-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy patheval.py
250 lines (220 loc) · 9.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import logging
import argparse
import os
from contextlib import nullcontext
import torch
from diffusers.utils import check_min_version
import random
import numpy as np
from pipeline import LotusGPipeline, LotusDPipeline
from utils.seed_all import seed_all
from evaluation.evaluation import evaluation_depth, evaluation_normal
check_min_version('0.28.0.dev0')
def parse_args():
'''Set the Args'''
parser = argparse.ArgumentParser(
description="Run Lotus..."
)
# model settings
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
help="pretrained model path from hugging face or local dir",
)
parser.add_argument(
"--prediction_type",
type=str,
default="sample",
help="The used prediction_type. ",
)
parser.add_argument(
"--timestep",
type=int,
default=999,
)
parser.add_argument(
"--mode",
type=str,
default="regression", # "generation"
help="Whether to use the generation or regression pipeline."
)
parser.add_argument(
"--task_name",
type=str,
default="depth", # "normal"
)
parser.add_argument(
"--disparity",
action="store_true",
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
# inference settings
parser.add_argument("--seed", type=int, default=None, help="Random seed.")
parser.add_argument(
"--output_dir", type=str, required=True, help="Output directory."
)
parser.add_argument(
"--base_test_data_dir",
type=str,
default="datasets/eval/"
)
parser.add_argument(
"--half_precision",
action="store_true",
help="Run with half-precision (16-bit float), might lead to suboptimal result.",
)
parser.add_argument(
"--processing_res",
type=int,
default=None,
help="Maximum resolution of processing. 0 for using input image resolution. Default: 768.",
)
parser.add_argument(
"--output_processing_res",
action="store_true",
help="When input is resized, out put depth at resized operating resolution. Default: False.",
)
parser.add_argument(
"--resample_method",
choices=["bilinear", "bicubic", "nearest"],
default="bilinear",
help="Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`. Default: `bilinear`",
)
parser.add_argument(
"--rng_state_path",
default=None,
help="Load the random number generator states from the given path to ensure reproducibility of the results. "
)
args = parser.parse_args()
return args
def main():
logging.basicConfig(level=logging.INFO)
logging.info(f"Run evaluation...")
args = parse_args()
# -------------------- Preparation --------------------
# Random seed
if args.seed is not None:
seed_all(args.seed)
# Output directories
os.makedirs(args.output_dir, exist_ok=True)
logging.info(f"Output dir = {args.output_dir}")
# half_precision
if args.half_precision:
dtype = torch.float16
logging.info(f"Running with half precision ({dtype}).")
else:
dtype = torch.float32
# processing_res
processing_res = args.processing_res
match_input_res = not args.output_processing_res
if 0 == processing_res and match_input_res is False:
logging.warning(
"Processing at native resolution without resizing output might NOT lead to exactly the same resolution, due to the padding and pooling properties of conv layers."
)
# resample_method = args.resample_method
# -------------------- Device --------------------
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
logging.warning("CUDA is not available. Running on CPU will be slow.")
logging.info(f"Device = {device}")
if args.rng_state_path:
torch.cuda.synchronize()
states = torch.load(args.rng_state_path)
random.setstate(states["random_state"])
np.random.set_state(states["numpy_random_seed"])
torch.set_rng_state(states["torch_manual_seed"])
torch.cuda.set_rng_state_all(states["torch_cuda_manual_seed"][:1])
logging.info(f"Loading the RNG states from: {args.rng_state_path}")
# -------------------- Model --------------------
if args.mode == 'generation':
pipeline = LotusGPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=dtype,
)
elif args.mode == 'regression':
pipeline = LotusDPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=dtype,
)
else:
raise ValueError(f'Invalid mode: {args.mode}')
logging.info(f"Successfully loading pipeline from {args.pretrained_model_name_or_path}.")
pipeline = pipeline.to(device)
pipeline.set_progress_bar_config(disable=True)
if args.enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
def gen_depth(rgb_in, pipe, prompt="", num_inference_steps=1):
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(pipe.device.type)
with autocast_ctx:
rgb_input = rgb_in / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(pipe.device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
pred_depth = pipe(
rgb_in=rgb_input,
prompt=prompt,
num_inference_steps=num_inference_steps,
output_type='np',
timesteps=[args.timestep],
task_emb=task_emb,
processing_res=0, # processing resolution before the pipeline
).images[0]
pred_depth = pred_depth.mean(axis=-1) # [0,1]
return pred_depth
def gen_normal(img, pipe, prompt="", num_inference_steps=1):
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(pipe.device.type)
with autocast_ctx:
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(pipe.device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
pred_normal = pipe(
rgb_in=img, # [-1,1]
prompt=prompt,
num_inference_steps=num_inference_steps,
output_type='pt',
timesteps=[args.timestep],
task_emb=task_emb,
processing_res=0, # processing resolution before the pipeline
).images[0] # [0,1], (3,h,w)
pred_normal = (pred_normal*2-1.0).unsqueeze(0) # [-1,1], (1,3,h,w)
return pred_normal
# -------------------- Evaluation --------------------
with torch.no_grad():
if args.task_name == 'depth':
test_data_dir = os.path.join(args.base_test_data_dir, args.task_name)
test_depth_dataset_configs = {
"nyuv2": "configs/data_nyu_test.yaml",
"kitti": "configs/data_kitti_eigen_test.yaml",
"scannet": "configs/data_scannet_val.yaml",
"eth3d": "configs/data_eth3d.yaml",
"diode": "configs/data_diode_all.yaml",
}
for dataset_name, config_path in test_depth_dataset_configs.items():
eval_dir = os.path.join(args.output_dir, args.task_name, dataset_name)
test_dataset_config = os.path.join(test_data_dir, config_path)
alignment_type = "least_square_disparity" if args.disparity else "least_square"
metric_tracker = evaluation_depth(eval_dir, test_dataset_config, test_data_dir, eval_mode="generate_prediction",
gen_prediction=gen_depth, pipeline=pipeline, alignment=alignment_type, processing_res=None)
print(dataset_name,',', 'abs_relative_difference: ', metric_tracker.result()['abs_relative_difference'], 'delta1_acc: ', metric_tracker.result()['delta1_acc'])
elif args.task_name == 'normal':
test_data_dir = os.path.join(args.base_test_data_dir, args.task_name)
dataset_split_path = "evaluation/dataset_normal"
eval_datasets = [ ('nyuv2', 'test'), ('scannet', 'test'), ('ibims', 'ibims'), ('sintel', 'sintel'), ('oasis', 'val')]
eval_dir = os.path.join(args.output_dir, args.task_name)
evaluation_normal(eval_dir, test_data_dir, dataset_split_path, eval_mode="generate_prediction",
gen_prediction=gen_normal, pipeline=pipeline, eval_datasets=eval_datasets,
processing_res=processing_res)
else:
raise ValueError(f"Not support predicting {args.task_name} yet. ")
print('==> Evaluation is done. \n==> Results saved to:', args.output_dir)
if __name__ == '__main__':
main()