-
Notifications
You must be signed in to change notification settings - Fork 8
/
inference.py
131 lines (100 loc) · 4.26 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from train import export_to_video
from models.unet.motion_embeddings import load_motion_embeddings
from noise_init.blend_init import BlendInit
from noise_init.blend_freq_init import BlendFreqInit
from noise_init.fft_init import FFTInit
from noise_init.freq_init import FreqInit
from attn_ctrl import register_attention_control
import numpy as np
import os
from omegaconf import OmegaConf
def get_pipe(embedding_dir='baseline',config=None,noisy_latent=None, video_round=None):
# load video generation model
pipe = DiffusionPipeline.from_pretrained(config.model.pretrained_model_path,torch_dtype=torch.float16)
# use videocrafterv2 unet
if config.model.unet == 'videoCrafter2':
from models.unet.unet_3d_condition import UNet3DConditionModel
# unet = UNet3DConditionModel.from_pretrained("adamdad/videocrafterv2_diffusers",subfolder='unet',torch_dtype=torch.float16)
unet = UNet3DConditionModel.from_pretrained("adamdad/videocrafterv2_diffusers",torch_dtype=torch.float16)
pipe.unet = unet
# pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
# memory optimization
pipe.enable_vae_slicing()
# if 'vanilla' not in embedding_dir:
noisy_latent = torch.load(f'{embedding_dir}/cached_latents/cached_0.pt')['inversion_noise'][None,]
if video_round is None:
motion_embed = torch.load(f'{embedding_dir}/motion_embed.pt')
else:
motion_embed = torch.load(f'{embedding_dir}/{video_round}/motion_embed.pt')
load_motion_embeddings(
pipe.unet,
motion_embed,
)
config.model['embedding_layers'] = list(motion_embed.keys())
return pipe, config, noisy_latent
def inference(embedding_dir='vanilla',
video_round=None,
prompts=None,
save_dir=None,
seed=None,
motion_type=None,
):
# check motion type is valid
if motion_type != 'camera' and \
motion_type != 'object' and \
motion_type != 'hybrid':
raise ValueError('Invalid motion type')
if seed is None:
seed = 0
# load motion embedding
noisy_latent = None
config = OmegaConf.load(f'{embedding_dir}/config.yaml')
# different motion type assigns different strategy
if motion_type == 'camera':
config['strategy']['removeMFromV'] = True
elif motion_type == 'object' or motion_type == 'hybrid':
config['strategy']['vSpatial_frameSubtraction'] = True
pipe, config, noisy_latent = get_pipe(embedding_dir=embedding_dir,config=config,noisy_latent=noisy_latent,video_round=video_round)
n_frames = config.val.num_frames
shape = (config.val.height,config.val.width)
os.makedirs(save_dir,exist_ok=True)
for prompt in prompts:
cur_save_dir = f'{save_dir}/{"_".join(prompt.split())}.mp4'
register_attention_control(pipe.unet,config=config)
if noisy_latent is not None:
torch.manual_seed(seed)
noise = torch.randn_like(noisy_latent)
init_noise = BlendInit(noisy_latent, noise, noise_prior=0.5)
else:
init_noise = None
input_init_noise = init_noise.clone() if not init_noise is None else None
video_frames = pipe(
prompt=prompt,
num_inference_steps=30,
guidance_scale=12,
height=shape[0],
width=shape[1],
num_frames=n_frames,
generator=torch.Generator("cuda").manual_seed(seed),
latents=input_init_noise,
).frames[0]
video_path = export_to_video(video_frames,output_video_path=cur_save_dir,fps=8)
print(video_path)
if __name__ =="__main__":
prompts = ["A skateboard slides along a city lane",
"A tank is running in the desert.",
"A toy train chugs around a roundabout tree"]
embedding_dir = './results'
video_round = 'checkpoint-250'
save_dir = f'outputs'
inference(
embedding_dir=embedding_dir,
prompts=prompts,
video_round=video_round,
save_dir=save_dir,
motion_type='hybrid',
seed=100
)