu4EB9rGPgF6YqazHgdts+0HgaWC9XX/KtomIiEciSQ6fE3q8AKBLiDY/ZrprKNPtTURESgGdIS0iIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuKg5CAiIg5KDiIi4qDkICIiDkoOIiLioOQgIiIOSg4iIuJQmpJDD2AH5hrTYzyORUSkTCstyaE8MAnoCTQFBtl7ERHxQGlJDu0wRwzfAaeAeUAfTyMSESnDfH6/3+sYAPpjupXusOu3ApcD9+babri9AVyM6YYq7X4J/OR1EDFC76W79H66K1rez/OBOgVtVKEEAgmHL0RbqKw11d6iSTLQxusgYoTeS3fp/XRXTL2fpaVbKRWoH7QeD+z1KBYRkTKvtCSH9UAC0BCoBAwEFnkakYhIGVZaupUyMeMLizEzl6YDWz2NyD3R1g1Wmum9dJfeT3fF1PtZWgakRUSkFCkt3UoiIlKKKDmIiIiDkoOIiDiUlgFpESl+5wJXAnWBE8DXmLn5Z7wMSkonDUi7Kx4zDfdqcv4Dfgh8jP4JC6sD8FvM+xlHzvfzb8Bh70KLKtdgilnWAjYBPwKVgYuAC4B3gBeBI14FGKXa4PxfXwoc9DIotyg5uOctoB7wAebXWPA/4DVAa8w/6KdeBRhlPsacCLmQ0O/nr4G/oPNhwvEC8Fdgd4jHKgA3YKaQLyjJoKLYUOA+4HtgAzk/m1diksQThH6/o4aSg3suwXwo8lIJ+D9MgUEpWDh1aqKllo3ElhGYc7FO5PF4S6A2sKzEIioGSg7FowomEURDYcBocD7mDPqlmPe2AnDU04ii03nAnzFHuD0wZfE7AG96GZSUTpqt5L7ewGbgE7veEnV9ROJOTJ/463Y9HnjPu3Ci2gxMFYI4u/5v4H7Pool+F2GODgI9BpcCj3sXjruUHNw3FnN9ikN2fTPQwLNoot8ITD9uYLA0BTPrRgrvl8B8sidGZAKnvQsn6r0BPAJk2PWvMBNSYoKSg/sy0SwaN53EXAAqoAKhy7lLwf6H6QsPvH/t0Wc1ElWBL3K1ZXoRSHHQeQ7u+xq4BTP7IwEzq+FfnkYU3VYBj2LGGroC9wDvexpR9PoDpovzAmA15oIv/T2NKLr9hHkvA8m2P5DmXTju0oC0+6oCjwHdMBcxWgw8DaR7GVQUKwcMI+f7OQ0dPRRVBcxVFH2YCRMZ+W8u+WiEqcR6BfAzZmrrb4FdHsbkGiUHkdh3YwGP/6NEoohdZ2N+xMTUDDp1K7nnffL/Ndu7pAKJEVvI//28tKQCiQG/zucxP0oOhfWHAh7/S4lEUcyUHNwzwesAYswNXgcQQ27zOoAYU83rAEqCupVEypbrgWaYcg8BT3kUi5RiOnJwXwLwLObs0+B/wEbehBP12mPqAjXBlCApj5mS+Qsvg4pSr2EmTFyDGdTvj3MqpoSvMmayRO5ke7s34bhL5zm47y1gCma+8zXATGCWpxFFt1eBQZiT36oAd2CShRTeFUAiZmbNnzClM+p7GlF0mwX8CuiOmXIdTwwNSis5uK8K5pR6H/Af4I/AtV4GFAN2Yo4YTmOS7zXehhO1AoXijmPKTGcADb0LJ+pdiKm++j8gCdNl19zTiFykbiX3pWOSbgpwL7AHlXuIxHFMd9Jm4HnMSUZnexpR9PoAqIEp4b0RM1NpmqcRRbfAOSKHMFWZ/0sMlcrRgLT72gLfYP4JnwaqY77U1noZVBQ7H1MvvyLwAOb9nIxKn0fqLEw/ucpnFN0dmGtgXIo5oj0HeBIzthP1lBxEyo7ymK6PBuTsNYiJefniLnUrua8NpnzG+eR8f3XSVuF8VcDjej8L731Mt+cWdMnaSOgkOCmS2cBD6B8wUmcwfeJzMF9qeV11S8IXj5KqGyZgxsA+xlQN9nkbTvFQcnDffnRxHze0BBpjprHOAbbZ+38SQ2WRS9jHmAKG//Q6kCjXCnPdhusx15Cei5mhGFN99BpzcF8XzBfaMsyvigDVr4nMzcAk4DnMbBspvH7A3zCz6TIwv3j96ITCSFxpHapJAAALWElEQVSB+X+/DniYGPphqCMH992G+cVbkexuJRU3K5p6mF9o/TAnbj0AvOtpRNHtRcyJbwUVNZTw1AEuw5zbkIqZVRczlBzc14IYOhHGQ6swBc7mA0OBg7a9ElAraF3Cl4K5GJUSQ2RuwxzJVsZc3/w3xFhiAHUrFYc3gJcwfeRSdLvI/hIL/pAGukJUq6rwZmDet8BAakBMzK4pQWcwR1+77XruL9GYKM+vIwf3XQUMwVwVKjCTwY9miRRWA68DiEHf21sle5OiKRPlW3Tk4L7z82j/T4lGIZK3szH1gETypMJ77vsPptLltXb5OHqfpXTogOnu/Maut8CUIhFx0JeW+8ZiprQ9YtcrYqYPinjtZUx56QN2/Uugo3fhSGmm5OC+fpgBqcBh+17KyGUFJSr8kGv9tCdRSKmnAWn3ncIMQAcGc1ReWkqLHzAnbfkxA9L3kd3FJJKDjhzcNx94HVOy+05gKWZ6q4jX7gJGYE4uTMWUKBnhaURSamm2UvHoiqlh4wMWA0u8DUdEpHCUHNzTHl3QpyQsxdQFmoS5spkU7J+YHytgJko862EssewezGD/AmKgOKS6ldwTPCVwjWdRxL5E4HHyPp9EnOoELQ/wLIrY58OcBBsTddSUHNwTXNO9smdRxI6uebTvxdSymVSCsUQ7dQ+4q3oe7ZOAmah8huRSDqhp7wPLwQlDheIKZxKmCuuHQW3lgOnArzyJKHo1wpSS9gUtB4uJL7MStAzz4+XnXO3dgDcxJ8FGPSUH91THXPgjkBA2Bj2mQnGF1w34BDgLc5geqIB5GPi1h3FFoz5ByxM8iyJ2vA6swCSI/bbtFuAZzAWAYoIGpKU0i8fM9vorcCuwjoKv3ytSEm4FRmN+xNyMmSbcA1NNOCYoOUhp1crex2H6cZcAzwc9vtHxDJGSNQDzw2U30JPssiQxQclBSqsV+TzmxxQ2FPFC4Ep6Psysuf2YcjkxVZ5fyUFEpHAKmkYdE+X5lRykNGuMGUyth/lFthdYCGz3MigR6zxyfjb3eRuOu5QcpLR6GBgEzMPUAQIzQD3Qto33KC6RlsBrmBmKe2xbPHAIc5Z0TIyHKTlIafVvoBmmVEawSsBWIKHEIxIxNgO/w8yeC9YeM821RYlHVAx0hrSUVmeAuiHa4+xjErl7MNMwdb5T4ZyNMzGAqa0WMyX69aEofioUVzT3Y85ETSH7AjX/B1wI3OtVUDEmUAtoMDpLujA+xpy5P5Psz2Z9TN2vT7wKym3qVip+dTG/dtujekCFVQ5ohxn082HGHtajq5cVVnXMmeWhtMW8p1I4PcmeLBH4bC4CPvIyKDcpObinK3lft+E5zACrRKYWqlFVFMmUgVpA4i6NObhnEs66KuWAGcTIAFUJezxouSlmgHoDpjzB5V4EFMUCtYCCS3ffYttjphZQCQo+ya0i5rO6CPgzUNWTiIqBkoN7ugEvAjfa9cqYD0xFVCiuKG4MWn4BGAk0xJTrfsmTiKLXG5jP5nJMF+f9wJPANcBXHsYVrWYELY/HjIO9CFTBTHGNCRqQds8u4DpMobhzUaE4N9XFDAICfIH5J5TCmQWkA5swtYCuJMZqAZWg4FL8XTDjNhnAp8CXnkRUDJQc3BMoFDea7EJxfwtqj4kTY0pQ8DUI4jGH68ftYxW9CipKBdcCqgrUxnQzxVQtoBJUHeiH6Xk5i+xzcfzE0IWVlBzc82LQ8leYU+sDbSoUV3h9cq0HukDPA6aUcCzR7gavA4gxq8ie+rsW85nch7kI1U9eBeU2zVYSKTtiuhaQuEtHDu5SobjiMRpzLYfAvRROmagF5KE2mN6CU14H4ibNVnLPw5iCcD7MoOl6uzwPGONhXLFgYK57KZwZmNleTTCTJq7D/JC5H3jLu7BiQhzwL8wsupiibiX3qFBc8dmIGdjfBFzmcSzRKIW8P387MVMxpWjGABdg3t/O3obiLnUruSdQKC73hT5UKE68ViZqAXnkVqATZmbdBcC33objHiUH96hQnJRW9xG6FtAkYqgWkAeuwYwn/oTpnhsGPOppRC5St5K7VCiueKhbSUqjvwFzMAn2F5jyLhcTIz0FOnJw1xnMvOeAWigxuGGlvV/hZRBR7FKyy2RUxEyeaAd8DYwj++RCCV8NTKXlW+36Ecz/fi9ipDS/jhzc8zjmHw1Mobj3MP+IPswFVUJdHESkJASOvMCcmFkb0w3S1y4nehSXlGJKDu4J/gf8EHgVMxDYDngZuMKjuKJZVcwskOB6Nf+HORrbE/IZEkpwd9xmsmsB+TDvrcpniIPOcygeKhTnjgzgH+S89OI0zAwwCV+gFtBNxHAtIHGXxhzco0Jx7ssA3sV0y03HHDXUwVy8RsJXJmoBibvUreSeTrnWNwDHMP+I/dElQouqMeZ6BFdjxnWOAK94GpGUdYFqtpFuU6opOUg0+Awzh/xd4Cqcl7uUwonJWkAlaCWwAFM3bXdQeyXM53MIZmbdjJIOzE0acygeo3PdS2TexIw1fIUSQ6RithZQCeqBmRQxF1NccxvwHeYE2EGYKxXO8Co4t+jIoXgEZi4Fz2CSoqsKpGEGVJd6HEu0i9laQB6pCPwSOIGpchszNCBdvHwFbyJhOI6ZcSORi9laQB7JwPxwiTnqVhIpO0LVAhIJSclBpOwYhhm/AXgbGIC+AyQP+mCIlA2BWkCBkzODawGJOGjMoXistPcqFFd0ZWIueQk6hPOiPreG2lAENFtJSq+VlIG55CKllZKDu1Qozj2VgduBwUBDzC/fykB54J+YM843exadSIxTcnBXRcxskEuB/9m2f2KuDqV6QEUXs3PJRUorDUi7K7hQHKhQnFsCc8mVGIomnPNtdE6O5KDk4L5pwG12OREzn1zESyuA32N+rASrBFwLJGHGcESyaLaS+7bb+4swdVau8jAWETC1gG7H1AIKNX7zEhq/kVw05lA8hmL+GfdgEoRIaaHxGwmLkkPxUKE4EYlqSg4iIuKgAWkREXFQchAREQclBxERcVBycI9ONBKRmKHk4B6daCQiMUOzldyjQnEiEjOUHIqHTjQSkaim5CAiIg4acxAREQclBxERcVBykFh3zOsAiqgB8LXXQUjZpeQgEhvKex2AxBYlBykrfMALmF/jW8i+Wt85wDJgo23vY9sbAN8AbwBbMdORq4TY7wXAWmA98BQ5j1Qesu1fAX8KY7+tMdcfXwOMCNpPeRt7YF+/s+2dMefXzLGxi7hGyUHKihuBlkAL4DrMl20ckA70A1oB1wAvkn0mewLm/JRmmCnJN4XY70R7awvsDWrvZp/fzr5ua6BjAft9C7gP6JDrNYYBh+1rtAXuxJxLg93/Y0DTMN4DkbApOUhZcRXmSmingX3AKswXrQ/4M+YX+VKgHnCefc73ZJ+4uAHzqz+3DsDf7fKcoPZu9rYJc1TSGJMU8tpvdaCGjQtgVq59JdrnrANqB+3rC7s/EVfpMqFSVuRV12owUAfzyz4D2IU5sx3gZNB2pwndrZTf6z0LvJ6rvUEe+/UBeZ105MOUZlmcq70z8L9CxCQSNh05SFnxKWacoTwmGXTE/OquDvyISQzXAOeHsa977Q3MeEOgW2hg0DaLMeVUzrHr9YBz89nnIUzXUeCa44Nz7etuzJn3YK5PfnYYcYoUmY4cpKx4F9MF9CXmF/po4L/AbOB9IBnTbbM9jH01Blbb5fuBvwGjgA8xX/BgBpqbYAaXwQxU/xZzpJCX24DpwHFyHiVMwxxxbMQcRewH+oYRp0iRqXyGSOF9gBngPoW5XvgJTMIZCAwie8aTSNRSchCJzNXAq5hf9IcwXUk7PY1IxAVKDiIi4qABaRERcVByEBERByUHERFxUHIQEREHJQcREXH4f1n/OdWROlgHAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "dark"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "im = xd.balance(\"gender\")\n",
- "im = xd.show_imbalance(\"gender\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 75,
- "metadata": {},
- "outputs": [],
- "source": [
- "xd.reset()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Validation dataset\n",
- "\n",
- "### How much data?\n",
- "How do we know how much data? Well, it's hard, but normally it depends on:\n",
- "\n",
- "* The complexity of the problem, nominally the unknown underlying function that best relates your input variables to the output variable.\n",
- "* The complexity of the learning algorithm, nominally the algorithm used to inductively learn the unknown underlying mapping function from specific examples.\n",
- "\n",
- "### Statistical heuristics\n",
- "\n",
- "* Factor of the number of classes: There must be x independent examples for each class, where x could be tens, hundreds, or thousands (e.g. 5, 50, 500, 5000).\n",
- "* Factor of the number of input features: There must be x% more examples than there are input features, where x could be tens (e.g. 10).\n",
- "* Factor of the number of model parameters: There must be x independent examples for each parameter in the model, where x could be tens (e.g. 10).\n",
- "\n",
- "### Papers\n",
- "* Small sample size effects in statistical pattern recognition: Recommendations for practitioners: https://sci2s.ugr.es/keel/pdf/specific/articulo/raudys91.pdf\n",
- "* 39 Dimensionality and sample size considerations in pattern recognition practice: https://www.sciencedirect.com/science/article/pii/S0169716182020422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 137,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(31265, 15)\n",
- "(1296, 15)\n"
- ]
- }
- ],
- "source": [
- "# Before we balance again on sub classes, let's create a validation set\n",
- "xd.reset()\n",
- "\n",
- "\n",
- "import random, math\n",
- "\n",
- "def group_by_columns(df, all_cols, bins=0):\n",
- " group_list = []\n",
- " for c in all_cols:\n",
- " col = df[c]\n",
- " if c in xd._categorical_cols or not bins:\n",
- " grp = c\n",
- " else:\n",
- " col_min = col.min()\n",
- " col_max = col.max()\n",
- " # TODO: Use the original bins for display purposes as they may come normalised\n",
- " col_bins = pd.cut(col, list(np.linspace(col_min, col_max, bins)))\n",
- " grp = col_bins\n",
- "\n",
- " group_list.append(grp)\n",
- "\n",
- " grouped = df.groupby(group_list)\n",
- " return grouped \n",
- "\n",
- "\n",
- "def split_test_set(\n",
- " df,\n",
- " target_name,\n",
- " key_features=[],\n",
- " examples_per_class=20,\n",
- " sample_type=\"half\",\n",
- " bins=5, \n",
- " random_state=None):\n",
- " \"\"\"\n",
- " sample_type: Can be \"half\", or \"upsample\"\n",
- " \"\"\"\n",
- " \n",
- " if random_state:\n",
- " random.setstate(random_state)\n",
- " \n",
- " tmp_df = df.copy()\n",
- " \n",
- " grouped = group_by_columns(tmp_df, key_features, bins=9)\n",
- " \n",
- " selected_idxs = []\n",
- " \n",
- " def sample(x):\n",
- " group_size = x.shape[0]\n",
- " curr_group = None\n",
- " if sample_type == \"upsample\":\n",
- " return x.sample(examples_per_class, replace=True)\n",
- " elif sample_type == \"half\":\n",
- " if group_size > 2*examples_per_class:\n",
- " curr_group = x.sample(examples_per_class)\n",
- " else:\n",
- " if group_size > 1:\n",
- " curr_group = x.sample(math.floor(group_size / 1))\n",
- " else:\n",
- " if random.random() > 0.5:\n",
- " curr_group = x\n",
- " else:\n",
- " curr_group = x.sample(0)\n",
- " else:\n",
- " raise(f\"Sampling type provided not found: given {sample_type}, \"\\\n",
- " \"expected: 'half' or 'upsample'\")\n",
- " \n",
- " selected_idxs.append(curr_group.index.values)\n",
- " return curr_group\n",
- " \n",
- " tmp_df = grouped.apply(sample)\n",
- " \n",
- " selected_idx = np.concatenate(selected_idxs)\n",
- " \n",
- " train_idx = np.full(df.shape[0], True, dtype=bool)\n",
- " train_idx[selected_idx] = False\n",
- " test_idx = np.full(df.shape[0], False, dtype=bool)\n",
- " test_idx[selected_idx] = True\n",
- " \n",
- " df_train = df.iloc[train_idx] \n",
- " df_test = df.iloc[test_idx]\n",
- " \n",
- " return df_train, df_test\n",
- " \n",
- "df_train, df_test = split_test_set(\n",
- " xd.df,\n",
- " \"loan\",\n",
- " examples_per_class=20,\n",
- " key_features=[\"gender\", \"ethnicity\", \"age\"],\n",
- " bins=9)\n",
- "\n",
- "print(df_train.shape)\n",
- "print(df_test.shape)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 81,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " age | \n",
- " workclass | \n",
- " fnlwgt | \n",
- " education | \n",
- " education-num | \n",
- " marital-status | \n",
- " occupation | \n",
- " relationship | \n",
- " ethnicity | \n",
- " gender | \n",
- " capital-gain | \n",
- " capital-loss | \n",
- " hours-per-week | \n",
- " native-country | \n",
- " loan | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- "Empty DataFrame\n",
- "Columns: [age, workclass, fnlwgt, education, education-num, marital-status, occupation, relationship, ethnicity, gender, capital-gain, capital-loss, hours-per-week, native-country, loan]\n",
- "Index: []"
- ]
- },
- "execution_count": 81,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "xd.reset()\n",
- "xd.balance(\"gender\")\n",
- "im = xd.show_imbalance(\"gender\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAEyCAYAAAD9dsYaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3XmYHFW9//F3SFhkNRD2LWyCXjRBwQsuMKAX2ZRFlEU2QaIoKAGvElwIICA/5IJLBANCUBgQUDTKDskEMETZRlkEDCGJgewLQUJCIPP741vtVCrdMz2Tme6ZnPfrefrprqrTVae6nmQ+feZbZ/q0tLQgSZIkpWq1endAkiRJqicDsSRJkpJmIJYkSVLSDMSSJElKmoFYkiRJSTMQS5IkKWkGYkmSJCXNQCxJkqSkGYglSZKUtH4dbO+ftZMkSb3FHGDjendCPZ8jxJIkaVU1pd4dUO9gIJYkSVLSDMSSJElKmoFYkiRJSTMQS5IkKWkGYkmSJCXNQCxJkqSkGYglSZKUNAOxJEmSkmYgliRJUtIMxJIkSUqagViSJElJMxBLkiQpaQZiSZIkJc1ALEmSpKQZiCVJkpQ0A7EkSUrVcKAF6Ffnfmjl9SOu5fDOvNlALEmSpKQZiCVJkuprzXp3oAq9oY+dZiCWJEmp2w64E/g3MAX4PstnpJ2BO4AFwJvABOCAwj5GAZPL7Lspe5Q0EL/aPwK4BpgNzMy2vSc7zixgMTAVuI32SzqGZ/t8PzAWWARMBy5gxaw3ALgKeAVYAjwPDCm0OSnb397Z8RcAf2nj+Fdn+8n7W7aPgbl1lwKvFtodme17UXacW4GtyhzjK8Dfic9lNvHZvbuNPgGsA9xNnOv722poIJYkSam7AxgDHAb8HjgfODHbtgXwCDAIOB34PBHc7gQOXIlj/hToAxxPBFCAPwFbAqcBnwLOIUJrtXnt98AD2Xk0At8jwn3J+sCfgYOJEH0w8EciIJ9RZn83AS8TofWcNo47hvjSsEW2PIAIoG8C++Xa7UcE9pLTiQD8NPBZIvQOIr5ArJtr9yPi87oX+AzwbeAQ4C4qfzYDsn5tB3wkO0ZFFpEnbuRIaGysdy8kSep6TU1VN70cuD57/QAR3I7J1p0F9Af2AiZmbe4CngMuIkYgO+OvwJdyywOAnYBDgdG59R35KX0N8MPs9X1EAD4buJII8d8AtiXC6j+zdg8QI63nEcH47dz+bge+VcVxm4jR4H2JEN0AzCMC/r7AdcAGwG7AL7L3rA9cAlzL8iPUjxGjzScBPwN2AIYS4f7iXLuXsuMelB0nbyARnhcAHwPmtHcCjhAnrrERmpvr3QtJkurqzsLyM8A22eu9iRKJibnt7wA3A4OJYNcZdxSW5wKTiEB7KhGOi/oVHn0K228tLN9CjLTumi0fQJQnvFzYz73ARsD72uljn8L7+mbrZxFfEEqjwfsRYfVBIhAD7JO1H5MtfzTr202FfU4hwvreWbv9ibxabPdnosyi1K5kV2A88VnuRxVhGBwhFjB4cIe+RUuStKqZV1heAqyVvd4QeKrMe2YQAbE/sLATx5xeWG4B/ocoZbiECKgvA5cRI7cASwvv2Zfl65NnFraXlrfMnjcBdiyzn5KN2unjKcQodMlL2f4ggu4huX79LFu3JVEbvS9REz0p1xcK/S937FK7yVX2uSFbdwbwRoX3rMBALEmSVNk8YLMy6zcjQmwpTC8G1ijTbiNi9Leopcy6ScAJRNAu1Sz/nAiDdwN7FNq/UFjelNbAWVqGuKmMrB+ziNKJcor7K/bx90D+98qLc6/HEiF0L2AXIgy/Qoz27seK9cOlz+R4VrwhD+D1QrtPUP6LR3EEeAQRom8m6r1/X+Y9KzAQS5IkVTYOOJOoS52cresLHEWMHJeC2xQigA6gNaTtQNxsNr6Dx2whgudZxKjsrkQgfryd932e1hpigKOJmTOeyZbvIULrVCIYd9QcKpcgjAOWARcSo+f/yNaPAT5H1C1fnmv/CDGCuwNwYxvHvI/4PLYGbqiijy3AV4mylluJz+B37b3JQCxJklTZFcQNXvcTN54tJALXe4hZGkpuI8LgTcD/EcF4GFXWsAIfAH4M/IaoV+6bHfdtWutu23MqUW/7GDFLxZeIEowFuXM5Cng4e/0CMTXZLsDHiRv6OmseMdXaJ4jR2ZKxwJdzr0sWELNFXEmMtt9NfLZbEuUV9xOfxYvELBNXAe8FHiJKWrYm6ouvys4nr4UYXX8n28cxxA2CFRmIJUmSKnuVmKngUiJ8rUmM3h5MjLiWTCSmJ/sB8Wv6F4kR3nOrPM4MYuT2LGIe3sXEVGGHAE9UuY9DienJvge8lvXlwtz214gpyL5PhNEtiWD6AvDbKo/RlrHETBJjCutaiFKOfxXajyBG1r8JHEd8CXiFCL1/y7X7FvAs8UXk60TQ/Rdx095LbfTnG8QXipuJLwrFmw7/o09LS7kSloo61Fg9X0NDPHtTnSRpFfQEsHu9O1EDw4nR69VZfto0Vclp1yRJkpQ0A7EkSZKSZiCWJEnq3YYTU7VZLtFJBmJJkiQlzUAsSZKkpBmIJUmSlDQDsSRJkpJmIJYkSVLSDMSSJElKmoFYkiRJSTMQS5IkKWkGYkmSJCXNQCxJkqSkGYglSZKUtH717oAqGzkSGhu79xjNzTB4cPceQ5IkqSdzhLgHa2yMwCpJkqTu4whxDzd4MDQ1dd/+Gxq6b9+SJEm9gSPEkiRJSpqBWJIkSUkzEEuSJClpBmJJkiQlzUAsSZKkpBmIJUmSlDQDsSRJkpJmIJYkSVLSDMSSJElKmoFYkiRJSTMQS5IkKWkGYkmSJCXNQCxJkqSkGYglSZKUNAOxJEmSkmYgliRJUtIMxJIkSZ0zGRhV5z4cBpxVZn0D0JI9qx0GYkmSpN6rUiB+Etgre1Y7+tW7A5IkSepyC4EJ9e5Eb+EIsSRJSt0gYDQwH3gT+DPw8UKbbxAlEouBx8tsBxhOlCkUjcrem7cO8EPgJWAJMAP4LbBptn1j4BfAi8Ai4F9AI7BlYb8nZutaskfpOA2sWDLRBxgKvAC8BUwHfgasX+hbC/AD4OvAy8DrwDjgv8qcWznVvn8y5UtOWojPsmR4tm4X4F7gDWAq8MVs+/HA88C/gbHADlX28z8cIRbNzdDQUO9eSJLUtZqaqmr2QeBh4CngVCJ8fgV4APgI8ARwCnAlEd5+A+wI3Ays18murQHcDwwGLiFGcjcAPgX0B2YCGxLhexgwG9gCOJsI67tk2y4kgvMewGeyfS9p47gXZfsbAfwReF+2j0HAPsCyXNvjiOD8jay/lwF/yI79dhXnuLLvL+c24BrgR8BXgeuAnYjQfw6wOvBj4ovDf3dkxwbixB17bL17IElSXV1GjDbuR4yaQoxCPgN8DziCGKG8l9YRSYiQeksnj3kcUd97KDEyXXJ77nUpTJb0JcLwVOBA4A5idHl21u/2yiM2JGqNbwBOz9bdm73/18Ahhb4szdYtza27DfgwML6dY3XF+8u5DPhV9vpx4NPAl4HtiBIRgM2JULwtMKXaHRuIEzdkSDwkSUrQu4iR0YuJ0dF8LnoA+AKwVfY4r/De39L5kc79iRKJ0e20O40Yrd6BKLEo2bkTx9wTWBO4sbD+FuB64nPI9+d+lg+zT2fP2xCBdjWWL71tAd7pwPs74+7c6/nALGJkf2Fu/fPZ89Z0IBBbQyxJklK1ITHy+j0ivOUfpxPlC5tnbWcW3vs2MLeTx90IeKWdNmcAPyeC+RHEyOqe2ba1OnHMDbPn6YX1pfPYsLB+XmG5VIpROvb3Wf7zerCD7++M+YXltyqs6/BxHCGWJEmpWkCMDI+g9VfxRbOy500L6/sRwTZvcfa8Bq3BjDLt5gC7ttO3o4mQeXZu3XbtvKctpYC6GfBsbn3pPDoa7kcCf8otv96JPi0mPqu8YjCvCQOxJElK1RvEDXWDiPl6l5Vpsxoxw8PniZu4Sj7Lijmq9Cv6XWmd//fdxM15+cB4HxF4P03c3FbO2ixfCgDL1zCXLCFKP9ozIWtbCtolRxHnMa6KfeS9mj1WxhRW/GJwyErus1MMxJIkKWVnAQ8RN5j9kigpGEDMPtGXmL3gfOBaotb2FmKWiWGsGFjvBl4jZkI4j6jZ/RYxHVjejcSMFjcTs0z8hZix4lPEbBbPA/cA3wbOBf5K3PR3ZJn+P0eMqp5G3Gi2mNZ63bx5wP9l/X4DuAt4LzE92iPAneU/nm51C/El4wpitHkQcFId+mEgliRJSXuSmLbsPOAnxPRns7P1V2dtfgmsS4TnY4gZKI5mxRvUFhAjnFcAtwLTgAuAT7L8fMBLiRvrzgOGZM9ziVkkSqUNFxCjy0OJethxRGCeVDjmtURt8cVZ+ynAwArn+p3s3L5CTFs2lygVGUb50fHudgNx89spxGwRDwOHAxNr3ZE+LS3l5o+uqEONtXJKcwNXOY+iJEla3hPA7vXuhHo+Z5mQJElS0gzEkiRJSpo1xF1o5EhobOy6/TU3w+DBXbc/SZIkrcgR4i7U2BghVpIkSb2HI8RdbPDgrrsJrnRTnSRJkrqPI8SSJElKmoFYkiRJSTMQS5IkKWkGYkmSJCXNQCxJkqSkGYglSZKUNAOxJEmSkmYgliRJUtIMxJIkSUqagViSJElJMxBLkiQpaQZiSZIkJc1ALEmSpKQZiCVJkpQ0A7EkSZKSZiCWJElS0gzEkiRJSpqBWJIkSUkzEEuSJClpBmJJkiQlzUAsSZKkpBmIJUmSlDQDsSRJkpJmIJYkSVLSDMSSJElKmoFYkiRJSTMQS5IkKWkGYkmSpNoZBUzOLQ8EhgPbr8Q+W7J91Noolj+XXstALEmSVDsXAofnlgcC57FygbheiufSa/WrdwckSZIS8lK9O9CFVplzcYRYkiSlbhBwBzAXeBN4ARiWbdsfuAuYDiwCngHOBvoW9jEZuBE4FZgILAaeBPYttBtFa5lBAzA2e30/UfrQkq0HOBoYA8wG/g08BZzYmRPM9AV+kDuXMcAurFhysSPwa+Bl4vOYBFwF9G/jXCBGu1uALwMXZMdZAPwR2Gol+t3tHCHu4ZqboaGh3r2QJKn3aWqqqtmHgSYixA4FpgE7AR/Itm8PPAj8lAi5uxPhcWPgnMK+9gE+BHwHWAJ8G7ibCNwvlDn2k8DXgBHA14HHsvXP5Y59O/BDYBmwN3At8C7g6qrObnnnA+cClwEPAB8ERpdptwXxOZwJzM/6cS7xxWCvKo4zDBgPnAxsAlwO3ER8Pj2SgbgHO/bYevdAkqRV3o+IkeE9iVFTiJHTknzw7AM8DKwBfJMIicty2zcFPgpMzZYfBKYA3wWOL3PshbSG338AEwrbL869Xo0I7psDp9HxQNyfCLhXE0EdYlR6KRFY8x7KHiXjiS8MDwO7ESPVbZkC5FPMxkQI3wJ4tYP9rgkDcQ82ZEg8JElSt1ibCLCX0RqGizYnRoQPIAJdPjttAszILU+gNQwDvA7cSXWjquXsRJQe7A1sRmup65I23tOHFcs53gbeD6wD3FbYdjsrBuJS4D8B2BZYK7dtZ9oPxHcWlp/OnrfBQCxJktSj9CdC5rQK21cjSgq2IELx80RN7WFEWcRahfYzy+xjJrBlJ/q2LjGCu4gozXgJeIsYHT65jfftQ2tdckkfItgDzCrTv6JLgDOIMD6eCPZbAb9jxXMuZ15huRTgq3lvXRiIJUlSquYTJQ+VAusORM3w8cQNcyWfrtB+0wrrXulE3/YiRmc/DjySW99ednsC2KPM+unZ8ybAs4X+FR0N/Iq4Aa9k3XaO26s5y4QkSUrVIiJsHkfcqFa0dva8NLdudeALFfa3J7B1bnk94GDg0Tb6UBo9LR6/3LH7A4e2sS+I0dzHCw+IsoU3gM8V2heXS8deWlj3xXaO26s5QtyOkSOhsbG6ts3NMHhw9/ZHkiR1qW8C44jQejlRPrE9MJiYXm0KcBHwDhESh7axr5nAfUR5RWmWiXWIP2BRyYtEje/JRKnBEmJGivHETXcjiD/csQ5xc94cYIOOniQxGn4lcSPg67TOMnFKtj1/c+A9xPRuTxM30x0BfKQTx+w1HCFuR2NjBF1JkrRKeoy4se5fxNRqdwH/SwTjt4h64RlECcEIYvaFH1bY1zgiVF8M/IaomT2QCL2VzAVOJ6ZmG5f150PE3MOHEzfI3U7U9V7L8qUbHXVetp8TidroA4GTsm2v5dqdkW2/KDuP9YBjVuK4PV6flpaWjrTvUONVQWkO4GrmMuxIW0mS1O2eIGqAa2EyreUXvcnngFuJmSwernNf6saSCUmSpDT8N1HT/Bfij4x8iJjBYgLL37iXHAOxJElSGv5NjAR/DVifmILtVuIvyyVXBZBnIJYkSVp5A+vdgSo8CzTUuxM9kTfVSZIkKWkGYkmSJCXNQCxJkqSkGYglSZKUNAOxJEmSkmYgliRJUtIMxJIkSUqagViSJElJMxBLkiQpaQZiSZIkJc1ALEmSpKQZiCVJkpQ0A7EkSZKSZiCWJElS0gzEkiRJSpqBWJIkSUkzEEuSJClpBmJJkiQlzUAsSZKkpBmIJUmSlDQDsSRJkpJmIJYkSVLSDMSSJElKmoFYkiRJSTMQS5IkKWkGYkmSJCXNQCxJkqSkGYglSZKUNAOxJEmSkmYgliRJUtIMxJIkSUqagViSJElJMxBLkqRU7Qj8GngZeBOYBFwF9C/T9hvAZGAx8FfgI9nyqEK77YCbgNnAEqAZOLyrO66u1a/eHZAkSaqTLYBpwJnAfGB74FzgLmCvXLsvAVcCvwRuA3YAGoF3F/a3NfAXYBYwlAjFRwG/BQ4DRnfTeWglGYi7WHMzNDTUuxeSJKmpqd0mD2WPkvHAROBhYDfgKeK36ecBdxPBuGQGEXTzhgN9gH2Audm6e4mgfAEG4h7LkokudOyxMHhwvXshSZKqtAYxIvw8UTKxlAjDADtnz1tlj9sK7/0D8HZh3QHE6PJrxKBj6XEvMAhYv2u7r67S40aIR46ExsZ696JVc3P1IXfIkHhIkqRe4RLgDGL0djzwOhF+fweslbXZPHueVXjvO8CcwrpNgBOyRzkbAQtXrsvqDj0uEDc2diyESpIkddLRwK+AH+TWrVtoMz173qSwvi8woLBuLjHCfGmF473aiT6qBnpcIIYIw1XU/dSE9cCSJK2y1ibKJPK+WFielj0+B1yfW38YK+aoe4ib8Z4lSjDUS/TIQCxJklQD9wAnAk8TN9MdQUynlrcMOB+4BriWqCXeHjiHqBVelmv7fWJKtoeAnxHTsvUHds3ec3L3nIZWloFYkiSl6gxiVoiLsuW7gGOIUJt3LVFKMRQ4DngG+ALwRyIUl0wFdidmm7gY2Jgoo3gGuKE7TkBdw0AsSZJSNYeoIy7qU2bdldmjZA9iHuInC+2msfz0bOoFDMSSJElt2w74GnHD3ELgvcR0bS+z4lzE6oUMxJIkSW17k6gDPoGoCZ4PPEDUES+qY7/URQzEkiRJbZtB/NENraL8S3WSJElKmoFYkiRJSTMQS5IkKWkGYkmSJCXNQCxJkqSkGYglSZKUNAOxJEmSkmYgliRJUtIMxJIkSUqagViSJElJMxBLkiQpaQZiSZIkJc1ALEmSpKQZiCVJkpQ0A7EkSZKSZiCWJElS0gzEkiRJSpqBWJIkSUkzEEuSJClpBmJJkiQlzUAsSZKkpBmIJUmSlDQDsSRJkpJmIJYkSVLSDMSSJElKmoFYkiRJSTMQS5IkKWkGYkmSJCXNQCxJkqSkGYglSZKUNAOxJElS7YwCJueWBwLDge1XYp8t2T7a05Q9VGAgliRJqp0LgcNzywOB81i5QKyV1K/eHZAkSUrIS/XugFbkCLEkSUrdIOAOYC7wJvACMCzbtj9wFzAdWAQ8A5wN9C3sYzJwI3AqMBFYDDwJ7FtoN4rWkokGYGz2+n6i9KElWw9wNDAGmA38G3gKOLEzJ9iGnYlzX0Cc+wTggEKb92RtZhHnNRW4jdaB1XWBn2brlwAzgQeAXbq4r93GEeIqNDdDQ0O9eyFJkjqiqamqZh8m6monAkOBacBOwAey7dsDDxKBbzGwO1GvuzFwTmFf+wAfAr5DBMNvA3cTgfuFMsd+EvgaMAL4OvBYtv653LFvB34ILAP2Bq4F3gVcXdXZtW0L4BHgdeB04LWsP3cCh2R9B/gTEZhPA+YAWwIH0TqwegXwGeBc4J/ARsBHgXd3QR9rwkDcjmOPrXcPJElSN/oRMTK8JzECDDEqW5IPnn2Ah4E1gG8SAXBZbvumRBCcmi0/CEwBvgscX+bYC2kNv/8gRmfzLs69Xo0I7psTwbQrAvFZQH9gL+ILAcRo+HPARUQgHkB8QTgUGJ17b2Pu9V7ATcAvc+vu6IL+1YyBuB1DhsRDkiStctYmAuxltIbhos2JEeEDiBHVfHbaBJiRW55AaxiGGHm9kwiMnbETcAExMrwZrSOyS9p4Tx9WLOd4u0LbvYk+T8ytewe4Gfg+sD7xZWESMUq9KRHK/1nYz2PAScTo8X1Eacc7bfSxx7GGWJIkpao/kYWmVdi+GjEqegjwA2A/YA9i9BRgrUL7mWX2MZMoMeiodYm64kFEacbHs2NfB6zZxvv2AZYWHpVsSNRGF80ggnV/oqb5f4DHgUuAF4mAfFqu/RnAL4CTiXA8iyijWLuNY/cojhBLkqRUzSdKHioF1h2ImuHjiRvmSj5dof2mFda90om+7QVsSwThR3Lr28tuTxDBuRrziJHnos2IIDwvW54EnECE5EFEvfHPiZsD7yZu+BuWPbYFjiRGlN8i6qh7PEeIJUlSqhYRYfM44ka1otIIZ36UdXXgCxX2tyewdW55PeBg4NE2+lAqfygev9yx+xO1vG15nRjNzT8qGUf0eWBuXV/gKKLs4fVC+xagmag9Bti1zD6nAJcDT1fY3iM5QixJklL2TSIYPkoEuWnE7A6DienVphAlEu8Q4XRoG/uaSdTQDqd1lol1iD/GUcmLRI3vycSI7BJiRorxxE13I4g/3LEOcXPeHGCDjp5kBVcQtb/3Z8dYCHyVmGbt4KzNB4AfA78hao37Zu95m9abDx8lSkueJkaL9yFGkm/oon52OwOxJElK2WPEjXUXEFOrrUmE4OuJX/kfBvwM+BURWK8jbpy7psy+xhE3nV0MbEXM1nAgEXormUuUIHw7e39fYu7iJuIv2l1OTL32KhFMNyTCa1d4FfgYcClwFXHuzUQYvidrM4M437Oyc1pMBN9DiPIMgIeAzxO1zv2IEouhwE+6qJ/drk9LS0tH2neocWeU5vutcu5ASZKkSp4gaoBrYTKt5RfqZawhliRJUtIMxJIkSUqaNcSSJEkrb2C9O6DOc4RYkiRJSTMQS5IkKWkGYkmSJCXNQCxJkqSkGYglSZKUNAOxJEmSkmYgliRJUtIMxJIkSUqagViSJElJMxBLkiQpaQZiSZIkJc1ALEmSpKQZiCVJkpQ0A7EkSZKSZiCWJElS0gzEkiRJSpqBWJIkSUkzEEuSJClpBmJJkiQlzUAsSZKkpBmIJUmSlDQDsSRJkpJmIJYkSVLSDMSSJElKmoFYkiRJSTMQS5IkKWkGYkmSJCXNQCxJkqSkGYglSZKUNAOxJElK2cnAP4G3gAUdeN8oYHI39KeSM4Ejani8pBiIJUlSqrYARgLjgf2AT9a3O20yEHejfvXugCRJUp3sBPQFbgAeqXNfVEeOEEuSpBSNApqy1w8CLbSWQdwIHA38A3gDeBz4WDv7ewa4Nre8AfAOMK3Q7s/ArbnljYGbgYXAfOB64DNZfxqyNpOBbYEvZOtLfVUX6ZEjxM3N0NBQ715IkqTerKmpzc0XAk8APwG+BjwJzCZC6MeBnYHvAYuztn8CBlK5zngMcEhuuQFYAmwJvAd4EVgH2IMI3CW/A94PDAMmAp8FflrY9+HAXcDfgOHZutltnp06pMcF4mOPrXcPJElSAl4iRoABngMm5LatDwwmRmwBZgCPAQcBjRX2NxY4gxjJnQLsCzwAvDd7/SIRtFfP2gLsT4w8H0XrqPG9wGhgm9y+nyLC9ZxCP9VFelwgHjIkHpIkSXXyKK1hGODp7HmbMm1LxgHLiJvzrs+erwOmZ69/kT1PB57P3rMnUVZxR2FftwOf7nz31VHWEEuSJC1vXmF5Sfa8Vjvv+RsxGjwA2JUYCR5Lay3wvrSODgNsTgTvpYV9zexwj7VSDMSSJEldYywxCrwvMBf4O1FbvAnwUWA3lg/E04H+RBlF3qbd3lMtx0AsSZLUNcYSN9F9mZjBogWYBTwLnE9M8TYm135Ctu7wwn4+V2bfS4B3dW13VdLjaoglSZJ6qYeImuBPEDNXlIwFTgemApNy6+8j5j8eSZRZTASOBAZl25fl2j5H3JR3CHGT3xxq+5fyVmmOEEuSJHWNhcRUbrD8SHDp9VhWdARwD3ApMdPEWsR0bwCv5doNA17I2jxG6/Rr6gJ9WlpaOtK+Q40lSZLq6Alg93p3ohNGACcBG9J6Q5+6kSUTkiRJ9XMS8VftngXWAA4AvgJchmG4ZgzEkiRJ9fMGcCawA7Am8DJwLhGIVSOWTEiSpFVVby2ZUI15U50kSZKSZiCWJElS0gzEkiRJSpqBWJIkSUkzEEuSJClpBmJJkiQlzUAsSZKkpBmIJUmSlDQDsSRJkpJmIJYkSVLSDMSSJElKmoFYkiRJSevXwfZzgCnd0ZEuNoDoq3oer03P5bXpubw2PZfXpmfbud4dUO/Q0UC8cbf0ous9Duxe706oLK9Nz+W16bm8Nj2X16Zne7zeHVDvYMmEJEmSkmYgliRJUtJW1UA8st4dUEVem57La9NzeW16Lq9Nz+b1UVX6tLS01LsPkiRJUt2sqiPEkiRJUlUMxJIkSUpabw7E1wGzgGcqbO8D/ASYCPwd+GCN+qVwAPAC8fmfU2b7NsBY4Cni+hxUu64lr71rA/B54DngWaCxRv1SddcG4EigBaf7qqX2rs1ZxL+ZvwMPAtvWrmvJa+/arAn8Jtv+F2BgzXqmXqM3B+JRxD+CSg4EdsoeQ4CratAnhb7ACOIavA84JnvO+y5wK7AbcDTw81p2MGHVXJudgGFS9rv9AAACz0lEQVTAR4H/As6sZQcTVs21AVgP+Drxg121Uc21eYr4gvIB4Hbg/9Wygwmr5tqcAswHdgSuAC6tZQfVO/TmQPwQMK+N7YcCvyJGUSYA7wY2r0G/BB8mvolPAt4CbiGuR14LsH72egPg1Zr1Lm3VXJtTiR8w87PlWTXrXdqquTYAFxJha3Htupa8aq7NWGBR9noCsFXNepe2aq7NocAN2evbgU8Qv0WW/qM3B+L2bAn8K7c8LVun7lfNZz8cOC7bdhdwRk16pmquzXuyx5+JH+xt/SZGXaeaa7MbsDXwp1p1SkDHf56cAtzdrT1SSTXXJt/mbeA1YKPu75p6k47+6ebepNy3P+eYq41qPvtjiLKXy4G9gF8DuwLLurVnquba9CPKJhqIUa6HiWuzoFt7pvauzWrEr3tPqklvlNeRnyfHEaUT+3Rfd5RTzbUxD6hdq/II8TRiJKVkK/y1fK1U89mfQtQQAzwKrAUM6P6uJa+aazMN+AOwFHiZuFllp5r0Lm3tXZv1iC8mTcBkYE9gNN5YVwvV/jz5JPAd4DPAkhr0S9X/n1Zq048o02ur5FIJWpUD8WjgBOKb4Z7Er0im17VH6XiMCFDbAWsQN82NLrSZStRxAbyXCMSza9XBhFVzbX4P7Ju9HkCUT0yqVQcT1t61eY24HgOzxwQieD1ey04mqpp/N7sBvyCuiXX3tVPNtRkNnJi9PhIYgyPEKujNJRM3E7/SHUB8+zsPWD3bdjVRl3oQUWy/CPhi7buYrLeB04F7iTuAryOm77qA+OE9GjgbuAYYSvzHdBL+B1UL1Vybe4H9iSmk3gH+F5hbj84mpppro/qo5tpcBqwL3Ja9ZyoRjtW9qrk2vyTK8iYSI8NH16Wn6tH8082SJElK2qpcMiFJkiS1y0AsSZKkpBmIJUmSlDQDsSRJkpJmIJYkSVLSDMSSJElKmoFYkiRJSfv/Cu2vwFFb494AAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "dark"
- },
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " age | \n",
- " fnlwgt | \n",
- " education-num | \n",
- " capital-gain | \n",
- " capital-loss | \n",
- " hours-per-week | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " age | \n",
- " 1.000000 | \n",
- " -0.076646 | \n",
- " 0.036527 | \n",
- " 0.077674 | \n",
- " 0.057775 | \n",
- " 0.068756 | \n",
- "
\n",
- " \n",
- " fnlwgt | \n",
- " -0.076646 | \n",
- " 1.000000 | \n",
- " -0.043195 | \n",
- " 0.000432 | \n",
- " -0.010252 | \n",
- " -0.018768 | \n",
- "
\n",
- " \n",
- " education-num | \n",
- " 0.036527 | \n",
- " -0.043195 | \n",
- " 1.000000 | \n",
- " 0.122630 | \n",
- " 0.079923 | \n",
- " 0.148123 | \n",
- "
\n",
- " \n",
- " capital-gain | \n",
- " 0.077674 | \n",
- " 0.000432 | \n",
- " 0.122630 | \n",
- " 1.000000 | \n",
- " -0.031615 | \n",
- " 0.078409 | \n",
- "
\n",
- " \n",
- " capital-loss | \n",
- " 0.057775 | \n",
- " -0.010252 | \n",
- " 0.079923 | \n",
- " -0.031615 | \n",
- " 1.000000 | \n",
- " 0.054256 | \n",
- "
\n",
- " \n",
- " hours-per-week | \n",
- " 0.068756 | \n",
- " -0.018768 | \n",
- " 0.148123 | \n",
- " 0.078409 | \n",
- " 0.054256 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " age fnlwgt education-num capital-gain capital-loss \\\n",
- "age 1.000000 -0.076646 0.036527 0.077674 0.057775 \n",
- "fnlwgt -0.076646 1.000000 -0.043195 0.000432 -0.010252 \n",
- "education-num 0.036527 -0.043195 1.000000 0.122630 0.079923 \n",
- "capital-gain 0.077674 0.000432 0.122630 1.000000 -0.031615 \n",
- "capital-loss 0.057775 -0.010252 0.079923 -0.031615 1.000000 \n",
- "hours-per-week 0.068756 -0.018768 0.148123 0.078409 0.054256 \n",
- "\n",
- " hours-per-week \n",
- "age 0.068756 \n",
- "fnlwgt -0.018768 \n",
- "education-num 0.148123 \n",
- "capital-gain 0.078409 \n",
- "capital-loss 0.054256 \n",
- "hours-per-week 1.000000 "
- ]
- },
- "execution_count": 41,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "xd.correlations()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/alejandro/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py:245: RuntimeWarning: The input array could not be properly checked for nan values. nan values will be ignored.\n",
- " \"values. nan values will be ignored.\", RuntimeWarning)\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAEyCAYAAAD9dsYaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XecVNXdx/HPCioiFhAFsWGLmpiwRk0kibKaxJiosSQqokYswa6xJJY8CnaNNXaxYVsLGhIVBQtFUbGAa7ChqIBKkyY2muzzx/dM5u7dmZ2yZWb3ft+v17xm5sy5954Z87ye7x5+95yK2tpazMzMzMySaqVSD8DMzMzMrJQciM3MzMws0RyIzczMzCzRHIjNzMzMLNEciM3MzMws0RyIzczMzCzRHIjNzMzMLNEciM3MzMws0RyIzczMzCzR2hfY39vamZmZWWsxF1i31IOw8ucZYjMzM2urppV6ANY6OBCbmZmZWaI5EJuZmZlZojkQm5mZmRVnKjCkiOP2BU7L0F6F7teqKnZATWBQGEOu+8yqKP1Ym4wDsZmZmVnLyhaIJwK9w3O5a01jzanQVSbMzMzM2rJVgSUluvYiYHyJrl2o1jTWnDxDbGZmZkk1CP2z/7bASOAr4OHw2f4o8H0DLASGAhvnON+6wK3A++G4T4BqYINInyHA4aGtNjymhs+qqF+GUAGcCkwGlgIzgRuANWPXrgUuAk4GPga+BMYCP4j1+w3wEvBF+L6TgfMyfJdNgeGhz7TQJ5obM411DDAO2Ad4C/1h8R5wYIbzlxXPEJu1QoNnzKB69uxSD8PMrKyN2W67fLv+B7gDuBxYARwL3AzcBVwArIHC81jgRyhsZtIFWAycDXwO9ABOB14Etg6fXYiC847A78NxDc1IXxzOdyPwOPD9cI5eQJ8w3pRDUcA9BVgFuCJ8t62B5cBmwGPAI+F7LQW2DO1xw8L3vwbYGzgfBfy7GhgrwBbAdej3mgMcBzyIfo/ROY4tGQdis1aoevZsar76ispOnUo9FDOztuA64J/hdScUIu8Cjoz0eQXN/B4FXJvlPKkwmtIOheHpwG9RyPwQhcOl5C456IJqje8GTgxtI8Px9wJ7oYCbsiy0LYu0DQV+gmaFf4yC8nGo5AFgVJZrX0U6/D4L7AYcTO5A3A3VFqe+2wjgbRTAd85xbMk4EJu1UpWdOhUy+2FmZtkNi7zujcoR7qduTvoU/fP/LmQPxKCweSywObB6pH2rIsa1E6ppvi/W/iAKpn2oG4ifoW4YnhSeN0aBuCZ8/iBwJ/A8msXNZHjs/VtAPv9P5xPqBv3vUCj/Gyq5WJHpoFJzDbGZmZkl3czI6/XC87MoPEYfPwTWaeA8JwE3hWP3RzOzO4XPOhQxri4Zxgcqf5gX+Txlfux9qhQjde0pqIZ4JTTDPAvNfPfJcO1M58rnO2Sq55uNZqbLdhttzxCbmZlZ0tVGXs8Lz/3RP/XHZasfBugLPIfqhlM2bcS4UqG0e2ws7VEwn1fviNxGh8eqwM9RKcNwoCcwt9iBRnTL0rYUlXqUJQdiMzMzs7SXUOjdAtXuFqIj6drclCMy9FsCrJbH+caHvqmgnXIQynBjCxxffAyjSNdMb0rTBOKN0Kx4qmyiHXAA8CplWi4BDsRmZmZmUYuAv6JVHdYFnkJLlG2ASgvGoKXUMhkBnAmcgwLgbsAfM/R7B5U7HAe8jlafmJSh33zgarTKxNfAk8A2aHm1cdSv883lWFQD/SSq9e0azj0D1Qg3hdnAQ8BANCN8HPC98Fy2HIjNzMzM6roVBca/Av2AlYHP0E1oNQ0cdwGwNlo3uAOawf0N8FGs3+1oFvWS0H8aKlnI5O8oWB4LHI/KJO5BQbbQGdc30WoXl6Ja6fkoWB8CfFvgubKZAvwDfbct0RrLB1PGS64BVNTW1ubulVZQZzNrHlVvvAEUtMammVkSTQB2KPUgEmQMmmz9RYnHUTDPEJeRwYOhOts/wphF1Hy1BZW3TSn1MMzMzNoEL7tWRqqroaahf4gxMzMzsybnGeIyU1kJY8aUehRW7qre8OywmZmVnapSD6BYniE2MzMzs0RzIDYzMzOzRHMgNjMzM2t5VWj1rqpI21/Qls/FGoKWOWusnsAgYLMij187HP/jJhhLi3AgNjMzM2t5E4He4TmlsYG4qfREG2s0JhAPpBUFYt9UZ2ZmZtZy2gEVaEe88Tn6WgvxDLGZmZkl1SBUtrA1MBJtjzwdOCJ8fhjwHvAV2mlt88ixfYFRaBe5r4A3gMMzXKMWuBg4C/gYWAr8kPolE1OBTdCucbXhMSR8tgVwbzj+W7Tz3c1A58K/MgDdgbvRls1LgJnAE2j3uirSu8o9ExlLapy5vnfPME6A2yLH9498zyHUV4v+e6R8DxgGzEFbW08HhtJMk7meITZrpWq++up/O9aZmVl9BezmORSFtyvR9sh3om2Hq1CQXRn4J1AN/DQcsxnwCHAZ2kJ5F7Ql82rALbHz90ch9gwUumcAa8X67Ac8ibZXHhTaPg/PPYBPUUnFgnDtc0L/3vl+yYh7Ufj+K9qiuhvwS6AjKuE4AbgROBl4LRzzTnjO9b1norKPf6Etoh8Lx31Y4BifABYCxwFzgQ2A39FMk7kOxGatUL9u3Uo9BDOztuQK4J7w+nVgb+AYYFNU2gCwPgrFmwDTgEsix6+Eti1eHwW4eCCuAHZHs7sp28T6vIFma+dSv5Ti+fBIeQmYArwAbBeOLURvFKjvj7QNjbxOhd93M4wl1/deEhnPRxmOz0dX9AfJPqQDNegPkmbhQGzWCg3o0YMBPXqUehhmZm3FU5HXC9A/079BOgyDSicANkKBeEvgAjRD2p30zOWSDOcfQd0wXKhV0Ozyn1Ag7xD5bCuyB+JUvXLKd6g04TU0O1yByh/eCu35KOR7F2seCtOXodnrMcAHTXj+elxDbGZmZkm3IPZ+aZY2UBjthOpre6GSip2BHVGpxaoZzj+zkeO7FJVR3AfsCfyE9GoUHbIcAypTWBZ5pGp9D0Izr38D/gt8BpxH7lxY6PcuVi3wazRbfynwPgrIxzXhNerwDLGZmZlZYXqjmdqdgXGR9my5Kt/Z12z6opKOiyJtnfI4bm/qBtXUzW5zUJ3wCWiG+XDgfFSzfHMD5yv0e2eyGM14R3XJ0O8jNCNegQL4icBN6Ka8pzL0b5SyC8SDB0N1s1WIlLeaGqisLPUozMzMLIeO4XlZpK0zqnltjCXo5rRM11sWazsiQ7+4SXn0mYzqiY8Fto2Mgwxjyfd7ZzseVG6ybaxtrwbGVwvUAKcBR4Vj234grq52MDQzM7Oy9hKqL74RbUCxOvB/6Ia4+OoRhXgHzb7uBcwK55uKapAPRwF3CiqX+FmR11gLeBbdUPceCrf7oGD7dOjzPrAcOBKYjwLuZPL/3rNRHXBfVJLxNZqdngc8iEosrkErSfQivSRbyo/QDYwPhe/bLvRZjmqem1zZBWJQGB4zptSjaHlVVaUegZmZmeXhc7RM2lVoCbIZKMB1QUGxWGej5d8eRrOrd6MgeBIqHbg49HsSOBh4tYhrLEZLq/0ZlT+sQGH3EOA/oc88VKJwJjAWBdJd0c1t+XzvFcDRaEWKZ1HePAKtP3w3ujHxKLSSxwvhnFMix89C6w6fBmwYxjwJ/aEwoYjvnFNFbW1BZS2NrYHJKRUKkxyIk/jdzczMmsEEYIdSD8LKn1eZMDMzM7NEcyA2MzMzs0RzIDYzMzOzRHMgNjMzM7NEcyA2MzMzs0RzIDYzM7MkOxL4AG3NvLCA44agNYJbyl9Ib9dsTcyB2MzMzJKqBzAYbTixG/Cr0g6nQQ7EzagsN+YwMzMzawFbok0n7gbGlXgsVkKeITYzM7MkGoJ2XgN4Dm0+NgSVQdyHth1+F207/Drwixznewu4PfJ+LeA74NNYvxfRTnQp6wIPoC2RFwB3Ab8P46kKfaaiXeUOCe2psVoT8Qxxmamp8RbOZmZmTSHHzq8Xop3srgNOQNsZf45C6M7AVsC5aNvgC4EngJ5krzMehbYWTqkClgAbAN8D3gdWB3ZEgTvlX8AP0bbNU4A/ANfHzr0f2q75TWBQaPu8wW9nBXEgLiP9+pV6BGZmZonxIZoBBngHGB/5bE2gEs3YAswCXgN+B1RnOd9o4CQ0kzsN2BV4FtgmvH4fBe2VQ1+A3dHM80GkZ41HAo8BG0fO/QYK13Nj47Qm4kBcRgYM0MPMzMxK6mXSYRhgUnjeOEPflLHACnRz3l3h+U5gZnh9a3ieCbwXjtkJlVUMi53rEWDv4odvhXINsZmZmVld82Pvl4TnDjmOeRPNBncFtkUzwaNJ1wLvSnp2GGB9FLyXxc41u+ARW6M4EJuZmZk1jdFoFnhXYB7wX1RbvB7wc2A76gbimUBnVEYR1a3ZR2p1OBCbmZmZNY3R6Ca6Y9AKFrXAHOBt4Hy0xNuoSP/xoW2/2HkOyHDuJcBqTTtcS3ENsZmZmVnTeB7VBP8SrVyRMho4EZgOfBRpfxqtfzwYlVlMAf4I9Aqfr4j0fQfdlLcXuslvLi27U16b5hliMzMzs6axCC3lBnVnglOvR1Pf/sAI4HK00kQHtNwbwBeRfmcDk0Of10gvv2ZNoKK2traQ/gV1LkZqDd4caweamZmZ5TIB2KHUgyjCjUB/oAvpG/qsGblkwszMzKx0+qNd7d4GVgH2AI4FrsBhuMU4EJuZmZmVztfAX4DNgVWBj4FzUCC2FuJAbGZmZlY6Q8PDSsg31ZmZmZlZojkQm5mZmVmiORCbmZlZUg2iBVbQsvLnQGxmZmZmieZAbGZmZmaJ5kBsZmZmJmsCNwAz0BrAk4FTgYpInw7ANcBbwFdoG+XHga1j5+qPyjF2Au5Hu9jNAK4L57Ay4mXXzNqiwYOhurrUozAzK63Ctr1dCRgO/Bg4D5gE7AlcDayL1gYGrRW8BnARMBPtJnc8MB6F4lmx894LPIC2aO6N6pYXAAML+zLWnByIzdqi6mqoqYHKylKPxMystfgd8AvgCGBIaHsaWB04HQXjucAXwNGR49oBI4HZwMFo9jiqmnT4fRb4aejnQFxGHIjN2qrKykJnR8zMkmwXYAWazY26DzgKze4+HtoORCF5K7TtcspWGc47PPZ+EvCrxg7WmpZriM3MzMxU+jAf1Q5HzYp8DrA38BDwLtAPzfjuCHxO5trg+bH3S1DZhZURzxCbmZmZKbh2AVYBlkbau4fneeG5LzAF3TSXsjLpwGytkGeIzczMzGAsykUHxNoPQQF5fHjfEVge63MYqiW2VsozxGZmZmbwFDAOuAWtKvE2utHuaOBSdEMdwAhgX3Tz3BPA9sDJwMIWHq81IQdiMzMzM91QtydwCXAmsA4wFTgNuDbS7zZgI+BI4BjgNVRXPKwFx2pNrKK2tqAtvJt9v++qKj375nizRvD/IZmZAUwAdij1IKz8eYbY2qxE701Rcy1jKv9S6lGYmZm1Cr6pztqs1N4UZmZmZg3xDLG1aYndm6LKs8NmZmb58gyxmZmZmSWaA7GZmZmZJZoDsZmZmVlxpgJDSjyGfdHScHFVaHWwqpYcTGvlQGxmZmbWemULxBOB3uHZcvBNdWZmZmZtzyLS201bDp4hNjMzs6TrBTwGLAC+BV4Edo71OQWVSCwGXs/wOcAgMm9iNiQcG7U6cBnwIbAEmAU8CnQLn68L3Aq8D3wDfAJUAxvEznt4aKsNj9R1qqhfMlEBnApMBpYCM4EbgDVjY6sFLkJbUn8MfAmMBX6Q4btlku/xU8lcclKLfsuUQaFta2Ak8DUwHTgifH4Y8B7wFTAa2DzPcf6PZ4jNzMwsyX4MvAC8AfwZhc9jgWeBn6Hd7o5C2zcPAR4CtgAeANYo8pqrAM8AlcClaCZ3LeA3QGdgNtAFhe+zgc+BHsDpKKxvHT67EAXnHYHfh3MvaeC6F4fz3Qg8Dnw/nKMX0AdtX51yKArOp4TxXgH8J1x7eR7fsbHHZzIUbZ19JXA8cCewJQr9ZwErA/9Efzj8tJATOxCbtVU1NektnM3Mkii/heivQLONu6FZU9As5FvAucD+aIZyJOkZSVBIfbDIkR2K6nv3QTPTKY9EXqfCZEo7FIanA78FhqHZ5c/DuHOVR3RBtcZ3AyeGtpHh+HuBvWJjWRbalkXahgI/AV7Kca2mOD6TK4B7wuvXgb2BY4BNUYkIwPooFG8CTMv3xC6ZMGuL+vXTriRmZtaQ1dDM6FA0O9o+PCrQDPEuwIbh8XDs2EcpfqZzd1Qi8ViOfscBb6JSgOUoDANsVcQ1dwJWBe6LtT8Yzt0n1v4MdcPspPC8cXheifTv1R4F9kKOL8ZTkdcLgDnoD4FFkfb3wvNGhZzYM8RmbdGAAXqYmVlDuqAgd254ZLJ+eJ4da18OzCvyuusAn+XocxJwHXA18FcUAFdCAbBDEdfsEp5nxtpT36NLrH1+7H2qFCN17fOAgZHPx1K3XjnX8cVYEHu/NEtbwddxIDYzM7OkWohmhm8k/U/xcXPCc7dYe3sUbKMWh+dVSAczMvSbC2ybY2x9gedQ3XDKpjmOaUgqoHYH3o60p75HoeF+MPBE5P2XRYxpMfqtouLBvEU4EFtZGDwYqqub9pw1Na4aMDOzBn2NbqjrhdbrXZGhz0pohYcD0U1cKX+gfo5K1axuS3r937XRzXnRwPg0Crx7o5vbMulI3VIAqFvDnLIElX7kMj70TQXtlIPQ9xibxzmiZoRHY0yj/h8GezXynEVxILayUF3tAGtmZiVxGvA8usHsDlRS0BWtPtEOrV5wPnA7cBequd0CrdYQD6xPAV+glRAGoprdv6Ea4Kj70IoWD6BVJl5BK1b8Bq1m8R4wAjgTOAd4Fd3098cM438Hzaoeh240W0y6XjdqPiq/OBv9IfAksA1aHm0cMDzzz9OsHkR/ZFyDZpt7Af1LMA4HYisflZX53hCcHy+wYGZmeZiIli0biGp210IrL0wEbgl97gA6ofB8MFqBoi/1b1BbiGY4r0E34X0KXAD8irr1tcvQjXUDgQHheR5aRSJV2nABml0+FdXDjkWB+aPYNW9HN8xdEvpPA3pm+a5/D9/tWLRs2TxUKnI2mWfHm9vd6Oa3o9BqES8A+wFTWnogFbW1mdaPzqqgzsVIhZimDEZW/prjv7v/t2RmlngTgB1KPQgrf152zczMzMwSzYHYzMzMzBLNgdjMzMzMEs2B2MzMzMwSzYHYzMzMzBLNgdjMzMys5QwBpkbe9wQGAZs14py14RwtbQh1v0ur5UBsZmZm1nIuRGvtpvRE6xA3JhCXSvy7tFremMPMzMys5XxY6gE0oTbzXTxDbGZmZknXCxiGdm77FpiMdm8D7Sj3JNrS+Ru0S93paFvnqKmkt2SegrZQngjsGus3hHSZQRUwOrx+BpU+1JLe1a4vMArtLvcV8AZweDFfMGiHtmpOfZdRwNbUL7nYArgX+Bj9Hh8BNwOdG/guoNnuWrTr3AXhOguBx4ENGzHuZucZYjMzM0uynwBjUIg9FW23vCXwo/D5ZsBzwPUo5O6AwuO6wFmxc/UBtkdbJC8BzgSeQoF7coZrTwROAG4ETgZeC+3vRK79CHAZ2lp5F7RV82qkt5UuxPnAOcAVwLPAj4HHMvTrgX6HvwALwjjOQX8Y9M7jOmcDLwFHAusBVwH3o9+nLDkQW5tWU5PewtnMzJJlzJi8ul2JZoZ3QrOmoJnTlGjwrABeAFYBzkAhcUXk827Az4Hp4f1zwDTg/4DDMlx7Eenw+y4wPvb5JZHXK6Hgvj5wHIUH4s4o4N6CgjpoVnoZCqxRz4dHykvoD4YXgO3QTHVDpgH9Iu/XRSG8BzCjwHG3CJdMWJvVrx9UVpZ6FGZmVsY6ogB7P+kwHLc+cCsKeUtRgLwIWBvNfkaNJx2GAb4EhpPfrGomWwIPAJ+F6y4Djga2auCYCjThGX0A/BBYHRga6/9IhnOsgsL+e6hkYhkKw+S4dsrw2PtJ4XnjPI4tCc8QW7MZPBiqq/PrW1PT9OF1wAA9zMzMsuiMJgc/zfL5SqikoAcqk0gFxH1RWUSHWP/ZGc4xG9igiLF1QjO436DSjA9RID8OlSJk04d0XXJKBQr2AHMyjC/uUuAkVAf8Egr2GwL/ov53zmR+7P2S8JzPsSXhQGzNprq6eYKumZlZE1mASh6yBdbNUc3wYeiGuZS9s/TvlqXtsyLG1hvYBNgZGBdpz5XdJgA7ZmifGZ7XA96OjS+uL3APmglP6ZTjuq2aA7E1q8rK/Gq4XOdrZmYl8A0Km4ei2dBvY593DM/LIm0rA4dkOd9OwEbAJ+H9GsCe1C8hiErNnq6Wx7U7A/s0cC7QbO7rGdonAV8DB1B3BvmADH07xq4LcESO67ZqDsRmZmaWZGcAY4GX0c1ln6JVFSrR8mrTgIuB71BIPLWBc80GnkblFalVJlZHG1hk8z6wHJVBzA/HTUalCovQChQDw3n+D5gLrFXol0Sz4dei2uAvSa8ycVT4PHpz4Ai0vNskdDPd/sDPirhmq+Gb6szMzCzJXkM31n2CllZ7EvgrCsZLUb3wLFRCcCNafeGyLOcai0L1JcBDqGb2tyj0ZjMPOBEtzTY2jGd7tPbwfmjt4EdQXe/t1C3dKNTAcJ7DUW30b4H+4bMvIv1OCp9fHL7HGsDBjbhu2auora0tpH9BnYuR+qfzPJdKsTJWyH9L/3c3M7NmMAHVALeEqaTLL1qTA4CH0RrHL+To22a5ZMLMzMwsGX6KappfQZuMbI9WsBhP3Rv3EseB2MzMzCwZvkIzwScAa6Il2B5GO8s1exVAOXMgNjMzM2u8nqUeQB7eBqpKPYhy5JvqzMzMzCzRHIjNzMzMLNEciM3MzMws0RyIzczMzCzRHIjNzMzMLNEciM3MzCyptgDuBT4GvgU+Am4GOmfoewrafGMx8CrayngqMCTWb1PgfrTT3BKgBu04Z2XMy66ZmZlZUvVAWzT/BVgAbAacg7Zv7h3pdzRwLXAHMBTYHKgG1o6dbyO06cUc4FQUig8CHkVbQD/WTN/DGsmB2MpGTU16C2czM7PGGjMmZ5fnwyPlJWAK2sJ4O+AN9K/pA4GnUDBOmYWCbtQgoALoA8wLbSNRUL4AB+Ky5ZIJKwv9+kFlZalHYWZmCbMKmhF+D5VMLENhGGCr8LxheAyNHfsfYHmsbQ80u/wFmnRMPUYCvdDucFaGPENsZWHAAD3MzMxa0KXASWj29iXgSxR+/wV0CH3WD89zYsd+B8yNta0H/Ck8MlkHWNS4IVtzcCA2MzOzpOoL3ANcFGnrFOszMzyvF2tvB3SNtc1DM8yXZ7nejCLGaC3AgdjMzMySqiMqk4g6Ivb+0/A4ALgr0r4v9XPUCHQz3tuoBMNaCQfiNm7wYKiuLs21a2pcF2xmZmVtBHA4MAndTLc/Wk4tagVwPnAbcDuqJd4MOAvVCq+I9D0PLcn2PHADWpatM7BtOObI5vka1lgOxG1cdbWDqZmZWRYnoVUhLg7vnwQORqE26nZUSnEqcCjwFnAI8DgKxSnTgR3QahOXAOuiMoq3gLub4wtY03AgToDKyryWnmlyXkLNzMzK3FxURxxXkaHt2vBI2RGtQzwx1u9T6i7PZq2AA7GZmZlZwzYFTkA3zC0CtkHLtX1M/bWIrRVyIDYzMzNr2LeoDvhPqCZ4AfAsqiP+poTjsibiQGxmZmbWsFlo0w1ro7xTnZmZmZklmgOxmZmZmSWaA7GZmZmZJZoDsZmZmSXVIKAW31PVFrRH/y0HFXOwA7GZmZmZJZoDsZmZmVlprVrqAeShNYyxaA7EZmZmlnSbAsOBr4BpwHnUzUhbAcOAhWhN4vHUX4ZtCDA1w7nHhEdKFfqn/f2B24DPgdnhs++F68wBFqOtoIeSu6RjUDjnD4HRaG3kmcAF1M96XYGbgc+AJcB7wIBYn/7hfLuE6y8EXmng+reE80S9Gc7RM9J2OTAj1u+P4dzfhOs8DGyY4RrHAv9Fv8vn6Ldbu4ExAawOPIW+6w8b6uiaGbNmMnjCYKonVZd6GGZmiTWm/5h8uw4D7gKuAfYGzgc+CW09gHHAl8CJwBdo17rhwF4ocBXj+nDsYUCH0PYECoXHoW2lNwB+R/4TmP8G7gQuBX4DnAusIF1XuybwIrBaaPs49LsZzQBfHzvf/cADKLQ2lBlHAceg32oGCt0/RH887BbGRHg9OnLcicB14fNBwFrotx8DVKI/UACuBE5BW2efgQLzxcAPgF+E7xjXFf03Wgv4GfpDJysHYrNmUj2pmppZNVR2ryz1UMzMrGFXofAL2oFuN+Dg0HYa2p2uNzAl9HkSeAeFsmID8avA0ZH3XYEtgX2AxyLthcys3AZcFl4/jQLw6ShILkShchMUVj8I/Z5FM60DUTBeHjnfI8Df8rjuGDQbvCsK0VXAfBTwd0WBdy1gO+DWcMyaKLjfTt0Z6tfQbHN/4AZgc+BUFO4vifT7MFz3d+E6UT2BkeE7/wL9cdEgB2KzZlTZvbKQGQozMyuN4bH3b6HwBiobGE86DAN8h2ZOz0PBblER1xwWez8P+AgF2m4o7H0Q6xPPbd+hIJrycOzzB1Ho3hbNcu+ByhM+jp1rZOj3fVSWkG2MFUC7yPvaMIY56A+E3VAg3i2M/zkUegH6hGNHhfc/BzqF/tGxTEPfexcUiHdHM+Txfi+iMotdqBuItwVeQiUbfwS+Jg+uITYzM7Okmx97v4R0GUMXVI8bNwsFxM5FXjN+zlrg18DrKES+jwLycZE+y2KPPrFzzM7yfoPwvB4KkPHzDA2fr5NjjEfFjpsc+WwUmg0mPI8ObRug2uhdUU30R5GxgIJzfDzbRMaS6jc1Q7+OGcZcBayPZp7zCsPgGWIzMzOzhswHumdo745CbCpMLwZWydBvHTT7G1eboe0j4E8oaPdCNbY3oTD4FLBjrP/k2PtupANn6j3opjLCOOag0olM4ueLj/HfQE3k/eLI69HASai0ZGsUhj9Ds727Ub9+OPWbHEb9G/JANdvRfr8k80x8vBziRhSiHwAODGPOyYHYzMzMLLuxwF9QXerU0NYOOAh4g3Rwm4YCaFfSIW1ztELFSwVesxYFz9PF7z8oAAAgAElEQVTQrOy2KBC/nuO4A0nXEAP0RTemvRXej0ChdToKxoWaS/Z63LHo5rYL0ez5u6F9FHAAqlu+KtJ/HJrB3Ry4r4FrPo1+j42Au/MYYy1wPCrleBj9Bv/KdZADsZmZmVl216AbvJ5BN54tQoHre8CekX5DURi8H7gaBeOzyeOGruBHwD+Bh1C9crtw3eWk625z+TMqh30NrR5xNFq9YWHkuxwEvBBeT0ZLk20N7Ixu6CvWfFS3+0s0O5syGq1AkXqdshA4E93w1x0F/kWoxGJX9Hs/hEpHrkQ3/G0DPI9KWjZC9cU3h+8TVYtm178L5zgY3SCYlQOxmZmZWXYz0EoFl5NenqwGheERkX5T0E1cF6F/pn8fzfCek+d1ZqGZ29PQsmKLgUloabcJeZ5jH7R02rloebiLUEhP+QItQXYeCqMboGA6GXg0z2s0ZDS6GXFUrK0WlXJ8Eut/I5pZPwM4FP0R8BkKvW9G+v0NeBv9IXIyCrqfoJv2PmxgPKegPygeQH8oxG86/J+K2tpMJSxZFdS5GFVVeh4zprmvlAyl/D2T/t+yakgVUNA6mGZm1rQmADuUehAtYBCavV6ZusumWZ48Q2zNqqYmHYyTpmbWtVSe9ZdSD8PMzMxycCC2ZtOvX6lHYGZmZpabA7E1mwED9EiqqiGeHTYzsxYxiPT2zFYEb8xhZmZmZonmQGxmZmZmieZAbGZmZlYe+qMVvXqWdhjJ40BsZmZmZonmm+pamcGDobo6//41NVBZ2XzjMTMzs7LUDqjA6xLnxTPErUx1tUKumZmZNZmDgfdI7w73e2BMeKR0RTvVfYa2Dn4PiK+l1B+VPOyEtnBehHa6uw7oEOu7GTAc+Ab4HG3bvGqW8f0Z7dy2GG0FfQfQJdanFrgYOAv4GFgK/DDrN7Y6PEPcClVW5r/7W1I3xSgXNbNq/rdjnZmZtaw8dwr9NQqvjwGno+B7LQqw74c+awIvAquh5c0+Bn5Deivn62PnvBdtF7w/0DscswDtJgewCvBMON8JwBzgmNA/7rIwruuAv6Ltli8CtkXbMH8X6dsfbZF8BvA1CuOWBwdis2bS74femcTMrBU4H3gH2A/NsoJmiSeQDsSnAJugGdcPQtuzwNoo5N5M3dKEatLh91ngp2gWOtV2OJoh7g2MD21PhetG9UQh+Hzggkj7+8A4YG/g35H2CmB34Nsc39liHIjNmsmA7QcwYPsE70xiZlb+2gE7AJeSDsMAE9EscMoewCuhLZqdRgJHA98H/htpHx67ziTgV5H3vYFPSIdhgBXAw9TdYOPXqLz1/th1X0HlGLtQNxCPwGG4KA7EZmZmllRdgZVRyULc7Mjr9YAtgGVZzrNO7P382Psl1K0PXj92/kzXTF0XYEqe152ZpZ/l4EBsZmZmSTUXhdz1MnzWDZgeXs9DofmULOeZXOB1ZwI/yHLNqHnheXdUgxw3L/a+NkMfy4MDsZmZmSXVd8DrwB9QqUIqUG4PbEo6EI8ATgrvM80mF+pl4Ai0GkWqbGIl4MBYv2dQKcXG4bU1EwdiMzMzS7KBwNPAMGAwKqMYBMxCYRTgGuAg4IXwejKwOrA1sDOwT4HXvBstj/Yv4BwUso9Fq1lEfQhcDtwAbAWMRUuvbYTqi28HRhd4bcvAgdjMzMyS7BngEBSMh6F63dOB84AvQp8v0BJn5wFnoqXPFqJg/GgR11yKAu0NwE1oibRqdDPeLbG+5wDvouXZTkCz2J8Az5Fe8cIaqaK2tqByk2avTUmtm5vvOrtJU+jv49/TzMwSbAJaRaJQG6JgfDFwYZOOyMqSZ4jNzMwsyVYDrkbrBc9F6wP/De0gd3sJx2UtyIHYzMzMkuw7oDsqX1gHlS+8AByAlzFLDAdiMzMzS7KlaJc6S7CVSj0AMzMzM7NSciA2MzMzs0RzIDYzMzNr2wYBu2VoHwJMbcmBlCsHYjMzM7O2bSCZA/GFuH4a8E11ZmZmZkn1YakHUC48Q2xmZmZJtwfwMvAt2pXu32ir5Kj9gBeBr4BFwKvA7yOft0e72L2Dtlf+HBiBtncG6I82OOsZO+8g6m98Vos2Bfk78GkY1/NAZazf7sCTaHm4b4C30C577WLnIpyrNjwGhbYh1C+ZWB+4B63JvAT4L3BorE/qu+wE3I9+jxnAdUAHWiHPEFtiDB4M1dWlHoWZmbWUPHdp3QNtmTwKOAjoBFwAjEMB9DPgJBT2/g0cjkLxj6kbbh8E9gWuRZt8dAB2QQHzvSKG/ydgOnAisGoY03PAlsD80Gez0HY9CuE7oLC7LnBW6NMbhf0hwK2h7dMs11wdGAt0RltGf4LC8L1AR2BwrP+9wAPA/uE6g4AFqESjVXEgtsSoroaaGqiM/31tZmZJdhHwEfBbYHloexl4H822DgIuAYah4JcyMvJ6N+APwCkoOKf8uxHjWg3NAH8d3r8CfACcCpwb2m6J9K9AG4qsApyBAu0KYHz4/LPI62yOQIF7V2BMaHsK6IZ+pzvQRiYp1aTD77PAT4GDcSA2K2+VlXnPGJiZWdu3OprpvYR0GAb4GJVH9AF+hmaN47OjUbujEoLbmnBsT5IOw6DShvFoJjZlfRTY9wB6UDfXrQfMKvCau6DgPCbWfh9wF/B9YFKkfXis3yTgVwVesyw4EJuZmVlSdUYzq5m2aJ4FbIK2c4bsZQaEPvNRrW9TmZ2l7Qfh9UrAYygID0JlGd+iso2/U1wtbxey/xapz6Pmx94vQeUdrY4DsZmZmSXVAjSz2z3DZ92BeejmMoAN0E1rmcxFYXE1sofixeF5lVj7OvGOQbcsbZ+F15ujmuHD0Axuyt5ZzpeP+dS/mRDSv8+8Rpy7rHmVCTMzM0uqr4EJwAHUXZlhE1QqMRZ4Cd1EN6CB8zyNZpqPbqDPtPC8baStPSq3yOR3qKQjpSda1eHl8L5jeF4W6bMycEiGcy1FYT2XscCGwM9j7f2AOcC7eZyjVfIMsZmZmSXZuagW9gngJlQvfD5afu0q4EvgbLSSw6NombEv0QoUi0P76PDZ1cBGaMWKlVFN7nBUk/saWvf3CjQhuQQ4nuwlBt+ioH1F6HM+Wt7smvD5uyhkX4xudFuGbrjL5B1gT7QM3AK0RNqMDP2GoBsD/0V6ybdDgF8Dx1D3hro2xTPEZmZmlmQjUFhcG3gYrdzwLvAL0qHxBjSLvCEKxI8Cf0Q336X0RbW8+6La3jtRvW+qJnc5sA9aymwIcCPwTHidyT0oTN8A3I3WNf4l6brdpeFas0LfG9FaxZdlONeJaDb8cRTMs812f41uJHw6nOc/QC9UltHQTYWtXkVtbXwt6AYV1LkYVVV6TupKALnWyk0tG5bv75P03zPKv4WZWeJMQHW2rU1qY47/K/VAksIlE2WmOdbKralJh8Ek8xrEZmZmlokDcRlqaAa40GDbr19jR2NmZmbWtjkQt3EDBuhhniU3M7NWo6LUA0ga31RnZmZmZonmQGxmZmZmieZAbGZmZtZyplJ3Z7lijQkPawIOxGZmZmaWaA7EZmZmZs0v2450VgYciM3MzCyJdkAbYPwi0nZSaLso0rZlaPtdeP8T4FngK7Sz23OhLWoI2va4N/AS2ob5H1nG0Q7tArcI7USX0gsYBswLx09GW0hn0wFt6/xWGNsstDPd1rF+3dHOdzPQ9tEz0bbV64XP2wMXom2mFwNzgXHU/Z3aHC+7ZoniTUrMzJIjx86kE4GFwG4o8BFefxueibR9B7wA/AgYC7wD9EdB+azQthPwZuS4tYAHgSuBc8J541YDHkDBuSqMCRSwxwBTgFNRuN4yXD+bVYE1UJifCXQBjgfGo1A8K/S7F9gE+CvaRrobCuIdw+dnhmv+HagB1kR/PHRp4NqtngOxJYY3KTEzs4gVwPPArsAF6F/N+wA3AycDndBM667A68CXwHloVvWXKEwDPINulBsI7B85fyfgUOA/Wa7fGXgM6AH8HIXflCvRzPBOwDehbVSO7/MFcHTkfTtgJDAbOBjNHoPC9znA/ZG+QyOvewNPA/+MtD2e49qtngOxJYY3KTEzs5jRwGWo3OD7wNqotOEYYGfgKTRze2fovwsqL1gYOcciFGz3jp17eeibSQ8047wMheFZkc86hrYrSIfhfB0InA5shWaoU7aKvH4NzQ5XoJD9Fprpjn5+NnAx+v6vAksLHEer4xpiMzMzS6pRqNTgZ2gm+E00ozouvP8BKikYHfp3QeUIcbPQjG/UHFRqkcmPwrkfpG4YJpxnJVQmUYi9gYeAd4F+wE+BHYHPUeBPOQgF+L8B/wU+QzPfqUx4CZrt/j0K7fOAu4CuBY6nVfEMsZmZmSXVJHTT2G7AdqTLEkah2dZP0Ozoi6F9PropLa57+CyqNkO/lBEofP8D3bgWLU9YgMo5Nsj3SwR9UdlF/0jbytSv/Z0DnBAeWwGHA+ej4HwzmrW+PDy6A3sBV6OZ64MKHFOr4RliMzMzS6padEPcr1GJRDQQbwfsB7xCunRhLLAnunktZQ00Ozu2wGtfAZwGXItuYkv5Bs1QH4puustXR1SmEXUYqiXOZjKqJ14AbJvh81nA7WhVjUyftxmeITYzM7MkGwXcSHolCdBqD4tI33CXciGaMX0OzaDWolUZOsb65euacN1rUXC9MrSfgQL2y8BVqHxiM6ASLQ2XyQhg33DOJ4Dt0c2B0XrntVC4vR94D80G74PKNJ4Off6DZq8noqC8HbAHcGsR36/VcCA2MzOzJEvVB7+OQjCkV6D4feRzUM1tFbrh7G50Y9p4tDpFdMm1QlyHQvH16F/u/4FubPs5CtnXozrnaaiWN5vbgI2AI9FNga+hmethkT6LUdD9M1p6bQWaJT6E9GoYzwMHoJKKjsD0MKaLi/x+rUJFbW1DJS71FNS5GKk1YnOsHdhm5fr+Sf99zMzMCjABraFr1iDXEJuZmZlZojkQm5mZmVmiORCbmZmZWaI5EJuZmZlZojkQm5mZmVmiORCbmZmZtZwhwNTI+57AILTOcLFqwzlyGRMeFuNAbGZmZtZyLkQ74KX0BAbSuEBsjeSNOczMzMxazoelHoDV5xliMzMzS7peaEe3ecC3aPe2s8NnuwNPAjOBb4C3gNPRVstRU4H70C5wU0jvCrdrrN8Q0iUTVaR3wnsGlT7UhnaAvmhr6c+Br4A3gMOL+YIN2Ap994Xou49HWzVHfS/0mYO+13RgKOmJ1U5oR73pwBJgNtoieusmHmuz8QxxK1RTk96xzszMzDLLc1fXn6C62inAqcCnwJbAj8LnmwHPocC3GO18NwhYFzgrdq4+wPbA31EwPBN4CgXuyRmuPRFtkXwjcDLabhngnci1HwEuQ9ss7wLcDqwG3JLXt2tYD2Ac8CVwIvBFGM9wYK8wdoAnUGA+DpgLbAD8jvTE6jVom+tzgA+AddDW02s3wRhbhANxK9OvX6lHYGZm1qZciWaGd0IzwKBZ2ZRo8KwAXgBWAc5AAXBF5PNuKAhOD++fA6YB/wccluHai0iH33fR7GzUJZHXK6Hgvj4Kpk0RiE8DOgO90R8EoNnwd4CLUSDuiv5A2Ad4LHJsdeR1b+B+4I5I27AmGF+LcSBuZQYM0MPMzMwarSMKsFeQDsNx66MZ4T3QjGo0O60HzIq8H086DINmXoejwFiMLYEL0Mxwd9IzsksaOKaC+uUcy7P03QWNeUqk7TvgAeA8YE30x8JHaJa6GwrlH8TO8xrQH80eP41KO75rYIxlxzXEZmZmllSdURb6NMvnK6FZ0b2Ai4DdgB3R7ClAh1j/2RnOMRuVGBSqE6or7oVKM3YO174TWLWB4/oAy2KPbLqg2ui4WShYd0Y1zb8GXgcuBd5HAfm4SP+TgFuBI1E4noPKKDo2cO2y4hliMzMzS6oFqOQhW2DdHNUMH4ZumEvZO0v/blnaPitibL2BTVAQHhdpz5XdJqDgnI/5aOY5rjsKwvPD+4+AP6GQ3AvVG9+Ebg58Ct3wd3Z4bAL8Ec0oL0V11GXPM8RmZmaWVN+gsHkoulEtLjXDGZ1lXRk4JMv5dgI2irxfA9gTeLmBMaTKH+LXz3TtzqiWtyFfotnc6CObsWjMPSNt7YCDUNnDl7H+tUANqj0G2DbDOacBVwGTsnxeljxDbGZmZkl2BgqGL6Mg9yla3aESLa82DZVIfIfC6akNnGs2qqEdRHqVidXRZhzZvI9qfI9EM7JL0IoUL6Gb7m5EG3esjm7OmwusVeiXzOIaVPv7TLjGIuB4tMzanqHPj4B/Ag+hWuN24ZjlpG8+fBmVlkxCs8V90Ezy3U00zmZXloE4ycuK1dRAZWWpR2FmZpYYr6Eb6y5AS6utikLwXeif/PcFbgDuQYH1TnTj3G0ZzjUW3XR2CbAhWq3htyj0ZjMPlSCcGY5vh9YuHoN2tLsKLb02AwXTLii8NoUZwC+Ay4Gb0XevQWF4ROgzC33f08J3WoyC716oPAPgeeBAVOvcHpVYnApc10TjbHYVtbW1hfQvqHMxBg+G6urc/dqqVCDOc+1EMzMzy24CqgFuCVNJl19YK1N2M8RJX1YsqTPjZmZmZqXim+rMzMzMLNHKbobYzMzMrBXqWeoBWPE8Q2xmZmZmieZAbGZmZmaJ5kBsZmZm1nhVaP3heLbqiVbp6t+ioylv+5Le3KMsOBCbmZmZNV4VWh84nq1mom2Yh7f0gMpY2QVi31RnZmZm1nyWAONLPYhWbFXS21s3G88Qm5mZWVINQuUMW6IZ3K/QLnXnkc5IHdAWx2+Fz2cBjwNbx86T2j1uWThnajOzntQtmfgb2gFvnQzjeQf4d+R9R7SL3MfhmI+Bv5N/fusFDEO74X2LtoQ+O/J5BdpRbnI4/0y0K9+akT7x8adUhfaqSNsYtDnJr4CJwDfod9s30mcIcDiwAenfaWrsnPujnQA/R9th/zG098rwHcegraMbxYHYzMzMkm4YMAoFt38D56PQBpqhXAO4CG1pfBwKyeOB7qHP7cAd4fUvUIlE7yzXug9tz3xQrH17YBvg3vC+PTASOBpt2fzbcJ1zgSvy+E4/QUFxcxR69wSuRtsvp1wc2p4B9gb+gYLvcIrPiJuH8V6Ngu1MtPX0FuHzC4EnUdhN/U77xc5xPQrrh4Xx/BttM31MrN9WQB/g1iLH+j8umbBWJelbe5uZWf7GjMm761XAXeH1s8BuwMGh7QsUSlPaoaA6O/S5Bvg0PABeAZY3cK0ZKHwfBtwUaT8MWAA8Ed4fjMJ1H+D50PZceB6IZo7nNHCdK9HM8E5oppZw3ZQuqI73buDE0DYSBdV7gb2Axxo4fzZdgV2AD8L7iSgUHwhcAnwYrrGU7KUkr1L3NwfNGJ8K/BX4OrQdAywEHipinHV4hthalepqqKkp9SjMzKyNid/w9hawceT9gSjoLkRh92ugE5qhLMa9KKhuGd63B/oCD5Oul90DlW+8FD5PPZ4GVg7HE/usPZpZ7Qj8HLifdBiO2wnNft8Xa38Qfcc+RX63D0iHYVBon0Pd3zOXYRnaBqPvdXB43wHN4t+DykEaxTPE1upUVhb0V7+ZmVku82Pvl6DABSoleAjNpJ4PzAVWoH/270BxHkWzw4ei2d7dgW6kyyUA1gM2QTXJmaRqkOOf74oC6UqkZ60z6RKeZ8bal6OZ5S4UJ/5bQt3fMx/xMYFm1v8DHItKRw5AY2x0uQQ4EJuZmZk1pC8whbo3la1M8YERNMM8DDgEBeJDgY+AFyN95qGb6A7Mco6p4XnHWPtk4DsU2jdoYAyp4NodeDvS3h6F7Xnh/eLwvErs+Ew3BTaV2iztN6Gyke1RucQL6EbERnMgNjMzM8uuI/Vrgg9DtcRRqVKH1YAv8zjvvSgI/wbYh/o3yo0A/oBWtnivgfO8nqV9XDj/BWQuKRgfxtyXdG0y6Ga/9sDY8H526Ldt7Pg9GxhTLkvQ71SoUcC76Ia9n6M/KJqEA7GZmZlZdiPQ6hPXoBvetgdORvXEUamZytOBp9AsbbawCrp5bwZanaIj9Wt57weOQGH1KuBNNEu7OfD7MKZs9cEAZ6BQ+3I4/lNgM6ASOAnNEF+NlmH7GpWAbINW0xhHuq66FpWMHAW8j2ag96TucmuFegfNsB+HfqPFwKQ8j70FrWIxF5WeNAkHYjMzM7PsbgM2Ao5E/0z/Gqorjt/49QT6J/3j0TrGFeGRzQqgGgXXl1FZRtQyNHt8FjAA2BQF1w9RWF2aY9yvoVnUC9AyZquim/TuivT5O1rx4dgw7nnoJrWzw/hSTkE1yYPC88MoVD9BcW5HN/VdAqwdxtUzz2OHokA8hCbcsKOitjZbmUZGBXW2wlVV6dk3jWXm38fMzAowAdih1IOwJvVndCPd96j/R0TRPENsZmZmZuXu+6hc5Hy0UUeThWFwIG61krpBRU2Nll0zMzOzRLkJ+Blal/nEHH0L5o05WilvUGFmZmYJUoVuKqxCNyM2Kc8Qt2JJ3KAiVUNsZmZm1lQ8Q2xmZmZmieZAbGZmZtaw/mjZtUzttcAWTXitqWhJsUIMIb1zHWgJs0Fo3WHLg0smzMzMzBrWH2WmO1vgWvsBiwo85kK0Nm9KT7Ql9Di0JbTl4EBsZmZmVj7eKOKYD5t8FAnjkgkzMzNLul7AY8AC4FvgRWDn8NkYoA/a9a02PMbEju+KtlpehFZAuA7oEPm8ZzjuGLRz3Ey09fPjwIaxc02lfsnEpsC9wCy0O9tH1J0RHkK6ZKIKGB1ePxMZcxXaWW4i9W2KdqY7JsNnieBAbGZmZkn2Y7S2bRe0C9of0BbGzwLboy2N3wD+C/QOj+Nj57gXzdLuD9wMnIC2P447G9UbH4m2Q+6NgnRDNgVeBXZBZRC/RZtTdM3Sf2K4PsDJkTFPRGv5bgf8JHbMALQtdAJ3OBCXTFirU1Pj5dfMzCy3PJcmvQKYDuwGLA1tI4G3gHOBfdHMb3tgfJZzVKOwCgrSPwUOjrSlTAP6Rd6vG67fg+xr654PrIZmsaN97s7SfxHwTnj9bmzMI9Ds8jEoZAOsDByBgvmXWc7Z5nmG2FqVfv28U52ZmTWZ1VA5xFBUMtA+PCpQsN0lz/MMj72fBGycZz+y9E3ZHZU6NMVmFCuAW4G+wFqhbV+gW2hPLM8QW6syYIAeZmZmTaAL0A7NBJ+bpU8+k4fzY++XAKvm2Q/q1hvHrQN8mscY8nUHmnU+DLgBOBbNFhdzM1+b4UBsZmZmSbUQzZreCNyTpc+KlhtORnOBDZrwfPPQjPgxqDRkV+DoJjx/q+RAXIbyqZGtqXHpgJmZWSN9DbyA6nMnkj38LgHWaKlBxTyNbtZbH61OkY/UzPNqWT6/CXgZuB3VHD/YmAG2BQ7EZaZfv9x9zMzMrMmcBjyPZkvvQKGzK1p9oh1wFrpJ7XjgILSaxJfA5BYa30BgT7QSxiXAFDRjvAdwaJZj3geWo9Us5qOAPJn0TXPj0R8AuwDXA98009hbDQfiMpNvjaxXWTAzM2sSE4EdUfC8Dt1s9nlovyX0uRzYCs2odgLGonV9W8JUtGrFRcClaKb6M+A/DRwzDzgROBONtR0qjRgT6fMICv2JvpkupaK2traQ/gV1tuaTCsR5LiljZmaWRBOAHUo9iDL1IioR2TlXxyTwDLGZmZlZMqyKZoV/BfwM2Ke0wykfDsRmZmZmybA+qkVeiOqRHyvtcMqHA7GZmZlZMkxFm45YjHeqMzMzM7NEcyA2MzMzs0RzIDYzMzMrzlRgSInHsC9aSzmuCq0OVtWSg2mtHIjNzMzMWq9sgXgi0Ds8Ww6+qc7MzMys7VmEdqSzPHiG2MzMzJKuF1qCbAHwLdq0Ir5hxSmoRGIx8HqGzwEGkXkTsyHh2KjVgcvQVtBLgFnAo0C38Pm6aBe599HWyp8A1Wjb5uh5Dw9tteGRuk4V9UsmKoBT0TbOS9E21TcAa8bGVot2xjsZ+Bht+TwW+EGG79YmeIbYzMzMkuzHwAvAG8CfUfg8FngWbV4xATgKuBYF0IeALYAH0DbKxVgFeAaoRNsxj0dbRv8G6AzMBrqg8H022kq6B3A6Cutbh88uRMF5R+D34dxLGrjuxeF8NwKPA98P5+gF9EE716UcioLzKWG8V6DtorcGlhf5vcuWA3ErVlOT3sLZzMzM6hozJq9uVwDTgd3QrCnASOAt4FxgfzTzOxI4InLc58CDRQ7tUFTfuw91N8d4JPI6FUZT2qEwPB34LTAMzS5/HsadqzyiC6o1vhs4MbSNDMffC+wVG8uy0LYs0jYU+Ana3KNNcclEK9WvH1RWlnoUZmZmrdpqaGZ0KJodbR8eFWiGeBdgw/B4OHbsoxQ/U7o7KpHItVPcccCbwFfhWtND+1ZFXHMntHXzfbH2B8O5+8Tan6FuGJ4Unjcu4tplzzPErdSAAXqYmZlZ0bqgmddzwyOT9cPz7Fj7cmBekdddB/gsR5+TgOuAq4G/ovrmldBMcIcirtklPM+Mtae+R5dY+/zY+1QpRjHXLnsOxGZmZpZUC9HM8I3APVn6zAnP3WLt7VGwjVocnlchXX5Bhn5zgW1zjK0v8ByqG07ZNMcxDUkF3O7A25H21PcoNty3CS6ZMDMzs6T6Gt1Q1wut1/t6hsenaIWHA2PH/oH6E4vTwnM07K6Nbs6LehoF070bGFtH6pYsQN0a5pQlqPQjl/Ghb99Y+0Hoe4zN4xxtlmeIzczMLMlOA55HN5jdgUoKuqLVJ9oBZwHnA7cDd6Ga2y3Qag2LYud6CvgCuA0YiGp2/4ZqgKPuQytaPIBWmXgFrVjxG7SaxXvACOBM4BzgVXTT3x8zjP8dVO5wHArwi0nX+0bNR+UXZ6M/BJ4EtkHLq40Dhmf+eZLBgdjMzMySbCJatmwgqtldC628MBG4JfS5A+iEwvPBaAWKvtS/QW0hWpnhGnQT3qfABcCvqLse8DJ0Y91AYEB4nodWkUiVNlyAZpdPRfx+JMkAAAR8SURBVHW7Y1Fg/ih2zdvRDXOXhP7TgJ5Zvuvfw3c7Fjg+XPMeFJJXZDkmESpqazOtH51VQZ3NzMzMSmgCsEOpB2HlzzXEZmZmZpZoDsRmZmZmlmiF1hDPJX0HpeWnK/rdrDT8+5ee/xuUln//0vLvX1rFbGBhCVRoIF63WUbRtr2O65dKyb9/6fm/QWn59y8t//6l9XqpB2Ctg0smzMzMzCzRHIjNzMzMLNEciJvf4FIPIOH8+5ee/xuUln//0vLvX1r+/S0vha5DbGZmZmbWpniG2MzMzMwSzYHYzMzMzBLNgbjp3AnMQfubZ1KB9kifAvwX+HELjSsp9uD/27u/UD/nOA7gr5g/F4ayGxmmTPmT2o0mF4iUXdjN0laL6cQVYlJEEVdIrvxL5E/5uwtOol0wkRxRK0UpjeZEEbOb5c+Yi+8zndbs9z32+32P8zzvV/06zznPb/Xu3dnz+zzP8/39Dl8q/d5xkP2nYRu2K/2vaRdtEEb1D1fjC3yOFxvlGoqa/mEd9snHgI3bqP43K7/7n+EdnN4u2iCM6v8YvNLt/xgrmiWLRSMD8fg8q/yn/DdXYmX3uAGPN8g0FEfiUaXjc7Ch+zrX3XgVq7Aej7UM2HM1/a/EnbgI5+KWlgF7rqZ/WIqblYEgxqem/+3KScj52IIHWwbsuZr+p7ALZ+IRPNAyYCwOGYjH5338fIj9a/G8cnVmBifi5Aa5huAC5cx/B37Hy0rfc+3D8d32CfiuWbr+q+n/euVFa1f3/Q/N0vVfTf9wvzKI/dou2iDU9L8Ne7rtGSxvlq7/avpfi+e67S24TLlrG/GPDMTtnIJv53w/2/0sDl9Nt/diY7fvLdzUJNkw1PR/Vvf4UBkIDnU3Jeanpv9VOBVvtgo1IPM9tk/h7YkmGpaa/uc+Zy9246TJR4vFZL5/ujn+u4OdjeYz78ajptsNyrKWh3EhXsB5+GuiyYahpv8lyrKJS5SrYx8o/f8y0WTDMKr/I5TbxJuapBme+RzbNypLJy6eXJzBqek/r78xUq4QtzOrXKHZb7ncth+Xmm6nlDXE8BGOxbLJRxuEmv5n8Qb+wNfKG2BWNknXf6P6X6qcfLyHb7Aa0/LGunGpPbZfjrtwFX5rkGsoao8/+5+zRFk2d6gljjFAGYjbmcY1ypnqauWWzfcLmqg/PlGGqzNwtPKmuekDnrNTWTcGZysD8Y+tAvZcTf+v49Jue5myfGJHq4A9N6r/3UrnK7rHjDKUfdoyZI/V/P6vwpNK71k/P141/U/j2m57Hd6VK8RxgCyZGJ+XlNvBy5Sz0XtwVLfvCWXd6hpl8f8eXNc+Ym/txY3Yqrzj+Bnlo73uU170p3EbnsKtyoFwkxwQx6Wm/624QvnoqT9xO35aiLA9VNN/TE5N/w/hOLzW/ZudynAch6+m/6eVZXJfKVeG1y9I0vhfy59ujoiIiIhBy5KJiIiIiBi0DMQRERERMWgZiCMiIiJi0DIQR0RERMSgZSCOiIiIiEHLQBwRERERg5aBOCIiIiIG7W/AYVVBKkq6xgAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "dark"
- },
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "array([[ 1. , 0.05821793, -0.07814098, -0.02753357, 0.06634497,\n",
- " -0.37484987, -0.00480952, -0.32151467, 0.02818017, 0.10037342,\n",
- " 0.12494799, 0.05848388, 0.14290681, 0.00750752, 0.27296206],\n",
- " [ 0.05821793, 1. , -0.02887002, 0.00970422, 0.04002668,\n",
- " -0.07084739, 0.20712561, -0.11564865, 0.06361613, 0.11274998,\n",
- " 0.03068833, 0.01345492, 0.13366052, -0.00690803, 0.06434877],\n",
- " [-0.07814098, -0.02887002, 1. , -0.02139763, -0.03570649,\n",
- " 0.03510239, 0.00165624, 0.01373364, -0.03604903, 0.02507814,\n",
- " -0.00603892, -0.00691384, -0.02162149, -0.07933568, -0.01073752],\n",
- " [-0.02753357, 0.00970422, -0.02139763, 1. , 0.20983273,\n",
- " -0.01332109, -0.03429336, 0.01642285, 0.01056352, -0.03450412,\n",
- " 0.00535775, 0.00706282, 0.01060243, 0.08362025, 0.0296483 ],\n",
- " [ 0.06634497, 0.04002668, -0.03570649, 0.20983273, 1. ,\n",
- " -0.06440846, 0.11508002, -0.0961136 , 0.04588328, 0.00628315,\n",
- " 0.11913972, 0.0747487 , 0.16721512, 0.05010244, 0.32968229],\n",
- " [-0.37484987, -0.07084739, 0.03510239, -0.01332109, -0.06440846,\n",
- " 1. , -0.01187525, 0.31430555, -0.0868448 , -0.1542957 ,\n",
- " -0.07642508, -0.04317161, -0.21222622, -0.03159789, -0.23640271],\n",
- " [-0.00480952, 0.20712561, 0.00165624, -0.03429336, 0.11508002,\n",
- " -0.01187525, 1. , -0.07532086, 0.00850054, 0.07878917,\n",
- " 0.02051439, 0.01994441, 0.08987452, -0.00711449, 0.08214877],\n",
- " [-0.32151467, -0.11564865, 0.01373364, 0.01642285, -0.0961136 ,\n",
- " 0.31430555, -0.07532086, 1. , -0.13449877, -0.61757016,\n",
- " -0.10072056, -0.06760758, -0.30143589, -0.01320067, -0.32991294],\n",
- " [ 0.02818017, 0.06361613, -0.03604903, 0.01056352, 0.04588328,\n",
- " -0.0868448 , 0.00850054, -0.13449877, 1. , 0.09995216,\n",
- " 0.02827605, 0.01963575, 0.07566175, 0.17520338, 0.0819762 ],\n",
- " [ 0.10037342, 0.11274998, 0.02507814, -0.03450412, 0.00628315,\n",
- " -0.1542957 , 0.07878917, -0.61757016, 0.09995216, 1. ,\n",
- " 0.066646 , 0.04215426, 0.26494059, -0.00687009, 0.21598015],\n",
- " [ 0.12494799, 0.03068833, -0.00603892, 0.00535775, 0.11913972,\n",
- " -0.07642508, 0.02051439, -0.10072056, 0.02827605, 0.066646 ,\n",
- " 1. , -0.06656945, 0.09332205, 0.01490347, 0.27815938],\n",
- " [ 0.05848388, 0.01345492, -0.00691384, 0.00706282, 0.0747487 ,\n",
- " -0.04317161, 0.01994441, -0.06760758, 0.01963575, 0.04215426,\n",
- " -0.06656945, 1. , 0.05985243, 0.00709751, 0.14104226],\n",
- " [ 0.14290681, 0.13366052, -0.02162149, 0.01060243, 0.16721512,\n",
- " -0.21222622, 0.08987452, -0.30143589, 0.07566175, 0.26494059,\n",
- " 0.09332205, 0.05985243, 1. , 0.01058482, 0.26907514],\n",
- " [ 0.00750752, -0.00690803, -0.07933568, 0.08362025, 0.05010244,\n",
- " -0.03159789, -0.00711449, -0.01320067, 0.17520338, -0.00687009,\n",
- " 0.01490347, 0.00709751, 0.01058482, 1. , 0.0287465 ],\n",
- " [ 0.27296206, 0.06434877, -0.01073752, 0.0296483 , 0.32968229,\n",
- " -0.23640271, 0.08214877, -0.32991294, 0.0819762 , 0.21598015,\n",
- " 0.27815938, 0.14104226, 0.26907514, 0.0287465 , 1. ]])"
- ]
- },
- "execution_count": 42,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "xd.correlations(include_categorical=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "corr = xd.correlations(include_categorical=True, plot_type=\"matrix\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "xd.convert_categories()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "xd.normalize_numeric()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 153,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array([0, 2, 3, 4])"
- ]
- },
- "execution_count": 153,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Experiments \n",
- "Below are todos and experiments"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import seaborn as sns\n",
- "df"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "a4_dims = (10,5)\n",
- "fig, ax = plt.subplots(figsize=a4_dims)\n",
- "sn.violinplot(x='hours-per-week', y='gender', data=df, ax=ax)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "# Categorical plots\n",
- "# TODO: https://seaborn.pydata.org/tutorial/categorical.html#categorical-tutorial\n",
- "\n",
- "# Numeric plots:\n",
- "# TODO: https://seaborn.pydata.org/tutorial/axis_grids.html#grid-tutorial\n",
- "\n",
- "# Statistical relationships with data\n",
- "# TODO: https://seaborn.pydata.org/tutorial/relational.html#relational-tutorial\n",
- "g = sns.PairGrid(df, hue=\"loan\")\n",
- "g.map(plt.scatter);"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "def kdeplot(feature):\n",
- " plt.figure(figsize=(9, 4))\n",
- " plt.title(\"KDE for {}\".format(feature))\n",
- " ax0 = sns.kdeplot(df[df['gender'] == ' Male'][feature].dropna(), color= 'navy', label= 'Loan: No')\n",
- " ax1 = sns.kdeplot(df[df['gender'] == ' Female'][feature].dropna(), color= 'orange', label= 'Loan: Yes')\n",
- "kdeplot('hours-per-week')\n",
- "# kdeplot('education-num')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "xd.df[\"gender\"].unique()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# XMODEL"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 138,
- "metadata": {},
- "outputs": [],
- "source": [
- "import sklearn\n",
- "from sklearn.model_selection import train_test_split\n",
- "from sklearn.metrics import classification_report, mean_squared_error, roc_curve, auc\n",
- "\n",
- "from keras.layers import Input, Dense, Flatten, \\\n",
- " Concatenate, concatenate, Dropout, Lambda\n",
- "from keras.models import Model, Sequential\n",
- "from keras.layers.embeddings import Embedding\n",
- "\n",
- "def build_model(X):\n",
- " input_els = []\n",
- " encoded_els = []\n",
- " dtypes = list(zip(X.dtypes.index, map(str, X.dtypes)))\n",
- " for k,dtype in dtypes:\n",
- " input_els.append(Input(shape=(1,)))\n",
- " if dtype == \"int8\":\n",
- " e = Flatten()(Embedding(X[k].max()+1, 1)(input_els[-1]))\n",
- " else:\n",
- " e = input_els[-1]\n",
- " encoded_els.append(e)\n",
- " encoded_els = concatenate(encoded_els)\n",
- "\n",
- " layer1 = Dropout(0.5)(Dense(100, activation=\"relu\")(encoded_els))\n",
- " out = Dense(1, activation='sigmoid')(layer1)\n",
- "\n",
- " # train model\n",
- " model = Model(inputs=input_els, outputs=[out])\n",
- " model.compile(optimizer=\"adam\", loss='binary_crossentropy', metrics=['accuracy'])\n",
- " return model\n",
- "\n",
- "\n",
- "def f_in(X, m=None):\n",
- " \"\"\"Preprocess input so it can be provided to a function\"\"\"\n",
- " if m:\n",
- " return [X.iloc[:m,i] for i in range(X.shape[1])]\n",
- " else:\n",
- " return [X.iloc[:,i] for i in range(X.shape[1])]\n",
- "\n",
- "def f_out(probs):\n",
- " \"\"\"Convert probabilities into classes\"\"\"\n",
- " return list((probs >= 0.5).astype(int).T[0])\n",
- "\n",
- "\n",
- "def confusion_matrix(y_target, y_predicted, scale=True, plot=True):\n",
- " confusion = sklearn.metrics.confusion_matrix(y_target, y_predicted)\n",
- " if scale:\n",
- " confusion = confusion.astype(\"float\") / confusion.sum(axis=1)[:, np.newaxis]\n",
- " confusion_df = pd.DataFrame(confusion, index=[\"Denied\", \"Approved\"], columns=[\"Denied\", \"Approved\"])\n",
- " if plot:\n",
- " cm = sns.cubehelix_palette(8, start=2, rot=0, dark=0, light=1, reverse=True, as_cmap=True)\n",
- " sn.heatmap(confusion_df, annot=True, fmt='.2f', center=1, cmap=cm)\n",
- " return confusion_df\n",
- "\n",
- "\n",
- "def plot_roc(y, probs, plot=True):\n",
- " \n",
- " fpr, tpr, _ = roc_curve(y, probs)\n",
- "\n",
- " roc_auc = auc(fpr, tpr)\n",
- "\n",
- " if plot:\n",
- " plt.figure()\n",
- " plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)\n",
- " plt.plot([0, 1], [0, 1], 'k--')\n",
- " plt.xlim([0.0, 1.0])\n",
- " plt.ylim([0.0, 1.05])\n",
- " plt.xlabel('False Positive Rate')\n",
- " plt.ylabel('True Positive Rate')\n",
- " plt.legend(loc=\"lower right\")\n",
- " plt.rcParams.update(params)\n",
- " plt.show()\n",
- " \n",
- " return roc_auc"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 144,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Train on 31262 samples, validate on 1299 samples\n",
- "Epoch 1/50\n",
- "31262/31262 [==============================] - 1s 23us/step - loss: 0.5402 - acc: 0.7539 - val_loss: 0.3857 - val_acc: 0.8483\n",
- "Epoch 2/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.4111 - acc: 0.8140 - val_loss: 0.3271 - val_acc: 0.8607\n",
- "Epoch 3/50\n",
- "31262/31262 [==============================] - 0s 5us/step - loss: 0.3592 - acc: 0.8328 - val_loss: 0.2848 - val_acc: 0.8776\n",
- "Epoch 4/50\n",
- "31262/31262 [==============================] - 0s 5us/step - loss: 0.3364 - acc: 0.8423 - val_loss: 0.2693 - val_acc: 0.8884\n",
- "Epoch 5/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3298 - acc: 0.8469 - val_loss: 0.2661 - val_acc: 0.8876\n",
- "Epoch 6/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3263 - acc: 0.8488 - val_loss: 0.2631 - val_acc: 0.8868\n",
- "Epoch 7/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3233 - acc: 0.8511 - val_loss: 0.2633 - val_acc: 0.8838\n",
- "Epoch 8/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3221 - acc: 0.8509 - val_loss: 0.2600 - val_acc: 0.8884\n",
- "Epoch 9/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3194 - acc: 0.8542 - val_loss: 0.2595 - val_acc: 0.8884\n",
- "Epoch 10/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3194 - acc: 0.8515 - val_loss: 0.2594 - val_acc: 0.8915\n",
- "Epoch 11/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3198 - acc: 0.8520 - val_loss: 0.2587 - val_acc: 0.8899\n",
- "Epoch 12/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3159 - acc: 0.8548 - val_loss: 0.2575 - val_acc: 0.8922\n",
- "Epoch 13/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3164 - acc: 0.8520 - val_loss: 0.2576 - val_acc: 0.8899\n",
- "Epoch 14/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3163 - acc: 0.8544 - val_loss: 0.2571 - val_acc: 0.8907\n",
- "Epoch 15/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3150 - acc: 0.8553 - val_loss: 0.2563 - val_acc: 0.8907\n",
- "Epoch 16/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3150 - acc: 0.8540 - val_loss: 0.2564 - val_acc: 0.8922\n",
- "Epoch 17/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3132 - acc: 0.8562 - val_loss: 0.2571 - val_acc: 0.8907\n",
- "Epoch 18/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3137 - acc: 0.8545 - val_loss: 0.2570 - val_acc: 0.8884\n",
- "Epoch 19/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3128 - acc: 0.8563 - val_loss: 0.2551 - val_acc: 0.8899\n",
- "Epoch 20/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3138 - acc: 0.8544 - val_loss: 0.2555 - val_acc: 0.8899\n",
- "Epoch 21/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3135 - acc: 0.8550 - val_loss: 0.2538 - val_acc: 0.8891\n",
- "Epoch 22/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3134 - acc: 0.8559 - val_loss: 0.2561 - val_acc: 0.8907\n",
- "Epoch 23/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3132 - acc: 0.8555 - val_loss: 0.2554 - val_acc: 0.8922\n",
- "Epoch 24/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3126 - acc: 0.8558 - val_loss: 0.2544 - val_acc: 0.8899\n",
- "Epoch 25/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3130 - acc: 0.8561 - val_loss: 0.2542 - val_acc: 0.8891\n",
- "Epoch 26/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3127 - acc: 0.8567 - val_loss: 0.2548 - val_acc: 0.8876\n",
- "Epoch 27/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3132 - acc: 0.8550 - val_loss: 0.2544 - val_acc: 0.8891\n",
- "Epoch 28/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3119 - acc: 0.8557 - val_loss: 0.2546 - val_acc: 0.8891\n",
- "Epoch 29/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3129 - acc: 0.8564 - val_loss: 0.2538 - val_acc: 0.8907\n",
- "Epoch 30/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3119 - acc: 0.8560 - val_loss: 0.2550 - val_acc: 0.8845\n",
- "Epoch 31/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3107 - acc: 0.8565 - val_loss: 0.2557 - val_acc: 0.8876\n",
- "Epoch 32/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3124 - acc: 0.8562 - val_loss: 0.2542 - val_acc: 0.8891\n",
- "Epoch 33/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3124 - acc: 0.8563 - val_loss: 0.2534 - val_acc: 0.8884\n",
- "Epoch 34/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3124 - acc: 0.8569 - val_loss: 0.2545 - val_acc: 0.8899\n",
- "Epoch 35/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3099 - acc: 0.8560 - val_loss: 0.2539 - val_acc: 0.8891\n",
- "Epoch 36/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3110 - acc: 0.8548 - val_loss: 0.2535 - val_acc: 0.8915\n",
- "Epoch 37/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3106 - acc: 0.8565 - val_loss: 0.2540 - val_acc: 0.8876\n",
- "Epoch 38/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3117 - acc: 0.8566 - val_loss: 0.2533 - val_acc: 0.8899\n",
- "Epoch 39/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3103 - acc: 0.8578 - val_loss: 0.2544 - val_acc: 0.8891\n",
- "Epoch 40/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3096 - acc: 0.8569 - val_loss: 0.2539 - val_acc: 0.8907\n",
- "Epoch 41/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3106 - acc: 0.8568 - val_loss: 0.2553 - val_acc: 0.8907\n",
- "Epoch 42/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3099 - acc: 0.8576 - val_loss: 0.2537 - val_acc: 0.8884\n",
- "Epoch 43/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3099 - acc: 0.8584 - val_loss: 0.2542 - val_acc: 0.8891\n",
- "Epoch 44/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3105 - acc: 0.8584 - val_loss: 0.2541 - val_acc: 0.8907\n",
- "Epoch 45/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3101 - acc: 0.8572 - val_loss: 0.2546 - val_acc: 0.8915\n",
- "Epoch 46/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3088 - acc: 0.8581 - val_loss: 0.2548 - val_acc: 0.8907\n",
- "Epoch 47/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3092 - acc: 0.8588 - val_loss: 0.2544 - val_acc: 0.8915\n",
- "Epoch 48/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3092 - acc: 0.8590 - val_loss: 0.2557 - val_acc: 0.8907\n",
- "Epoch 49/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3103 - acc: 0.8583 - val_loss: 0.2547 - val_acc: 0.8891\n",
- "Epoch 50/50\n",
- "31262/31262 [==============================] - 0s 4us/step - loss: 0.3101 - acc: 0.8586 - val_loss: 0.2547 - val_acc: 0.8899\n"
- ]
- }
- ],
- "source": [
- "xd.reset()\n",
- "_= xd.normalize_numeric()\n",
- "_= xd.convert_categories()\n",
- "\n",
- "df_train, df_test = split_test_set(\n",
- " xd.df,\n",
- " \"loan\",\n",
- " examples_per_class=20,\n",
- " key_features=[\"gender\", \"ethnicity\", \"age\"],\n",
- " bins=9)\n",
- "\n",
- "X_train = df_train.drop(xd._target_name, axis=1).copy()\n",
- "y_train = df_train[xd._target_name].astype(int).values.copy()#\n",
- "X_valid = df_test.drop(xd._target_name, axis=1).copy()\n",
- "y_valid = df_test[xd._target_name].astype(int).values.copy()\n",
- "\n",
- "# X = xd.df.drop(xd._target_name, axis=1).copy()\n",
- "# y = xd.df[xd._target_name].astype(int).values.copy()\n",
- "\n",
- "# X_train, X_valid, y_train, y_valid = \\\n",
- "# train_test_split(X, y, test_size=0.2, random_state=7)\n",
- "\n",
- "X_disp = xd.orig_df.drop(xd._target_name, axis=1).copy()\n",
- "y_disp = xd.orig_df[xd._target_name].copy()\n",
- "X_train_disp, X_valid_disp, y_train_disp, y_valid_disp = \\\n",
- " train_test_split(X_disp, y_disp, test_size=0.2, random_state=7)\n",
- "\n",
- "model = build_model(X)\n",
- "\n",
- "model.fit(f_in(X_train), y_train, epochs=50,\n",
- " batch_size=512, shuffle=True, validation_data=(f_in(X_valid), y_valid),\n",
- " verbose=1, validation_split=0.05)\n",
- "\n",
- "probabilities = model.predict(f_in(X_valid))\n",
- "pred = f_out(probabilities)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 145,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "31262/31262 [==============================] - 0s 14us/step\n",
- "Error 0.3043: \n",
- "Accuracy 85.9670: \n"
- ]
- }
- ],
- "source": [
- "score = model.evaluate(f_in(X_train), y_train, verbose=1)\n",
- "\n",
- "print(\"Error %.4f: \" % score[0])\n",
- "print(\"Accuracy %.4f: \" % (score[1]*100))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 146,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Denied | \n",
- " Approved | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " Denied | \n",
- " 0.948148 | \n",
- " 0.051852 | \n",
- "
\n",
- " \n",
- " Approved | \n",
- " 0.397260 | \n",
- " 0.602740 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Denied Approved\n",
- "Denied 0.948148 0.051852\n",
- "Approved 0.397260 0.602740"
- ]
- },
- "execution_count": 146,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAD8CAYAAABAWd66AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAHEpJREFUeJzt3Xt8FNXdx/FPEqCKgHK/JUDA4AVoATFQQcUb0Mcq1lIBpaJV8Yb1Um1t64OCrRV7sdrSVkSqoCUofYpBaRERKKBouIqACCQoy0WQRW5eIMk+f5yTZBI22Qm7m8xMvu/X67yyM3Nm5yxJfvzymzMzKZFIBBERqX2ptT0AERExFJBFRDxCAVlExCMUkEVEPEIBWUTEIxSQRUQ8QgFZRMQjFJBFRDxCAVlExCPqJfsAP3j6Rl0KKMeZdffztT0E8aBIJJIS73tUJ+a88uO/x328RFKGLCLiEUnPkEVEapKf78+jgCwigeLngKyShYiIRyhDFpFAUYYsIiJxU4YsIoGiDFlEJJiGAJuALcCDUbZ3BBYA7wOLgHTHttHAZttGuzmYArKIBEokEnHdYkgDJgHfAc4GRtqvTr8DpgHfBCYAv7HrmwEPA32BbPu6aawDKiCLSKAkMCBnYzLjfOAokAMMrdDnbEyGDLDQsX0wMB8IA/vt6yGxDqiALCISXXtgu2M5ZNc5rQW+b19/D2gMNHe573EUkEUkUCLFEdcNGAOscLQxjreKdp+Limn1/cCFwGr7dQdQ6HLf42iWhYjUZZNtiyYEZDiW04GdFfrsBK62rxthsuUDdt+BFfZdFGswypBFJFASWEPOA7KATKABMALIrdCnBWVx9OfAVPt6HjAIcyKvqX09L9YBFZBFJFASGJALgbGYQLoReBlYj5lNcaXtMxAzLe4joDXwa7s+DDyKCep5dp9wrAOqZCEiUrm5tjmNc7yeZVs0UynLmF1RQBaRQNGVeiIiEjcFZBERj1DJQkQCxc8lCwVkEQkUPwdklSxERDxCGbKIBIoyZBERiZsyZBEJFD9nyArIIhIs/o3HKlmIiHiFMmQRCRQ/lyyUIYuIeIQyZBEJFD9nyArIIhIofg7IKlmIiHiEMmQRCRRlyCIiEjcFZBERj1DJQkQCxc8lCwVkEQkUPwdklSxERDxCGbKIBIoyZBERiZsyZBEJlmL/ZsgKyCISKCpZiIhI3JQhi0igKEMWEQmmIcAmYAvwYJTtTwJrbPsI+NyxrcixLdfNwZQhi0igJDBDTgMmAZcBISAPE1g3OPrc63h9F9DLsfwl0LM6B1SGLCISXTYmM84HjgI5wNAq+o8EZsRzQAVkEQmUSMR9A8YAKxxtjOOt2gPbHcshuy6ajkAm8JZj3Un2PZcDV7kZu0oWIhIo1SxZTLYtmpRob19J3xHALEzduEQHYCfQGROo1wFbqxqMAnKC9OzYnRsvuJbUlFQWrP8vs1fOLbe9RePm3HHpj2hycmMOf3WEp9+YTPjwfgBmjn2OT/aFAPjs0D4mvvZ0jY9fkmPw4ME89dRTpKWlMWXKFCZOnFhue4MGDZg2bRrnnHMO+/btY/jw4Xz88cd07NiRjRs3smnTJgCWL1/O7bffXhsfoS4LARmO5XRMgI1mBHBnhXUlffOBRZj6sgJysqWmpHDTwB/y6L9+R/hwmN8MH8eKgjWEwmXfu+sHDGfxxrdZ/OEyuqefxXXnDeNPbzwLwNHCozww4+HaGr4kSWpqKpMmTeKyyy4jFAqRl5dHbm4uGzduLO1z0003sX//frKyshg+fDgTJ05kxIgRAGzdupVevXpV9vaSfHlAFqYUsQMTdK+N0u8MoCnwjmNdU+AL4GugBdAfeCLWAVVDToDTW3dm9+d72HNwL4XFRSzb/B59Opf/RUpv1o51IXNy9oPQxuO2S/BkZ2ezZcsWCgoKOHbsGDk5OQwdWv6c0NChQ3nhhRcAmDVrFpdcckltDDVQIpGI6xZDITAWmAdsBF4G1gMTgCsd/UZiTvg53/AsTP14LbAQeJzyszOiUoacAM0aNWXf4XDpcvhwmKzWXcr1+fiz7fTr0oe5a+eT3eUcGjY4mUYnncLhr45Qv159Hh8+jqJIMbNXvE5e/uqa/giSBO3bt2f79rJzQqFQiL59+1bap6ioiAMHDtC8eXMAMjMzWbVqFQcPHuShhx5i6dKlNTd4KTHXNqdxFZYfibLf20CP6h4sVkCeQ+VFbCj/v4Q4RCr8s01bOpObLhzFwLP7s3HHR+w7HKa4uBiA2/9+P/uPfE6rJi15+Oqf8sm+EJ8e2Fsbw5YESkk5/pxQxayssj67du2iQ4cOhMNhevfuzezZs+nWrRuHDh1K2ngDw8dX6sUKyL+zX68G2gAv2uWRwLYq9htjG5d2u5A31y+OY4jeFz68n+aNmpUuN2vUjPCRz8v12X/kc343988AnFT/G/Q9/Ry+OPpl6TaAPQf3siH0IZktOyogB0AoFCIjo+ycUHp6Ojt37ozaZ8eOHaSlpXHqqacSDpu/tkq+rlq1iq1bt9K1a1dWrlxZcx/Ap4J86fRi23oBwzEZ8xxMYXtAFftNBvoAfYIejAG2fFpA29Na0apJC+qlptE/K5sVFcoOjU9qRIqdRfO9PpezcP0SAE75RkPqpdUr7XNGu6xyJwPFv/Ly8sjKyqJTp07Ur1+fESNGkJtb/gra3NxcRo8eDcCwYcN46y0zjbVFixakpppfz8zMTLKyssjPz6/ZDyA1zm0NuSVmLl3JT0SmXSdAcaSY5xa9xC+H/oTU1FQWrl9CKLyT4X2vYuuebawoWEO39DO59rxhRCIRNu78iCmLpgPQvmk7br14NMWRYlJTUpm94nUF5IAoKipi7NixzJs3j7S0NKZOncqGDRsYP348K1asYM6cOTz33HNMnz6dzZs3Ew6HS2dYXHDBBUyYMIHCwkKKioq47bbb2L9/fy1/In/wc4ac4nLwQzBZb0lA7gTcijn7WKUfPH2jf/91JGlm3f18bQ9BPCgSiUS7GKNa+t1zieuYs/yPC+I+XiK5zZD/g5mPd6Zd/hAzv05ExFMideCJIQ2B+zDXa9+CCc5nAK8laVwiIifEzyULtxeG/B1zt6Nv2+UQ8KukjEhEpI5yG5C7YC77O2aXvyT6jTdERGpVNe/25iluA/JR4GTKLhLpgmrIIiIJ5baG/DDmxF4G8BLmRhk3JGlMIiInzoupr0tuA/J8YBXQD1OquBv4LFmDEhE5UUE+qVcyza03ZobFLsw9PjvYdSIikiCxMuT7MPek+H2UbRHg4oSPSEQkDn7OkGMF5JLnS12U7IGIiNR11bkf8nmYS6ad+0xL6GhEROowtwF5Omaq2xrKHuIXQQFZRDwmyCWLEn2As6n6ZvUiIrXPxwHZ7YUhH2BuUC8iIkniNkNugXlA33uUv0JPj3ASEU+pC3d7eySZgxAREfcBeTHmwpAs4E3M7TjTkjUoEZET5eeTem5ryLcAs4Bn7HJ7YHZSRiQiEoe6cLe3OzE3FDpolzcDrZIyIhGROsptyeJrzC04nft58P8XEanr6kLJYjHwC8w9kS8DXgHmJGtQIiJ1kduA/CCwF1iHedr0XOChZA1KROSE+biI7DYgF2NO4t0BDAOeRSULEQm+IcAmYAsmMY3mGsx1GuuBfzjWj8acb9tsX8cUq4acgnlayFj7OgVzL4s/ARPcHEBEpCYlsIacBkzClGlDQB6Qiwm+JbKAn2MmPeynbLJDM0zs7INJXlfaffdXdcBYGfI99kDnAs3tQfradfe6+0wiIjUnEom4bjFkYzLjfMykhhxgaIU+t2CCdkmg3WO/DsY8aSlst83HZNtVihWQrwdGAgWOdfnAKLtNRCSo2gPbHcshu86pq23LgOWUBV03+x4nVsmiPtGfnbfXbhMR8bMxlD2IA2CybWBKtBVVTKvrYcoWA4F0YAnQ3eW+x4kVkI+e4DYRkVpRzZsLOQNwRSEgw7GcjnmmaMU+y4FjmErCJkyADmGCtHPfRbEGE6tk8S3M1XkV2yGgR6w3FxGpcZFqtKrlYYJrJtAAGIE5Mec0m7JH3LXAlC/ygXnAIKCpbYPsuirFypB1AyERqasKMTPM5mFi4VTM1LYJwApMcC4JvBswM9AeAPbZ/R/FBHXsPuFYB6zOM/VERDwvwZdOz7XNaZzzcMB9tlU01TbX3F4YIiIiSaYMWUQCpS7cXEhERJJMGbKIBIqfM2QFZBEJFh8HZJUsREQ8QhmyiARKpLi2R3DilCGLiHiEMmQRCRSd1BMR8QofB2SVLEREPEIBWUTEI1SyEJFA8XMNWRmyiIhHKEMWkUDxc4asgCwigVLNRzh5ikoWIiIeoQxZRILFvwmyMmQREa9Ieoa89JWFyT6E+FC368+t7SFIQOmknoiIR/g5IKtkISLiEcqQRSRYlCGLiEi8lCGLSKDoiSEiIhI3ZcgiEih+nmWhgCwiweLjgKyShYhI5YYAm4AtwINV9BuGuWi7j13uBHwJrLHtb24OpgxZRCS6NGAScBkQAvKAXGBDhX6NgR8D71ZYvxXoWZ0DKkMWkUCJRCKuWwzZmMw4HzgK5ABDo/R7FHgC+CresSsgi0igVDMgjwFWONoYx1u1B7Y7lkN2nVMvIAN4LcpQMoHVwGLgfDdjV8lCROqyybZFkxJlnTOtTgWeBG6I0m8X0AHYB5wDzAa6AQerGowyZBEJluJqtKqFMNlviXRgp2O5MdAdWARsA/phasx9gK8xwRhgJaae3DXWARWQRUSiywOyMKWHBsAITMAtcQBogZlR0QlYDlyJKX20xJwUBOhs3yc/1gFVshCRQEnghSGFwFhgHia4TgXWAxMwQTe38l25wPYrBIqA24BwrAMqIIuIVG6ubU7jKuk70PH6n7ZViwKyiASKLp0WEfEKHwdkndQTEfEIZcgiEig+TpCVIYuIeIUyZBEJlEixf1NkBWQRCRYf1yxUshAR8QgFZBERj1DJQkQCxc8XhihDFhHxCGXIIhIs/k2QFZBFJFj8PO1NJQsREY9QhiwigaKTeiIiEjdlyCISLD7OkBWQRSRQfByPVbIQEfEKZcgiEiya9iYiIvFShiwigeLnaW8KyCISKD6OxypZiIh4hQKyiIhHqGQhIsHi45qFMmQREY9QQBaRQIkUR1w3F4YAm4AtwINRtt8GrAPWAEuBsx3bfm732wQMdnMwBWQRCZZIxH2rWhowCfgOJtCOpHzABfgH0APoCTwB/MGuPxsYAXTDBPW/2PerkgKyiEh02ZgMNx84CuQAQyv0Oeh4fQplzysZavt/DRTY98mOdUCd1BORQEngOb32wHbHcgjoG6XfncB9QAPgYse+yyvs2z7WAZUhi0hdNgZY4WhjHNtSovSPFu4nAV2AnwEPVXPfchSQE+Si7AtZ8tIC3p6xiLHX3V5pv8sHfoddS7bxrTN6lK67a9QdvD1jEUteWsDA7AtqYrhSQ/r36Mecx19h7hP/5KbLr4/aZ3D2pbz6WA6zH8th4m2Plq6/sv/lvD5xFq9PnMWV/S+vqSH7X3HEfYPJQB9Hm+x4pxCQ4VhOB3ZWceQc4KoT3BdQySIhUlNTeey+CQy/dxS79u7m38/m8say+Xy0bUu5fqecfAo3f/8GVq5fXbqua6fTGXrJFQy8fhCtW7Ti5Sdfov+1F1FcXFzTH0MSLDUllYeu/ym3PDGW3eE9zHzkBRauXkL+zoLSPh1aZ3Dzd0fzw1/dwsEvDtGscVMAmpzShNuvupnhj4yGSISZ46exaPV/OfjFodr6OHVRHpAFZAI7MCfprq3QJwvYbF9f7nidiznh9wegne33XqwDKkNOgF5n9WTbjo/5ZNd2jhUe49UFcxg8YNBx/X5280+YNOMZvj76dem6wQMG8eqCORw9dpTtu0Js2/Exvc7qWZPDlyTp0bkbn3waIrR3J4VFhfz73Te4uHf5v4CGXXgVOQtmlQba8KH9gMms31n/LgePHOTgF4d4Z/279P/mt2v8M/hRJBJx3WIoBMYC84CNwMvAemACcKXtM9auW4OpI4+269fb/huA/2DqzEWxDqgMOQHatGzNjj1lf43s2rvruKDaPasb7Vq15c233+L2EWVlqjYtWrNqQ1nGvHPPLtq0bJ38QUvStWrakt3hT0uXPw3voUeXbuX6dGzTAYDpDz1Lakoqf5n9LMvWLad105bsDu8pt2/rpi1rZuA+l+AL9eba5jTO8fruKvb9tW2uVZUhH8JM6aisVaW0UD7qipHVGY8vpUSp30cc9fuUlBTG3/W/PDLp+O9NSkqU2r+PL/2UMtG+txW/tfXS0ujYJoMbf3MbP/3r/zL+R7+kccNG0X+m9HMReFVlyI3t1wnAbmA65szhdY5tlZlsGy/OmRH4n6Jde3fTvlW70uW2Ldvy6Wdl2U2jho04M7Mr//d0DgAtm7Xk+cencMODN7Nr727aOfZt16otux37in99Gt5Dm2Zlf+20btaKvZ/vPa7P2q3rKCwqYsdnO9m26xM6ts5g9/49nHtm73L75n24qsbG7ms+/o/LTQ15MOYqk5KM+a/A95M5KL9Z8+FaMtM7kdE2nfr16jP0kiuYt3R+6fZDRw7R7YreZF8zgOxrBrBqw2puePBm1m5ax7yl8xl6yRU0qN+AjLbpZKZ3YvXGNbX4aSRRPijYQIfWGbRv0Y56afX4Tt9BLFy9pFyfBasWkX1WHwBOa3Qqndp0YPuenSxbt5zzuvejScPGNGnYmPO692PZuuXRDiMB4qaGXITJinMw8+hG4qI4XZcUFRXxiyfHMeP300hLTSPn9Zf5aNtmHrjpXtZ+uI43lr1Z6b4fbdvMnLdeY/H0+RQWFfKLP4zTDIuAKCou4rHpv+WZB54mLTWVf/13Dlt35HPn98awfttGFq1eUhp4X30sh6LiYn4/82kOHDkAwDOvPkfOI88D8LdXp3DwSKxKoQBu71HhSSku6lKdgKeA/piAvAy4B9jm5gBtz+/k338dSZrmnVvV9hDEgz544b1oF1RUS5OsZq5jzsHN4biPl0huMuRtHH/9toiIJJibGnJXYAHwgV3+JmWXB4qISIK4CcjPYu7recwuv4+5YkVExHMSd/fNmucmIDfk+Ev+CpMwFhGROs1NDfkzzJ2MSv4/GQbsStqIRETi4eNZFm4C8p2YizzOxNxgowAzDU5ExHP8fEWjm4D8MXAp5m74qZgLREREJMHc1JALMBlyP+BwcocjIhKnSDWax7gJyGcAb2JKFwXAn4EByRyUiEhd5CYgf4m5r+fVQC+gCbA4mYMSETlRkeKI6+Y1bm9QfyHmBkOrgJOAa5I2IhGRePh4IrKbk3oFmLvhvww8ABxJ6ohEROooNwH5W8S+Ib2IiCd4MPF1zU3JognwL2AP8CnwT8wTVEVEJIHcBOS/Y56g2g5oD8yx60REvMfHNWQ3AbklJgAX2va8XSci4jlBn2XxGTAKSLNtFLAvmYMSEamL3ATkH2Gmue3G3FRomF0nIiIJFGuWRRrmgaZX1sBYRETi571KhGuxMuQi9PgmEZEa4WYe8jLM/StmUv6ikFVJGZGISByCfvvN8+zXCY51EeDixA9HRCROHpw94ZabgHxR0kchIuJNQ4CnMOfTpgCPV9h+AfBHzMOfRwCzHNuKgHX29Se4OBfnJiA3Bx7G3HIzAizFZMua+iYinpPAikUaMAm4DAgBeZiL5DY4+nwC3ADcH2X/L4Ge1Tmgm2lvOcBezGyLYfb1zOocRETEh7KBLUA+cBQTCytOctgGvA8UJ+KAbgJyM+BRzF3fCoBfAacl4uAiIgmXuEun2wPbHcshu86tk4AVwHLgKjc7uAnICzG1kVTbrgFer8agRES8agwmaJa0MY5tKVH6V6cg0gHoA1yLqTN3ibWDmxryrcB9wIt2ORUz/e0+O7gm1RigiEhSVfMeFZNtiyYEZDiW04Gd1Xjvkr75wCLME5e2VrWDmwy5se1Xz7ZUu64xCsYi4jWJe8hpHpAFZAINMJWCXJejaAp8w75uAfSn/MnAqNxkyGCep1cyy2IJMNvlfiIiflUIjAXmYWZcTAXWY2aZrcAE53Mx94tvClwBjAe6AWcBz2BO9qVipsvFDMgpLq5q+QtwOjDDLg/HpN13uvlEbc/v5N9Z2pI0zTu3qu0hiAd98MJ70eq21VL/1G+4jjnHDnwd9/ESyU2GfCHQnbIE/wXKJjuLiEiCuKkhb8KcLSyRgZl3JyLiPcXVaB7j9kq9jcB7dvlc4B3Kitu6NaeISAK4CcjjHK9TMCf3RgJ3JGVEIiJxCPrd3hZjrse+FnNRSAHwN7teREQSpKqA3BUz724k5kZCMzEZsu7+JiLeFdAM+UPMnOMrMDfYALg36SMSEamjqppl8X3Mg00XAs8ClxD92m4REe/w8SyLqgLyvzAXgZyJuQ77XqA18FdgUNJHJiJyAiKRiOvmNW7mIR8BXgK+i7m5xhrgwWQOSkSkLnITkJ3CmOuz9Tw9EfGm4oj75jHVDcgiIpIkbu/2JiLiCx4sDbumgCwiweLjiKyShYiIRyhDFpFAiXhwfrFbypBFRDxCGbKIBItqyCIiEi83z9STxBlD5Y8cl7pLPxcCKEOuaWNqewDiSfq5EEABWUTEMxSQRUQ8QgG5ZqlOKNHo50IAndQTEfEMZcgiIh6hgOxeEebm/OuBtcB9xPfvNwU4uxr9BwKvxXE8id/3gAjmKTped7i2ByDVp4Ds3pdAT6AbcBnwP8DDcbzfzcCGBIxLas5IYCnmaeyJoCtlpRwF5BOzBzN3dCzmwa9pwG+BPOB94FbbbyDmeYSzME/xfomyB8UuAvrY14OAd4BVwCtAI7t+iN1vKXB1cj6KuNQI6A/cRFlAHgj8F/P8yQ3A3yj7nToM/B7zPV0AtLTrFwGPAYuBu4GOdvv79msH4FRgm+O9GgLbgfpAF+A/wErMU+FLsvVMzM9QHvBoQj6x1DgF5BOXj/n3a4X5JT0AnGvbLZhfEIBewD2Y8kRnzC+1UwvgIeBSoDewAlMOOQnztO8rgPOBNsn7KOLCVZhA+BHmUWa97fps4CdAD0ywLPmP8xRMMO6NCb7Ov6ZOAy7EBOw/A9OAb2L+w34a87O01vYB8zMwDziGmZFxF3AOcD/wF9vnKcwDiM/FPC1efEgBOT4l2e4g4HpMjfldoDmQZbe9B4QwDx1fA3Sq8B79MMF6md0+GpM1nQkUAJsxdcsXk/QZxJ2RQI59nWOXwXx/8zHnGGYAA+z6YmCmff2iYz2O9QDfBv5hX0939JuJeeo7mIx8JiZLPw/zV9QazPMt29o+/e3xS95HfEg1rBPXGfNLuAcTmO/CZDFOA4GvHctFHP9vngLMp+wXvERPTCCW2tcc82Df7pjvSZr9Opfjv0eVfc+c649UcaySfrnAb4BmmGz4LUzW/TnmZyPWMcSHlCGfmJaYeuGfMb8E84DbMTU+gK6YXx43lmOym9PtckO7/4eYskcXu75iwJaaMwxTVuiI+QsnA/PXywBMySIT87s0HFPvxy4Ps6+vdayv6G3KatLXOfodxmTfT2Fm1xQBB+1xf2D7pADfsq+XVXgf8SEFZPdOpmza25vAG8B4u20K5qTOKuADzJ+Sbv/62AvcgPlz831MgD4T+Apz4vB1zC/pxwn4DHJiRmJO3Dn9ExNo3wEex3zfCxz9jmBm5KzEZNcTKnnvHwM3Yr73P8Sc6CsxExhF+RLHdZhzFmsxP4tD7fq7gTsxJ/VOrc6HE+/QlXoiJ24g5sTad6NsO0zZbBkRV5Qhi4h4hDJkERGPUIYsIuIRCsgiIh6hgCwi4hEKyCIiHqGALCLiEQrIIiIe8f+VWyBMVpGtGgAAAABJRU5ErkJggg==\n",
- "text/plain": [
- "