参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
示例 1:
- 输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
- 输出:2 解释:
- 3x3 网格的正中间有一个障碍物。
- 从左上角到右下角一共有 2 条不同的路径:
- 向右 -> 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右 -> 向右
示例 2:
- 输入:obstacleGrid = [[0,1],[0,0]]
- 输出:1
提示:
- m == obstacleGrid.length
- n == obstacleGrid[i].length
- 1 <= m, n <= 100
- obstacleGrid[i][j] 为 0 或 1
这道题相对于62.不同路径 就是有了障碍。
第一次接触这种题目的同学可能会有点懵,这有障碍了,应该怎么算呢?
62.不同路径中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。
动规五部曲:
- 确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
- 确定递推公式
递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。
所以代码为:
if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
- dp数组如何初始化
在62.不同路径不同路径中我们给出如下的初始化:
vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。
但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。
如图:
下标(0, j)的初始化情况同理。
所以本题初始化代码为:
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理
- 确定遍历顺序
从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。
代码如下:
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
- 举例推导dp数组
拿示例1来举例如题:
对应的dp table 如图:
如果这个图看不同,建议在理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!
动规五部分分析完毕,对应C++代码如下:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
- 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
- 空间复杂度:O(n × m)
同样我们给出空间优化版本:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid[0][0] == 1)
return 0;
vector<int> dp(obstacleGrid[0].size());
for (int j = 0; j < dp.size(); ++j)
if (obstacleGrid[0][j] == 1)
dp[j] = 0;
else if (j == 0)
dp[j] = 1;
else
dp[j] = dp[j-1];
for (int i = 1; i < obstacleGrid.size(); ++i)
for (int j = 0; j < dp.size(); ++j){
if (obstacleGrid[i][j] == 1)
dp[j] = 0;
else if (j != 0)
dp[j] = dp[j] + dp[j-1];
}
return dp.back();
}
};
- 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
- 空间复杂度:O(m)
本题是62.不同路径的障碍版,整体思路大体一致。
但就算是做过62.不同路径,在做本题也会有感觉遇到障碍无从下手。
其实只要考虑到,遇到障碍dp[i][j]保持0就可以了。
也有一些小细节,例如:初始化的部分,很容易忽略了障碍之后应该都是0的情况。
就酱,「代码随想录」值得推荐给身边学算法的同学朋友们,关注后都会发现相见恨晚!
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
//如果在起点或终点出现了障碍,直接返回0
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
return 0;
}
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
dp[i][0] = 1;
}
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
dp[0][j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;
}
}
return dp[m - 1][n - 1];
}
}
// 空间优化版本
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[] dp = new int[n];
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
dp[j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 0; j < n; j++) {
if (obstacleGrid[i][j] == 1) {
dp[j] = 0;
} else if (j != 0) {
dp[j] += dp[j - 1];
}
}
}
return dp[n - 1];
}
}
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
# 构造一个DP table
row = len(obstacleGrid)
col = len(obstacleGrid[0])
dp = [[0 for _ in range(col)] for _ in range(row)]
dp[0][0] = 1 if obstacleGrid[0][0] != 1 else 0
if dp[0][0] == 0: return 0 # 如果第一个格子就是障碍,return 0
# 第一行
for i in range(1, col):
if obstacleGrid[0][i] != 1:
dp[0][i] = dp[0][i-1]
# 第一列
for i in range(1, row):
if obstacleGrid[i][0] != 1:
dp[i][0] = dp[i-1][0]
print(dp)
for i in range(1, row):
for j in range(1, col):
if obstacleGrid[i][j] != 1:
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[-1][-1]
class Solution:
"""
使用一维dp数组
"""
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m, n = len(obstacleGrid), len(obstacleGrid[0])
# 初始化dp数组
# 该数组缓存当前行
curr = [0] * n
for j in range(n):
if obstacleGrid[0][j] == 1:
break
curr[j] = 1
for i in range(1, m): # 从第二行开始
for j in range(n): # 从第一列开始,因为第一列可能有障碍物
# 有障碍物处无法通行,状态就设成0
if obstacleGrid[i][j] == 1:
curr[j] = 0
elif j > 0:
# 等价于
# dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
curr[j] = curr[j] + curr[j - 1]
# 隐含的状态更新
# dp[i][0] = dp[i - 1][0]
return curr[n - 1]
func uniquePathsWithObstacles(obstacleGrid [][]int) int {
m, n := len(obstacleGrid), len(obstacleGrid[0])
// 定义一个dp数组
dp := make([][]int, m)
for i, _ := range dp {
dp[i] = make([]int, n)
}
// 初始化, 如果是障碍物, 后面的就都是0, 不用循环了
for i := 0; i < m && obstacleGrid[i][0] == 0; i++ {
dp[i][0] = 1
}
for i := 0; i < n && obstacleGrid[0][i] == 0; i++ {
dp[0][i] = 1
}
// dp数组推导过程
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
// 如果obstacleGrid[i][j]这个点是障碍物, 那么dp[i][j]保持为0
if obstacleGrid[i][j] != 1 {
// 否则我们需要计算当前点可以到达的路径数
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
}
return dp[m-1][n-1]
}
var uniquePathsWithObstacles = function(obstacleGrid) {
const m = obstacleGrid.length
const n = obstacleGrid[0].length
const dp = Array(m).fill().map(item => Array(n).fill(0))
for (let i = 0; i < m && obstacleGrid[i][0] === 0; ++i) {
dp[i][0] = 1
}
for (let i = 0; i < n && obstacleGrid[0][i] === 0; ++i) {
dp[0][i] = 1
}
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
dp[i][j] = obstacleGrid[i][j] === 1 ? 0 : dp[i - 1][j] + dp[i][j - 1]
}
}
return dp[m - 1][n - 1]
};
function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
/**
dp[i][j]: 到达(i, j)的路径数
dp[0][*]: 用u表示第一个障碍物下标,则u之前为1,u之后(含u)为0
dp[*][0]: 同上
...
dp[i][j]: obstacleGrid[i][j] === 1 ? 0 : dp[i-1][j] + dp[i][j-1];
*/
const m: number = obstacleGrid.length;
const n: number = obstacleGrid[0].length;
const dp: number[][] = new Array(m).fill(0).map(_ => new Array(n).fill(0));
for (let i = 0; i < m && obstacleGrid[i][0] === 0; i++) {
dp[i][0] = 1;
}
for (let i = 0; i < n && obstacleGrid[0][i] === 0; i++) {
dp[0][i] = 1;
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
if (obstacleGrid[i][j] === 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
};
impl Solution {
pub fn unique_paths_with_obstacles(obstacle_grid: Vec<Vec<i32>>) -> i32 {
let m: usize = obstacle_grid.len();
let n: usize = obstacle_grid[0].len();
if obstacle_grid[0][0] == 1 || obstacle_grid[m-1][n-1] == 1 {
return 0;
}
let mut dp = vec![vec![0; n]; m];
for i in 0..m {
if obstacle_grid[i][0] == 1 {
break;
}
else { dp[i][0] = 1; }
}
for j in 0..n {
if obstacle_grid[0][j] == 1 {
break;
}
else { dp[0][j] = 1; }
}
for i in 1..m {
for j in 1..n {
if obstacle_grid[i][j] == 1 {
continue;
}
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
dp[m-1][n-1]
}
}
//初始化dp数组
int **initDP(int m, int n, int** obstacleGrid) {
int **dp = (int**)malloc(sizeof(int*) * m);
int i, j;
//初始化每一行数组
for(i = 0; i < m; ++i) {
dp[i] = (int*)malloc(sizeof(int) * n);
}
//先将第一行第一列设为0
for(i = 0; i < m; ++i) {
dp[i][0] = 0;
}
for(j = 0; j < n; ++j) {
dp[0][j] = 0;
}
//若碰到障碍,之后的都走不了。退出循环
for(i = 0; i < m; ++i) {
if(obstacleGrid[i][0]) {
break;
}
dp[i][0] = 1;
}
for(j = 0; j < n; ++j) {
if(obstacleGrid[0][j])
break;
dp[0][j] = 1;
}
return dp;
}
int uniquePathsWithObstacles(int** obstacleGrid, int obstacleGridSize, int* obstacleGridColSize){
int m = obstacleGridSize, n = *obstacleGridColSize;
//初始化dp数组
int **dp = initDP(m, n, obstacleGrid);
int i, j;
for(i = 1; i < m; ++i) {
for(j = 1; j < n; ++j) {
//若当前i,j位置有障碍
if(obstacleGrid[i][j])
//路线不同
dp[i][j] = 0;
else
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
//返回最后终点的路径个数
return dp[m-1][n-1];
}
object Solution {
import scala.util.control.Breaks._
def uniquePathsWithObstacles(obstacleGrid: Array[Array[Int]]): Int = {
var (m, n) = (obstacleGrid.length, obstacleGrid(0).length)
var dp = Array.ofDim[Int](m, n)
// 比如break、continue这些流程控制需要使用breakable
breakable(
for (i <- 0 until m) {
if (obstacleGrid(i)(0) != 1) dp(i)(0) = 1
else break()
}
)
breakable(
for (j <- 0 until n) {
if (obstacleGrid(0)(j) != 1) dp(0)(j) = 1
else break()
}
)
for (i <- 1 until m; j <- 1 until n; if obstacleGrid(i)(j) != 1) {
dp(i)(j) = dp(i - 1)(j) + dp(i)(j - 1)
}
dp(m - 1)(n - 1)
}
}