FLP 不可能原理:在网络可靠,但允许节点失效(即便只有一个)的最小化异步模型系统中,不存在一个可以解决一致性问题的确定性共识算法(No completely asynchronous consensus protocol can tolerate even a single unannounced process death)。
提出并证明该定理的论文《Impossibility of Distributed Consensus with One Faulty Process》是由 Fischer,Lynch 和 Patterson 三位科学家于 1985 年发表,该论文后来获得了 Dijkstra(就是发明最短路径算法的那位计算机科学家)奖。
FLP 不可能原理告诉我们,不要浪费时间,去试图为异步分布式系统设计面向任意场景的共识算法。
要正确理解 FLP 不可能原理,首先要弄清楚“异步”的含义。
在分布式系统中,同步和异步这两个术语存在特殊的含义。
- 同步,是指系统中的各个节点的时钟误差存在上限;并且消息传递必须在一定时间内完成,否则认为失败;同时各个节点完成处理消息的时间是一定的。因此同步系统中可以很容易地判断消息是否丢失。
- 异步,则意味着系统中各个节点可能存在较大的时钟差异;同时消息传输时间是任意长的;各节点对消息进行处理的时间也可能是任意长的。这就造成无法判断某个消息迟迟没有被响应是哪里出了问题(节点故障还是传输故障?)。不幸地是,现实生活中的系统往往都是异步系统。
FLP 不可能性在论文中以图论的形式进行了严格证明。要理解其基本原理并不复杂,一个不严谨的例子如下。
三个人在不同房间,进行投票(投票结果是 0 或者 1)。彼此可以通过电话进行沟通,但经常有人会时不时睡着。比如某个时候,A 投票 0,B 投票 1,C 收到了两人的投票,然后 C 睡着了。此时,A 和 B 将永远无法在有限时间内获知最终的结果,究竟是 C 没有应答还是应答的时间过长。如果可以重新投票,则类似情形可以在每次取得结果前发生,这将导致共识过程永远无法完成。
FLP 原理实际上说明对于允许节点失效情况下,纯粹异步系统无法确保共识在有限时间内完成。即便对于非拜占庭错误的前提下,包括 Paxos、Raft 等算法也都存在无法达成共识的极端情况,只是在工程实践中这种情况出现的概率很小。
那么,FLP 不可能原理是否意味着研究共识算法压根没有意义?
不必如此悲观。学术研究,往往考虑地是数学和物理意义上理想化的情形,很多时候现实世界要稳定得多(感谢这个世界如此鲁棒!)。例如,上面例子中描述的最坏情形,每次都发生的概率其实并没有那么大。工程实现上某次共识失败,再尝试几次,很大可能就成功了。
科学告诉你什么是不可能的;工程则告诉你,付出一些代价,可以把它变成可行。
这就是科学和工程不同的魅力。
那么,退一步讲,在付出一些代价的情况下,共识能做到多好?
回答这一问题的是另一个很出名的原理:CAP 原理。
注:科学告诉你去赌场是愚蠢的,因为最终总会输钱;工程则告诉你,如果你愿意接受最终输钱的风险,中间说不定能偶尔小赢几笔呢!