-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_nn_infer.py
274 lines (176 loc) · 6.01 KB
/
test_nn_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/usr/bin/env python3
__copyright__ = "Copyright 2018, Elphel, Inc."
__license__ = "GPL-3.0+"
__email__ = "[email protected]"
'''
Open all tiffs in a folder, combine a single tiff from randomly selected
tiles from originals
'''
from PIL import Image
import os
import sys
import glob
import imagej_tiff as ijt
import pack_tile as pile
import numpy as np
import itertools
import time
#http://stackoverflow.com/questions/287871/print-in-terminal-with-colors-using-python
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[38;5;214m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
BOLDWHITE = '\033[1;37m'
UNDERLINE = '\033[4m'
def print_time():
print(bcolors.BOLDWHITE+"time: "+str(time.time())+bcolors.ENDC)
# USAGE: python3 test_3.py some-path
VALUES_LAYER_NAME = 'other'
LAYERS_OF_INTEREST = ['diagm-pair', 'diago-pair', 'hor-pairs', 'vert-pairs']
RADIUS = 1
TILE_PACKING_TYPE = 1
try:
src = sys.argv[1]
except IndexError:
src = "."
print("Importing TensorCrawl")
print_time()
import tensorflow as tf
import tensorflow.contrib.slim as slim
print("TensorCrawl imported")
print_time()
result_dir = './result/'
checkpoint_dir = './result/'
save_freq = 500
def lrelu(x):
return tf.maximum(x*0.2,x)
def network(input):
fc1 = slim.fully_connected(input,1024,activation_fn=lrelu,scope='g_fc1')
fc2 = slim.fully_connected(fc1, 2,activation_fn=lrelu,scope='g_fc2')
return fc2
#fc2 = slim.fully_connected(fc1, 1024,activation_fn=lrelu,scope='g_fc2')
#fc3 = slim.fully_connected(fc2, 512,activation_fn=lrelu,scope='g_fc3')
#fc4 = slim.fully_connected(fc3, 8,activation_fn=lrelu,scope='g_fc4')
#fc5 = slim.fully_connected(fc4, 4,activation_fn=lrelu,scope='g_fc5')
#fc6 = slim.fully_connected(fc5, 2,activation_fn=lrelu,scope='g_fc6')
#return fc6
sess = tf.Session()
if TILE_PACKING_TYPE==1:
in_tile = tf.placeholder(tf.float32,[None,101])
elif TILE_PACKING_TYPE==2:
in_tile = tf.placeholder(tf.float32,[None,105])
gt = tf.placeholder(tf.float32,[None,2])
out = network(in_tile)
#G_loss = tf.reduce_mean(tf.abs(out[:,0]-gt[:,0]))
#t_vars=tf.trainable_variables()
#lr=tf.placeholder(tf.float32)
#G_opt=tf.train.AdamOptimizer(learning_rate=lr).minimize(G_loss,var_list=[var for var in t_vars if #var.name.startswith('g_')])
saver=tf.train.Saver()
sess.run(tf.global_variables_initializer())
ckpt=tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt:
print('loaded '+ckpt.model_checkpoint_path)
saver.restore(sess,ckpt.model_checkpoint_path)
# do not need output for now
#if not os.path.isdir(result_dir + 'final/'):
# os.makedirs(result_dir + 'final/')
tlist = glob.glob(src+"/*.tiff")
print("\n".join(tlist))
print("Found "+str(len(tlist))+" preprocessed tiff files:")
print_time()
''' WARNING, assuming:
- timestamps and part of names match
- layer order and names are identical
'''
# Now PROCESS
for item in tlist:
print(bcolors.OKGREEN+"Processing "+item+bcolors.ENDC)
# open the first one to get dimensions and other info
tiff = ijt.imagej_tiff(item)
# shape as tiles? make a copy or make writeable
# (242, 324, 9, 9, 5)
# get labels
labels = tiff.labels.copy()
labels.remove(VALUES_LAYER_NAME)
print("Image data layers: "+str(labels))
print("Layers of interest: "+str(LAYERS_OF_INTEREST))
print("Values layer: "+str([VALUES_LAYER_NAME]))
# create copies
tiles = np.copy(tiff.getstack(labels,shape_as_tiles=True))
# need values? Well, just to compare
values = np.copy(tiff.getvalues(label=VALUES_LAYER_NAME))
#gt = values[:,:,1:3]
print("Mixed tiled input data shape: "+str(tiles.shape))
#print_time()
# now pack from 9x9 to 1x25
# tiles and values
# might not need it because going to loop through anyway
if TILE_PACKING_TYPE==1:
packed_tiles = pile.pack(tiles)
elif TILE_PACKING_TYPE==2:
packed_tiles = pile.pack(tiles,TILE_PACKING_TYPE)
packed_tiles = np.dstack((packed_tiles,values[:,:,0]))
print(packed_tiles.shape)
print("ENDDD!")
# NO
# flatten
#packed_tiles_flat = packed_tiles.reshape(-1, packed_tiles.shape[-1])
#values_flat = values.reshape(-1, values.shape[-1])
#print("Packed (81x4 -> 1x(25*4+1)) tiled input shape: "+str(packed_tiles_flat.shape))
#print("Values shape "+str(values_flat.shape))
#print_time()
# do line by line?!
output_image = np.empty((packed_tiles.shape[0],packed_tiles.shape[1],2))
print("Output shape = "+str(output_image.shape))
for i in range(packed_tiles.shape[0]):
# now run prediction
packed_tiles_flat = packed_tiles[i]
values_flat = values[i]
# whole row at once
output = sess.run(out,feed_dict={in_tile:packed_tiles_flat})
output_image[i] = output
# so, let's print
for j in range(packed_tiles.shape[0]):
p = output[j,0]
pc = output[j,1]
fv = values_flat[j,0]
gt = values_flat[j,1]
cf = values_flat[j,2]
vstring = "["+"{0:.2f}".format(fv)+", "+"{0:.2f}".format(gt)+", "+"{0:.2f}".format(cf)+"]"
pstring = "["+"{0:.2f}".format(p)+", "+"{0:.2f}".format(pc)+"]"
if not np.isnan(p):
outstring = "i,j: "+str(i)+" "+str(j)+" Values: "+vstring+" Prediction: "+pstring
if abs(cf)<0.5:
print(outstring)
#pass
else:
print(bcolors.WARNING+outstring+bcolors.ENDC)
sess.close()
import imagej_tiffwriter
# 1 prediction
# 2 ground truth
# difference 1 - 2
im1 = output_image[:,:,0]
im2 = values[:,:,1]
im3 = im1-im2
tif = np.dstack((im1,im2,im3))
im3 = np.ravel(im3)
print(im3.shape)
im4 = im3[~np.isnan(im3)]
rms = np.sqrt(np.mean(np.square(im4)))
print("RMS = "+str(rms))
imagej_tiffwriter.save('prediction_results.tiff',tif)
#sys.exit(0)
#else:
# print("i: "+str(i)+" NaNs")
# check histogram:
#import matplotlib.pyplot as plt
#x = np.histogram(values_flat[:,2])
#plt.hist(x, bins=100)
#plt.ylabel('Confidence')
print_time()
print(bcolors.OKGREEN+"time: "+str(time.time())+bcolors.ENDC)