-
Notifications
You must be signed in to change notification settings - Fork 0
/
nn_ds_neibs17.py
687 lines (591 loc) · 34.3 KB
/
nn_ds_neibs17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
#!/usr/bin/env python3
##from numpy import float64
##from tensorflow.contrib.losses.python.metric_learning.metric_loss_ops import npairs_loss
##from debian.deb822 import PdiffIndex
__copyright__ = "Copyright 2018, Elphel, Inc."
__license__ = "GPL-3.0+"
__email__ = "[email protected]"
#python3 nn_ds_neibs17.py /home/eyesis/x3d_data/data_sets/conf/qcstereo_conf13.xml /home/eyesis/x3d_data/data_sets
import os
import sys
import numpy as np
import time
import shutil
from threading import Thread
import qcstereo_network
import qcstereo_losses
import qcstereo_functions as qsf
qsf.TIME_START = time.time()
qsf.TIME_LAST = qsf.TIME_START
IMG_WIDTH = 324 # tiles per image row
DEBUG_LEVEL= 1
try:
conf_file = sys.argv[1]
except IndexError:
print("Configuration path is required as a first argument. Optional second argument specifies root directory for data files")
exit(1)
try:
root_dir = sys.argv[2]
except IndexError:
root_dir = os.path.dirname(conf_file)
print ("Configuration file: " + conf_file)
parameters, dirs, files, _ = qsf.parseXmlConfig(conf_file, root_dir)
"""
Temporarily for backward compatibility
"""
if not "SLOSS_CLIP" in parameters:
parameters['SLOSS_CLIP'] = 0.5
print ("Old config, setting SLOSS_CLIP=", parameters['SLOSS_CLIP'])
"""
Defined in config file
"""
TILE_SIDE, TILE_LAYERS, TWO_TRAINS, NET_ARCH1, NET_ARCH2 = [None]*5
ABSOLUTE_DISPARITY,SYM8_SUB, WLOSS_LAMBDA, SLOSS_LAMBDA, SLOSS_CLIP = [None]*5
SPREAD_CONVERGENCE, INTER_CONVERGENCE, HOR_FLIP, DISP_DIFF_CAP, DISP_DIFF_SLOPE = [None]*5
CLUSTER_RADIUS = None
PARTIALS_WEIGHTS, MAX_IMGS_IN_MEM, MAX_FILES_PER_GROUP, BATCH_WEIGHTS, ONLY_TILE = [None] * 5
USE_CONFIDENCE, WBORDERS_ZERO, EPOCHS_TO_RUN, FILE_UPDATE_EPOCHS = [None] * 4
LR600,LR400,LR200,LR100,LR = [None]*5
SHUFFLE_FILES, EPOCHS_FULL_TEST, SAVE_TIFFS = [None] * 3
TRAIN_BUFFER_GPU, TRAIN_BUFFER_CPU = [None]*2
"""
Next gets globals from the config file
"""
globals().update(parameters)
TRAIN_BUFFER_SIZE = TRAIN_BUFFER_GPU * TRAIN_BUFFER_CPU # in merged (quad) batches
#exit(0)
TILE_SIZE = TILE_SIDE* TILE_SIDE # == 81
FEATURES_PER_TILE = TILE_LAYERS * TILE_SIZE# == 324
BATCH_SIZE = ([1,2][TWO_TRAINS])*2*1000//25 # == 80 Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches
SUFFIX=(str(NET_ARCH1)+'-'+str(NET_ARCH2)+
(["R","A"][ABSOLUTE_DISPARITY]) +
(["NS","S8"][SYM8_SUB])+
"WLAM"+str(WLOSS_LAMBDA)+
"SLAM"+str(SLOSS_LAMBDA)+
"SCLP"+str(SLOSS_CLIP)+
(['_nG','_G'][SPREAD_CONVERGENCE])+
(['_nI','_I'][INTER_CONVERGENCE]) +
(['_nHF',"_HF"][HOR_FLIP]) +
('_CP'+str(DISP_DIFF_CAP)) +
('_S'+str(DISP_DIFF_SLOPE))
)
NN_LAYOUTS = {0:[0, 0, 0, 32, 20, 16],
1:[0, 0, 0, 256, 128, 64],
2:[0, 128, 32, 32, 32, 16],
3:[0, 0, 40, 32, 20, 16],
4:[0, 0, 0, 0, 16, 16],
5:[0, 0, 64, 32, 32, 16],
6:[0, 0, 32, 16, 16, 16],
7:[0, 0, 64, 16, 16, 16],
8:[0, 0, 0, 64, 20, 16],
9:[0, 0, 256, 64, 32, 16],
10:[0, 256, 128, 64, 32, 16],
11:[0, 0, 0, 0, 64, 32],
}
NN_LAYOUT1 = NN_LAYOUTS[NET_ARCH1]
NN_LAYOUT2 = NN_LAYOUTS[NET_ARCH2]
USE_PARTIALS = not PARTIALS_WEIGHTS is None # False - just a single Siamese net, True - partial outputs that use concentric squares of the first level subnets
# Tiff export slice labels
SLICE_LABELS = ["nn_out_ext","hier_out_ext","gt_disparity","gt_strength",
"cutcorn_cost_nw","cutcorn_cost",
"gt-avg_dist","avg8_disp","gt_disp","out-avg"]
##############################################################################
cluster_size = (2 * CLUSTER_RADIUS + 1) * (2 * CLUSTER_RADIUS + 1)
center_tile_index = 2 * CLUSTER_RADIUS * (CLUSTER_RADIUS + 1)
qsf.prepareFiles(dirs, files, suffix = SUFFIX)
partials = None
partials = qsf.concentricSquares(CLUSTER_RADIUS)
PARTIALS_WEIGHTS = [1.0*pw/sum(PARTIALS_WEIGHTS) for pw in PARTIALS_WEIGHTS]
if not USE_PARTIALS:
partials = partials[0:1]
PARTIALS_WEIGHTS = [1.0]
import tensorflow as tf
qsf.evaluateAllResults(result_files = files['result'],
absolute_disparity = ABSOLUTE_DISPARITY,
cluster_radius = CLUSTER_RADIUS,
labels = SLICE_LABELS)
image_data = qsf.initImageData(
files = files,
max_imgs = MAX_IMGS_IN_MEM,
cluster_radius = CLUSTER_RADIUS,
tile_layers = TILE_LAYERS,
tile_side = TILE_SIDE,
width = IMG_WIDTH,
replace_nans = True)
corr2d_len, target_disparity_len, _ = qsf.get_lengths(CLUSTER_RADIUS, TILE_LAYERS, TILE_SIDE)
train_next, dataset_train, datasets_test= qsf.initTrainTestData(
files = files,
cluster_radius = CLUSTER_RADIUS,
buffer_size = TRAIN_BUFFER_SIZE * BATCH_SIZE) # number of clusters per train
corr2d_train_placeholder = tf.placeholder(dataset_train.dtype, (None,FEATURES_PER_TILE * cluster_size)) # corr2d_train.shape)
target_disparity_train_placeholder = tf.placeholder(dataset_train.dtype, (None,1 * cluster_size)) #target_disparity_train.shape)
gt_ds_train_placeholder = tf.placeholder(dataset_train.dtype, (None,2 * cluster_size)) #gt_ds_train.shape)
dataset_tt = tf.data.Dataset.from_tensor_slices({
"corr2d": corr2d_train_placeholder,
"target_disparity": target_disparity_train_placeholder,
"gt_ds": gt_ds_train_placeholder})
tf_batch_weights = tf.placeholder(shape=(None,), dtype=tf.float32, name = "batch_weights") # way to increase importance of the high variance clusters
feed_batch_weights = np.array(BATCH_WEIGHTS*(BATCH_SIZE//len(BATCH_WEIGHTS)), dtype=np.float32)
feed_batch_weight_1 = np.array([1.0], dtype=np.float32)
dataset_test_size = len(datasets_test[0])
dataset_test_size //= BATCH_SIZE
dataset_img_size = len(image_data[0]['corr2d'])
dataset_img_size //= BATCH_SIZE
dataset_tt = dataset_tt.batch(BATCH_SIZE)
dataset_tt = dataset_tt.prefetch(BATCH_SIZE)
iterator_tt = dataset_tt.make_initializable_iterator()
next_element_tt = iterator_tt.get_next()
result_dir = './attic/result_neibs_'+ SUFFIX+'/'
checkpoint_dir = './attic/result_neibs_'+ SUFFIX+'/'
save_freq = 500
def debug_gt_variance(
indx, # This tile index (0..8)
center_indx, # center tile index
gt_ds_batch # [?:9:2]
):
with tf.name_scope("Debug_GT_Variance"):
d_gt_this = tf.reshape(gt_ds_batch[:,2 * indx],[-1], name = "d_this")
d_gt_center = tf.reshape(gt_ds_batch[:,2 * center_indx],[-1], name = "d_center")
d_gt_diff = tf.subtract(d_gt_this, d_gt_center, name = "d_diff")
d_gt_diff2 = tf.multiply(d_gt_diff, d_gt_diff, name = "d_diff2")
d_gt_var = tf.reduce_mean(d_gt_diff2, name = "d_gt_var")
return d_gt_var
target_disparity_cluster = tf.reshape(next_element_tt['target_disparity'], [-1,cluster_size, 1], name="targdisp_cluster")
corr2d_Nx325 = tf.concat([tf.reshape(next_element_tt['corr2d'],[-1,cluster_size,FEATURES_PER_TILE], name="coor2d_cluster"),
target_disparity_cluster], axis=2, name = "corr2d_Nx325")
if SPREAD_CONVERGENCE:
outs, inp_weights = qcstereo_network.networks_siam(
input = corr2d_Nx325,
input_global = target_disparity_cluster,
layout1 = NN_LAYOUT1,
layout2 = NN_LAYOUT2,
inter_convergence = INTER_CONVERGENCE,
sym8 = SYM8_SUB,
only_tile = ONLY_TILE, #Remove/put None for normal operation
partials = partials,
use_confidence= USE_CONFIDENCE)
else:
outs, inp_weights = qcstereo_network.networks_siam(
input_tensor= corr2d_Nx325,
input_global = None,
layout1 = NN_LAYOUT1,
layout2 = NN_LAYOUT2,
inter_convergence = False,
sym8 = SYM8_SUB,
only_tile = ONLY_TILE, #Remove/put None for normal operation
partials = partials,
use_confidence= USE_CONFIDENCE)
tf_partial_weights = tf.constant(PARTIALS_WEIGHTS,dtype=tf.float32,name="partial_weights")
G_losses = [0.0]*len(partials)
target_disparity_batch= next_element_tt['target_disparity'][:,center_tile_index:center_tile_index+1]
gt_ds_batch_clust = next_element_tt['gt_ds']
gt_ds_batch = gt_ds_batch_clust[:,2 * center_tile_index: 2 * (center_tile_index +1)]
G_losses[0], _disp_slice, _d_gt_slice, _out_diff, _out_diff2, _w_norm, _out_wdiff2, _cost1 = qcstereo_losses.batchLoss(
out_batch = outs[0], # [batch_size,(1..2)] tf_result
target_disparity_batch= target_disparity_batch, # next_element_tt['target_disparity'][:,center_tile_index:center_tile_index+1], # target_disparity_batch_center, # next_element_tt['target_disparity'], # target_disparity, ### target_d, # [batch_size] tf placeholder
gt_ds_batch = gt_ds_batch, # next_element_tt['gt_ds'][:,2 * center_tile_index: 2 * (center_tile_index +1)], # gt_ds_batch_center, ## next_element_tt['gt_ds'], # gt_ds, ### gt, # [batch_size,2] tf placeholder
batch_weights = tf_batch_weights,
disp_diff_cap = DISP_DIFF_CAP,
disp_diff_slope= DISP_DIFF_SLOPE,
absolute_disparity = ABSOLUTE_DISPARITY,
use_confidence = USE_CONFIDENCE, # True,
lambda_conf_avg = 0.01,
## lambda_conf_pwr = 0.1,
conf_pwr = 2.0,
gt_conf_offset = 0.08,
gt_conf_pwr = 2.0,
error2_offset = 0, # 0.0025, # (0.05^2)
disp_wmin = 1.0, # minimal disparity to apply weight boosting for small disparities
disp_wmax = 8.0, # maximal disparity to apply weight boosting for small disparities
use_out = False) # use calculated disparity for disparity weight boosting (False - use target disparity)
G_loss = G_losses[0]
for n in range (1,len(partials)):
G_losses[n], _, _, _, _, _, _, _ = qcstereo_losses.batchLoss(
out_batch = outs[n], # [batch_size,(1..2)] tf_result
target_disparity_batch= target_disparity_batch, #next_element_tt['target_disparity'][:,center_tile_index:center_tile_index+1], # target_disparity_batch_center, # next_element_tt['target_disparity'], # target_disparity, ### target_d, # [batch_size] tf placeholder
gt_ds_batch = gt_ds_batch, # next_element_tt['gt_ds'][:,2 * center_tile_index: 2 * (center_tile_index +1)], # gt_ds_batch_center, ## next_element_tt['gt_ds'], # gt_ds, ### gt, # [batch_size,2] tf placeholder
batch_weights = tf_batch_weights,
disp_diff_cap = DISP_DIFF_CAP,
disp_diff_slope= DISP_DIFF_SLOPE,
absolute_disparity = ABSOLUTE_DISPARITY,
use_confidence = USE_CONFIDENCE, # True,
lambda_conf_avg = 0.01,
# lambda_conf_pwr = 0.1,
conf_pwr = 2.0,
gt_conf_offset = 0.08,
gt_conf_pwr = 2.0,
error2_offset = 0, # 0.0025, # (0.05^2)
disp_wmin = 1.0, # minimal disparity to apply weight boosting for small disparities
disp_wmax = 8.0, # maximal disparity to apply weight boosting for small disparities
use_out = False) # use calculated disparity for disparity weight boosting (False - use target disparity)
tf_wlosses = tf.multiply(G_losses, tf_partial_weights, name = "tf_wlosses")
G_losses_sum = tf.reduce_sum(tf_wlosses, name = "G_losses_sum")
if SLOSS_LAMBDA > 0:
S_loss, rslt_cost_nw, rslt_cost_w, rslt_d , rslt_avg_disparity, rslt_gt_disparity, rslt_offs = qcstereo_losses.smoothLoss(
out_batch = outs[0], # [batch_size,(1..2)] tf_result
target_disparity_batch = target_disparity_batch, # [batch_size] tf placeholder
gt_ds_batch_clust = gt_ds_batch_clust, # [batch_size,25,2] tf placeholder
clip = SLOSS_CLIP,
absolute_disparity = ABSOLUTE_DISPARITY, #when false there should be no activation on disparity output !
cluster_radius = CLUSTER_RADIUS)
GS_loss = tf.add(G_losses_sum, SLOSS_LAMBDA * S_loss, name = "GS_loss")
else:
S_loss = tf.constant(0.0, dtype=tf.float32,name = "S_loss")
GS_loss = G_losses_sum # G_loss
if WLOSS_LAMBDA > 0.0:
W_loss = qcstereo_losses.weightsLoss(
inp_weights = inp_weights[0], # inp_weights - list of tensors, currently - just [0]
tile_layers= TILE_LAYERS, # 4
tile_side = TILE_SIDE, # 9
wborders_zero = WBORDERS_ZERO)
GW_loss = tf.add(GS_loss, WLOSS_LAMBDA * W_loss, name = "GW_loss")
else:
GW_loss = GS_loss # G_loss
W_loss = tf.constant(0.0, dtype=tf.float32,name = "W_loss")
GT_variance = debug_gt_variance(indx = 0, # This tile index (0..8)
center_indx = 4, # center tile index
gt_ds_batch = next_element_tt['gt_ds'])# [?:18]
tf_ph_G_loss = tf.placeholder(tf.float32,shape=None,name='G_loss_avg')
tf_ph_G_losses = tf.placeholder(tf.float32,shape=[len(partials)],name='G_losses_avg')
tf_ph_S_loss = tf.placeholder(tf.float32,shape=None,name='S_loss_avg')
tf_ph_W_loss = tf.placeholder(tf.float32,shape=None,name='W_loss_avg')
tf_ph_GW_loss = tf.placeholder(tf.float32,shape=None,name='GW_loss_avg')
tf_ph_sq_diff = tf.placeholder(tf.float32,shape=None,name='sq_diff_avg')
tf_gtvar_diff = tf.placeholder(tf.float32,shape=None,name='gtvar_diff')
tf_img_test0 = tf.placeholder(tf.float32,shape=None,name='img_test0')
tf_img_test9 = tf.placeholder(tf.float32,shape=None,name='img_test9')
with tf.name_scope('sample'):
tf.summary.scalar("GW_loss", GW_loss)
tf.summary.scalar("G_loss", G_loss)
tf.summary.scalar("S_loss", S_loss)
tf.summary.scalar("W_loss", W_loss)
tf.summary.scalar("sq_diff", _cost1)
tf.summary.scalar("gtvar_diff", GT_variance)
with tf.name_scope('epoch_average'):
for i in range(tf_ph_G_losses.shape[0]):
tf.summary.scalar("G_loss_epoch_"+str(i), tf_ph_G_losses[i])
tf.summary.scalar("GW_loss_epoch", tf_ph_GW_loss)
tf.summary.scalar("G_loss_epoch", tf_ph_G_loss)
tf.summary.scalar("S_loss_epoch", tf_ph_S_loss)
tf.summary.scalar("W_loss_epoch", tf_ph_W_loss)
tf.summary.scalar("sq_diff_epoch", tf_ph_sq_diff)
tf.summary.scalar("gtvar_diff", tf_gtvar_diff)
tf.summary.scalar("img_test0", tf_img_test0)
tf.summary.scalar("img_test9", tf_img_test9)
t_vars= tf.trainable_variables()
lr= tf.placeholder(tf.float32)
G_opt= tf.train.AdamOptimizer(learning_rate=lr).minimize(GW_loss)
ROOT_PATH = './attic/nn_ds_neibs17_graph'+SUFFIX+"/"
TRAIN_PATH = ROOT_PATH + 'train'
TEST_PATH = ROOT_PATH + 'test'
TEST_PATH1 = ROOT_PATH + 'test1'
# CLEAN OLD STAFF
shutil.rmtree(TRAIN_PATH, ignore_errors=True)
shutil.rmtree(TEST_PATH, ignore_errors=True)
shutil.rmtree(TEST_PATH1, ignore_errors=True)
WIDTH=324
HEIGHT=242
num_train_subs = len(train_next) # number of (different type) merged training sets
dataset_train_size = TRAIN_BUFFER_GPU * num_train_subs # TRAIN_BUFFER_SIZE
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(TRAIN_PATH, sess.graph)
test_writer = tf.summary.FileWriter(TEST_PATH, sess.graph)
test_writer1 = tf.summary.FileWriter(TEST_PATH1, sess.graph)
loss_gw_train_hist= np.empty(dataset_train_size, dtype=np.float32)
loss_g_train_hist= np.empty(dataset_train_size, dtype=np.float32)
loss_g_train_hists= [np.empty(dataset_train_size, dtype=np.float32) for p in partials]
loss_s_train_hist= np.empty(dataset_train_size, dtype=np.float32)
loss_w_train_hist= np.empty(dataset_train_size, dtype=np.float32)
loss_gw_test_hist= np.empty(dataset_test_size, dtype=np.float32)
loss_g_test_hists= [np.empty(dataset_test_size, dtype=np.float32) for p in partials]
loss_s_test_hist= np.empty(dataset_test_size, dtype=np.float32)
loss_w_test_hist= np.empty(dataset_test_size, dtype=np.float32)
loss2_train_hist= np.empty(dataset_train_size, dtype=np.float32)
loss2_test_hist= np.empty(dataset_test_size, dtype=np.float32)
train_gw_avg = 0.0
train_g_avg = 0.0
train_g_avgs = [0.0]*len(partials)
train_w_avg = 0.0
train_s_avg = 0.0
test_gw_avg = 0.0
test_g_avg = 0.0
test_g_avgs = [0.0]*len(partials)
test_w_avg = 0.0
test_s_avg = 0.0
train2_avg = 0.0
test2_avg = 0.0
gtvar_train_hist= np.empty(dataset_train_size, dtype=np.float32)
gtvar_test_hist= np.empty(dataset_test_size, dtype=np.float32)
gtvar_train = 0.0
gtvar_test = 0.0
gtvar_train_avg = 0.0
gtvar_test_avg = 0.0
img_gain_test0 = 1.0
img_gain_test9 = 1.0
thr=None
thr_result = None
trains_to_update = [train_next[n_train]['more_files'] for n_train in range(len(train_next))]
for epoch in range (EPOCHS_TO_RUN):
"""
update files after each epoch, all 4.
Convert to threads after testing
"""
if (FILE_UPDATE_EPOCHS > 0) and (epoch % FILE_UPDATE_EPOCHS == 0):
if not thr is None:
if thr.is_alive():
qsf.print_time("***WAITING*** until tfrecord gets loaded", end=" ")
else:
qsf.print_time("tfrecord is ***ALREADY LOADED*** loaded", end=" ")
thr.join()
qsf.print_time("Done")
qsf.print_time("Inserting new data", end=" ")
for n_train in range(len(trains_to_update)):
if trains_to_update[n_train]:
qsf.add_file_to_dataset(dataset = dataset_train,
new_dataset = thr_result[n_train],
train_next = train_next[n_train])
qsf.print_time("Done")
thr_result = []
fpaths = []
for n_train in range(len(trains_to_update)):
if trains_to_update[n_train]:
fpaths.append(files['train'][n_train][train_next[n_train]['file']])
qsf.print_time("Will read in background: "+fpaths[-1])
thr = Thread(target=qsf.getMoreFiles, args=(fpaths,thr_result, CLUSTER_RADIUS, HOR_FLIP, TILE_LAYERS, TILE_SIDE))
thr.start()
train_buf_index = epoch % TRAIN_BUFFER_CPU # GPU memory from CPU memory (now 4)
if epoch >=600:
learning_rate = LR600
elif epoch >=400:
learning_rate = LR400
elif epoch >=200:
learning_rate = LR200
elif epoch >=100:
learning_rate = LR100
else:
learning_rate = LR
if (train_buf_index == 0) and SHUFFLE_FILES:
qsf.print_time("Shuffling how datasets datasets_train_lvar and datasets_train_hvar are zipped together", end="")
qsf.shuffle_in_place(
dataset_data = dataset_train, #alternating clusters from 4 sources.each cluster has all needed data (concatenated)
period = num_train_subs)
qsf.print_time(" Done")
sti = train_buf_index * dataset_train_size * BATCH_SIZE # TRAIN_BUFFER_GPU * num_train_subs
eti = sti+ dataset_train_size * BATCH_SIZE# (train_buf_index +1) * TRAIN_BUFFER_GPU * num_train_subs
sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder: dataset_train[sti:eti,:corr2d_len],
target_disparity_train_placeholder: dataset_train[sti:eti,corr2d_len:corr2d_len+target_disparity_len],
gt_ds_train_placeholder: dataset_train[sti:eti,corr2d_len+target_disparity_len:] })
for i in range(dataset_train_size):
try:
train_summary,_, GW_loss_trained, G_losses_trained, S_loss_trained, W_loss_trained, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, gt_variance = sess.run(
[ merged,
G_opt,
GW_loss,
G_losses,
S_loss,
W_loss,
outs[0],
_disp_slice,
_d_gt_slice,
_out_diff,
_out_diff2,
_w_norm,
_out_wdiff2,
_cost1,
GT_variance
],
feed_dict={tf_batch_weights: feed_batch_weights,
lr: learning_rate,
tf_ph_GW_loss: train_gw_avg,
tf_ph_G_loss: train_g_avgs[0], #train_g_avg,
tf_ph_G_losses: train_g_avgs,
tf_ph_S_loss: train_s_avg,
tf_ph_W_loss: train_w_avg,
tf_ph_sq_diff: train2_avg,
tf_gtvar_diff: gtvar_train_avg,
tf_img_test0: img_gain_test0,
tf_img_test9: img_gain_test9}) # previous value of *_avg #Fetch argument 0.0 has invalid type <class 'float'>, must be a string or Tensor. (Can not convert a float into a Tensor or Operation.)
loss_gw_train_hist[i] = GW_loss_trained
for nn, gl in enumerate(G_losses_trained):
loss_g_train_hists[nn][i] = gl
loss_s_train_hist[i] = S_loss_trained
loss_w_train_hist[i] = W_loss_trained
loss2_train_hist[i] = out_cost1
gtvar_train_hist[i] = gt_variance
except tf.errors.OutOfRangeError:
print("****** NO MORE DATA! train done at step %d"%(i))
break
train_gw_avg = np.average(loss_gw_train_hist).astype(np.float32)
train_g_avg = np.average(loss_g_train_hist).astype(np.float32)
for nn, lgth in enumerate(loss_g_train_hists):
train_g_avgs[nn] = np.average(lgth).astype(np.float32)
train_s_avg = np.average(loss_s_train_hist).astype(np.float32)
train_w_avg = np.average(loss_w_train_hist).astype(np.float32)
train2_avg = np.average(loss2_train_hist).astype(np.float32)
gtvar_train_avg = np.average(gtvar_train_hist).astype(np.float32)
test_summaries = [0.0]*len(datasets_test)
tst_avg = [0.0]*len(datasets_test)
tst2_avg = [0.0]*len(datasets_test)
for ntest,dataset_test in enumerate(datasets_test):
sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder: dataset_test[:, :corr2d_len], #['corr2d'],
target_disparity_train_placeholder: dataset_test[:, corr2d_len:corr2d_len+target_disparity_len], # ['target_disparity'],
gt_ds_train_placeholder: dataset_test[:, corr2d_len+target_disparity_len:] }) # ['gt_ds']})
for i in range(dataset_test_size):
try:
test_summaries[ntest], GW_loss_tested, G_losses_tested, S_loss_tested, W_loss_tested, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, gt_variance = sess.run(
[merged,
GW_loss,
G_losses,
S_loss,
W_loss,
outs[0],
_disp_slice,
_d_gt_slice,
_out_diff,
_out_diff2,
_w_norm,
_out_wdiff2,
_cost1,
GT_variance
],
feed_dict={tf_batch_weights: feed_batch_weight_1 , # feed_batch_weights,
lr: learning_rate,
tf_ph_GW_loss: test_gw_avg,
tf_ph_G_loss: test_g_avg,
tf_ph_G_losses: test_g_avgs, # train_g_avgs, # temporary, there is o data fro test
tf_ph_S_loss: test_s_avg,
tf_ph_W_loss: test_w_avg,
tf_ph_sq_diff: test2_avg,
tf_gtvar_diff: gtvar_test_avg,
tf_img_test0: img_gain_test0,
tf_img_test9: img_gain_test9}) # previous value of *_avg
loss_gw_test_hist[i] = GW_loss_tested
for nn, gl in enumerate(G_losses_tested):
loss_g_test_hists[nn][i] = gl
loss_s_test_hist[i] = S_loss_tested
loss_w_test_hist[i] = W_loss_tested
loss2_test_hist[i] = out_cost1
gtvar_test_hist[i] = gt_variance
except tf.errors.OutOfRangeError:
print("test done at step %d"%(i))
break
test_gw_avg = np.average(loss_gw_test_hist).astype(np.float32)
for nn, lgth in enumerate(loss_g_test_hists):
test_g_avgs[nn] = np.average(lgth).astype(np.float32)
test_s_avg = np.average(loss_s_test_hist).astype(np.float32)
test_w_avg = np.average(loss_w_test_hist).astype(np.float32)
tst_avg[ntest] = test_gw_avg
test2_avg = np.average(loss2_test_hist).astype(np.float32)
tst2_avg[ntest] = test2_avg
gtvar_test_avg = np.average(gtvar_test_hist).astype(np.float32)
train_writer.add_summary(train_summary, epoch)
test_writer.add_summary(test_summaries[0], epoch)
test_writer1.add_summary(test_summaries[1], epoch)
qsf.print_time("==== %d:%d -> %f %f %f (%f %f %f) dbg:%f %f ===="%(epoch,i,train_gw_avg, tst_avg[0], tst_avg[1], train2_avg, tst2_avg[0], tst2_avg[1], gtvar_train_avg, gtvar_test_avg))
if (((epoch + 1) == EPOCHS_TO_RUN) or (((epoch + 1) % EPOCHS_FULL_TEST) == 0)) and (len(image_data) > 0) :
if (epoch + 1) == EPOCHS_TO_RUN: # last
print("Last epoch, removing train/test datasets to reduce memory footprint")
del(dataset_train)
del(dataset_test)
last_epoch = (epoch + 1) == EPOCHS_TO_RUN
ind_img = [0]
if last_epoch:
ind_img = [i for i in range(len(image_data))]
###################################################
# Read the full image
###################################################
test_summaries_img = [0.0]*len(ind_img) # datasets_img)
disp_out= np.empty((WIDTH*HEIGHT), dtype=np.float32)
dbg_cost_nw= np.empty((WIDTH*HEIGHT), dtype=np.float32)
dbg_cost_w= np.empty((WIDTH*HEIGHT), dtype=np.float32)
dbg_d= np.empty((WIDTH*HEIGHT), dtype=np.float32)
dbg_avg_disparity = np.empty((WIDTH*HEIGHT), dtype=np.float32)
dbg_gt_disparity = np.empty((WIDTH*HEIGHT), dtype=np.float32)
dbg_offs = np.empty((WIDTH*HEIGHT), dtype=np.float32)
for ntest in ind_img: # datasets_img):
dataset_img = qsf.readImageData(
image_data = image_data,
files = files,
indx = ntest,
cluster_radius = CLUSTER_RADIUS,
tile_layers = TILE_LAYERS,
tile_side = TILE_SIDE,
width = IMG_WIDTH,
replace_nans = True)
sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder: dataset_img['corr2d'],
target_disparity_train_placeholder: dataset_img['target_disparity'],
gt_ds_train_placeholder: dataset_img['gt_ds']})
for start_offs in range(0,disp_out.shape[0],BATCH_SIZE):
end_offs = min(start_offs+BATCH_SIZE,disp_out.shape[0])
try:
test_summaries_img[ntest],output, cost_nw, cost_w, dd, avg_disparity, gt_disparity, offs = sess.run(
[merged,
outs[0], # {?,1]
rslt_cost_nw, #[?,]
rslt_cost_w, #[?,]
rslt_d, #[?,]
rslt_avg_disparity,
rslt_gt_disparity,
rslt_offs
],
feed_dict={
tf_batch_weights: feed_batch_weight_1, # feed_batch_weights,
tf_ph_GW_loss: test_gw_avg,
tf_ph_G_loss: test_g_avg,
tf_ph_G_losses: train_g_avgs, # temporary, there is o data for test
tf_ph_S_loss: test_s_avg,
tf_ph_W_loss: test_w_avg,
tf_ph_sq_diff: test2_avg,
tf_gtvar_diff: gtvar_test_avg,
tf_img_test0: img_gain_test0,
tf_img_test9: img_gain_test9}) # previous value of *_avg
except tf.errors.OutOfRangeError:
print("test done at step %d"%(i))
break
try:
disp_out[start_offs:end_offs] = output.flatten()
dbg_cost_nw[start_offs:end_offs] = cost_nw.flatten()
dbg_cost_w [start_offs:end_offs] = cost_w.flatten()
dbg_d[start_offs:end_offs] = dd.flatten()
dbg_avg_disparity[start_offs:end_offs] = avg_disparity.flatten()
dbg_gt_disparity[start_offs:end_offs] = gt_disparity.flatten()
dbg_offs[start_offs:end_offs] = offs.flatten()
except ValueError:
print("dataset_img_size= %d, i=%d, output.shape[0]=%d "%(dataset_img_size, i, output.shape[0]))
break;
pass
result_file = files['result'][ntest] # result_files[ntest]
try:
os.makedirs(os.path.dirname(result_file))
except:
pass
rslt = np.concatenate(
[disp_out.reshape(-1,1),
dataset_img['t_disps'], #t_disps[ntest],
dataset_img['gtruths'], # gtruths[ntest],
dbg_cost_nw.reshape(-1,1),
dbg_cost_w.reshape(-1,1),
dbg_d.reshape(-1,1),
dbg_avg_disparity.reshape(-1,1),
dbg_gt_disparity.reshape(-1,1),
dbg_offs.reshape(-1,1)],1)
np.save(result_file, rslt.reshape(HEIGHT,WIDTH,-1))
rslt = qsf.eval_results(result_file, ABSOLUTE_DISPARITY,radius=CLUSTER_RADIUS)
img_gain_test0 = rslt[0][0]/rslt[0][1]
img_gain_test9 = rslt[9][0]/rslt[9][1]
if SAVE_TIFFS:
qsf.result_npy_to_tiff(result_file, ABSOLUTE_DISPARITY, fix_nan = True,labels=SLICE_LABELS)
"""
Remove dataset_img (if it is not [0] to reduce memory footprint
"""
if ntest > 0:
image_data[ntest] = None
# Close writers
train_writer.close()
test_writer.close()
test_writer1.close()
print("All done")
exit (0)