forked from flatironinstitute/CaImAn-MATLAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_DF_F_test.m
85 lines (75 loc) · 3.32 KB
/
extract_DF_F_test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
function [C_df,Df] = extract_DF_F_test(Y,A,C,b,f,YrA,P,options)
% extract DF/F signals after performing NMF
% inputs: Y: raw data (d X T matrix, d # number of pixels, T # of timesteps)
% A: matrix of spatial components (d x K matrix, K # of components)
% C: matrix of temporal components (K x T matrix)
% b: spatial background
% YrA: residual fluorescence for each component
% P: neuron structure, used to read the baseline activity for each component of C
% options structure used for specifying method for determining DF
% default method is the median of the trace. By changing
% options.df_prctile an arbitray percentile can be used (between 0 and 100).
% a moving window can also be established by specifying options.df_window
% options.add_residual specifies whether to add the residual
% fluoresence YrA to the baseline computation or not (default: true)
% outputs: C_df temporal components in the DF/F domain
% Df background for each component to normalize the filtered raw data
% Written by:
% Eftychios A. Pnevmatikakis, Simons Foundation, 2016
%memmaped = isobject(Y);
defoptions = CNMFSetParms;
if ~exist('options','var') || isempty(options); options = defoptions; end
if ~isfield(options,'df_prctile') || isempty(options.df_prctile); options.df_prctile = defoptions.df_prctile; end
if ~isfield(options,'df_window') || isempty(options.df_window); options.df_window = defoptions.df_window; end
if ~isfield(options,'add_residual') || isempty(options.add_residual); options.add_residual = defoptions.add_residual; end
[K,T] = size(C);
options.df_window = min(options.df_window,T);
nA = sum(A.^2);
AA = A'*A;
if (~exist('YrA','var') || isempty(YrA)) && options.add_residual % compute and add residual fluorescence
AY = mm_fun(A,Y);
YrA = spdiags(nA(:),0,K,K)\(AY - AA*C - (A'*b)*f);
else
YrA = sparse(K,T);
end
Bas = zeros(K,T);
bas_val = zeros(K,1);
if ~(~exist('P','var') || isempty(P))
bas_val = cell2mat(P.b);
Ntr = size(bas_val,2);
if Ntr > 1
ln = diff(P.cs_frtrs);
for i = 1:Ntr
Bas(:,:,P.cs_frtrs(i)+1:P.cs_frtrs(i+1)) = repmat(bas_val(:,i),1,ln(i));
end
else
Bas = repmat(bas_val,1,T);
end
end
Df = C - Bas + options.add_residual*YrA; % DF signal
%AAov = AA - diag(diag(AA)); % matrix of overlapping components
C_bg = bsxfun(@times,1./nA(:),(A'*b)*f) + Bas + options.add_residual*YrA; % background fluorescence for each component
if isempty(options.df_window) || (options.df_window >= T)
if options.df_prctile == 50
F0 = median(C_bg,2);
else
F0 = prctile(C_bg,options.df_prctile,2);
end
C_df = bsxfun(@times,Df,1./F0(:));
else
if options.df_prctile == 50
if verLessThan('matlab','2015b')
warning('Median filtering at the boundaries might be inaccurate due to zero padding.')
F0 = medfilt1(C_bg,options.df_window,[],2);
else
F0 = medfilt1(C_bg,options.df_window,[],2,'truncate');
end
else
F0 = zeros(size(C_bg));
for i = 1:size(Df,1);
df_temp = running_percentile(C_bg(i,:), options.df_window, options.df_prctile);
F0(i,:) = df_temp(:)';
end
end
C_df = Df./F0;
end