forked from flatironinstitute/CaImAn-MATLAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNMF_demo_script.m
145 lines (114 loc) · 5.33 KB
/
CNMF_demo_script.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
function output = CNMF_demo_script(filename, options)
% CNMF_DEMO_SCRIPT
%
% OUTPUT = CNMF_DEMO_SCRIPT(FILENAME, [OPTIONS])
%
% Performs a demo calcium source separation using the CNMF
% algorithm.
%
% FILENAME should be a multi-frame TIFF file with 2-photon calcium
% imaging data. OPTIONS is an optional structure that modifies the
% default parameters that are established in CNMFSetParms.
%
% OUTPUT is a structure with all of the variables created while
% processing the image. Note that this will include the entire
% raw data.
%
% See also: DEMO_SCRIPT, CNMFSetParms
%
sframe=1; % user input: first frame to read (optional, default 1)
num2read=2000; % user input: how many frames to read (optional, default until the end)
Y = bigread2(filename,sframe,num2read);
%Y = Y - min(Y(:));
if ~isa(Y,'double')
Y = double(Y);
end % convert from single to double
[d1,d2,T] = size(Y); % dimensions of dataset, assume T is last
d = d1*d2; % total number of pixels per T image
%% Set parameters
K = 40; % number of components to be found
tau = 4; % std of gaussian kernel (size of neuron)
p = 2; % order of autoregressive system
% (p = 0 no dynamics, p=1 just decay, p = 2, both rise and decay)
merge_thr = 0.8; % merging threshold
defoptions = CNMFSetParms(...
'd1',d1,'d2',d2,... % dimensions of datasets
'search_method','dilate','dist',3,... % search locations when updating spatial components
'deconv_method','constrained_foopsi',... % activity deconvolution method
'temporal_iter',2,... % number of block-coordinate descent steps
'fudge_factor',0.98,... % bias correction for AR coefficients
'merge_thr',merge_thr,... % merging threshold
'gSig',tau...
);
options = structmerge(defoptions,options,'ErrorIfNewField',1);
options,
%% Data pre-processing
[P,Y] = preprocess_data(Y,p);
%% fast initialization of spatial components using greedyROI and HALS
[Ain,Cin,bin,fin,center] = initialize_components(Y,K,tau,options,P); % initialize
% display centers of found components
Cn = correlation_image(Y);
figure;
imagesc(Cn);
axis equal; axis tight; hold all;
scatter(center(:,2),center(:,1),'mo');
title('Center of ROIs found from initialization algorithm');
drawnow;
%% manually refine components (optional)
refine_components = true; % flag for manual refinement
if refine_components
[Ain,Cin,center] = manually_refine_components(Y,Ain,Cin,center,Cn,tau,options);
end
%% update spatial components
Yr = reshape(Y,d,T);
[A,b,Cin] = update_spatial_components(Yr,Cin,fin,[Ain,bin],P,options);
%% update temporal components
P.p = 0; % set AR temporarily to zero for speed
[C,f,P,S,YrA] = update_temporal_components(Yr,A,b,Cin,fin,P,options);
%% classify components
[ROIvars.rval_space,ROIvars.rval_time,ROIvars.max_pr,ROIvars.sizeA,keep] = classify_components(Y,A,C,b,f,YrA,options);
%% run GUI for modifying component selection (optional, close twice to save values)
run_GUI = true;
if run_GUI
Coor = plot_contours(A,Cn,options,1); close;
GUIout = ROI_GUI(A,options,Cn,Coor,keep,ROIvars);
options = GUIout{2};
keep = GUIout{3};
end
%% merge found components
[Am,Cm,K_m,merged_ROIs,Pm,Sm] = merge_components(Yr,A(:,keep),b,C(keep,:),f,P,S,options);
%%
display_merging = 1; % flag for displaying merging example
if and(display_merging, ~isempty(merged_ROIs))
i = 1; %randi(length(merged_ROIs));
ln = length(merged_ROIs{i});
figure;
set(gcf,'Position',[300,300,(ln+2)*300,300]);
for j = 1:ln
subplot(1,ln+2,j); imagesc(reshape(A(:,merged_ROIs{i}(j)),d1,d2));
title(sprintf('Component %i',j),'fontsize',16,'fontweight','bold'); axis equal; axis tight;
end
subplot(1,ln+2,ln+1); imagesc(reshape(Am(:,K_m-length(merged_ROIs)+i),d1,d2));
title('Merged Component','fontsize',16,'fontweight','bold');axis equal; axis tight;
subplot(1,ln+2,ln+2);
plot(1:T,(diag(max(C(merged_ROIs{i},:),[],2))\C(merged_ROIs{i},:))');
hold all; plot(1:T,Cm(K_m-length(merged_ROIs)+i,:)/max(Cm(K_m-length(merged_ROIs)+i,:)),'--k')
title('Temporal Components','fontsize',16,'fontweight','bold')
drawnow;
end
%% refine estimates excluding rejected components
Pm.p = p; % restore AR value
[A2,b2,C2] = update_spatial_components(Yr,Cm,f,[Am,b],Pm,options);
[C2,f2,P2,S2,YrA2] = update_temporal_components(Yr,A2,b2,C2,f,Pm,options);
%% do some plotting
[A_or,C_or,S_or,P_or] = order_ROIs(A2,C2,S2,P2); % order components
K_m = size(C_or,1);
[C_df,~] = extract_DF_F(Yr,A_or,C_or,P_or,options); % extract DF/F values (optional)
figure;
[Coor,json_file] = plot_contours(A_or,Cn,options,1); % contour plot of spatial footprints
%savejson('jmesh',json_file,'filename'); % optional save json file with component coordinates (requires matlab json library)
%% display components
plot_components_GUI(Yr,A_or,C_or,b2,f2,Cn,options)
%% make movie
make_patch_video(A_or,C_or,b2,f2,Yr,Coor,options)
output = workspace2struct;