-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer_qcds_01.py
372 lines (311 loc) · 15.5 KB
/
infer_qcds_01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#!/usr/bin/env python3
from tensorflow.python.framework.ops import GraphKeys
__copyright__ = "Copyright 2018, Elphel, Inc."
__license__ = "GPL-3.0+"
__email__ = "[email protected]"
'''
Builds (and saved) inference model from trained by nn_ds_neibs21.py
Saves the model and weights in 2 formats - using Saver (for Python) and Saved_Model (for Java or Python)
(old line, but still can be used) Model and weights are used by the inference-only infer_qcds_graph.py
Usage:
~$ python3 infer_qcds_01.py qcstereo_conf.xml data_sets
qcstereo_conf.xml - config file with all paths
data_sets - root dir for trained model/checkpoints, etc.
'''
import os
import sys
import numpy as np
import time
import shutil
import qcstereo_network
import qcstereo_functions as qsf
import tensorflow as tf
from tensorflow.python.ops import resource_variable_ops
tf.ResourceVariable = resource_variable_ops.ResourceVariable
qsf.TIME_START = time.time()
qsf.TIME_LAST = qsf.TIME_START
IMG_WIDTH = 324 # tiles per image row
DEBUG_LEVEL= 1
try:
conf_file = sys.argv[1]
except IndexError:
print("Configuration path is required as a first argument. Optional second argument specifies root directory for data files")
exit(1)
try:
root_dir = sys.argv[2]
except IndexError:
root_dir = os.path.dirname(conf_file)
print ("Configuration file: " + conf_file)
parameters, dirs, files, _ = qsf.parseXmlConfig(conf_file, root_dir)
"""
Temporarily for backward compatibility
"""
if not "SLOSS_CLIP" in parameters:
parameters['SLOSS_CLIP'] = 0.5
print ("Old config, setting SLOSS_CLIP=", parameters['SLOSS_CLIP'])
"""
Defined in config file
"""
TILE_SIDE, TILE_LAYERS, TWO_TRAINS, NET_ARCH1, NET_ARCH2 = [None]*5
ABSOLUTE_DISPARITY,SYM8_SUB, WLOSS_LAMBDA, SLOSS_LAMBDA, SLOSS_CLIP = [None]*5
SPREAD_CONVERGENCE, INTER_CONVERGENCE, HOR_FLIP, DISP_DIFF_CAP, DISP_DIFF_SLOPE = [None]*5
CLUSTER_RADIUS = None
PARTIALS_WEIGHTS, MAX_IMGS_IN_MEM, MAX_FILES_PER_GROUP, BATCH_WEIGHTS, ONLY_TILE = [None] * 5
USE_CONFIDENCE, WBORDERS_ZERO, EPOCHS_TO_RUN, FILE_UPDATE_EPOCHS = [None] * 4
LR600,LR400,LR200,LR100,LR = [None]*5
SHUFFLE_FILES, EPOCHS_FULL_TEST, SAVE_TIFFS = [None] * 3
CHECKPOINT_PERIOD = None
TRAIN_BUFFER_GPU, TRAIN_BUFFER_CPU = [None]*2
TEST_TITLES = None
USE_SPARSE_ONLY = True
LOGFILE="results-infer.txt"
"""
Next gets globals from the config file
"""
globals().update(parameters)
WIDTH = 324
HEIGHT = 242
TILE_SIZE = TILE_SIDE* TILE_SIDE # == 81
FEATURES_PER_TILE = TILE_LAYERS * TILE_SIZE# == 324
BATCH_SIZE = ([1,2][TWO_TRAINS])*2*1000//25 # == 80 Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches
SUFFIX=(str(NET_ARCH1)+'-'+str(NET_ARCH2)+
(["R","A"][ABSOLUTE_DISPARITY]) +
(["NS","S8"][SYM8_SUB])+
"WLAM"+str(WLOSS_LAMBDA)+
"SLAM"+str(SLOSS_LAMBDA)+
"SCLP"+str(SLOSS_CLIP)+
(['_nG','_G'][SPREAD_CONVERGENCE])+
(['_nI','_I'][INTER_CONVERGENCE]) +
(['_nHF',"_HF"][HOR_FLIP]) +
('_CP'+str(DISP_DIFF_CAP)) +
('_S'+str(DISP_DIFF_SLOPE))
)
NN_LAYOUT1 = qcstereo_network.NN_LAYOUTS[NET_ARCH1]
NN_LAYOUT2 = qcstereo_network.NN_LAYOUTS[NET_ARCH2]
# Tiff export slice labels
SLICE_LABELS = ["nn_out_ext","hier_out_ext","gt_disparity","gt_strength"]#,
# "cutcorn_cost_nw","cutcorn_cost",
# "gt-avg_dist","avg8_disp","gt_disp","out-avg"]
##############################################################################
cluster_size = (2 * CLUSTER_RADIUS + 1) * (2 * CLUSTER_RADIUS + 1)
center_tile_index = 2 * CLUSTER_RADIUS * (CLUSTER_RADIUS + 1)
qsf.prepareFiles(dirs,
files,
suffix = SUFFIX)
print ("Copying config files to results directory:\n ('%s' -> '%s')"%(conf_file,dirs['result']))
try:
os.makedirs(dirs['result'])
except:
pass
shutil.copy2(conf_file,dirs['result'])
LOGPATH = os.path.join(dirs['result'],LOGFILE)
image_data = qsf.initImageData( # just use image_data[0]
files = files,
max_imgs = MAX_IMGS_IN_MEM,
cluster_radius = 0, # CLUSTER_RADIUS,
tile_layers = TILE_LAYERS,
tile_side = TILE_SIDE,
width = IMG_WIDTH,
replace_nans = True,
infer = True,
keep_gt = True) # to generate same output files
ph_corr2d = tf.placeholder(np.float32, (None,FEATURES_PER_TILE), name = 'ph_corr2d')
ph_target_disparity = tf.placeholder(np.float32, (None,1), name = 'ph_target_disparity')
ph_ntile = tf.placeholder(np.int32, (None,), name = 'ph_ntile') #nTile
ph_ntile_out = tf.placeholder(np.int32, (None,), name = 'ph_ntile_out') #which tiles should be calculated in stage2
#corr2d9x325 = tf.concat([tf.reshape(next_element_tt['corr2d'],[-1,cluster_size,FEATURES_PER_TILE]) , tf.reshape(next_element_tt['target_disparity'], [-1,cluster_size, 1])],2)
tf_intile325 = tf.concat([ph_corr2d, ph_target_disparity],axis=1,name="tf_intile325") # [?,325]
pass
"""
target_disparity_cluster = tf.reshape(next_element_tt['target_disparity'], [-1,cluster_size, 1], name="targdisp_cluster")
corr2d_Nx325 = tf.concat([tf.reshape(next_element_tt['corr2d'],[-1,cluster_size,FEATURES_PER_TILE], name="coor2d_cluster"),
target_disparity_cluster], axis=2, name = "corr2d_Nx325")
"""
cluster_radius = CLUSTER_RADIUS
"""
Probably ResourceVariable is not needed here because of the tf.scatter_update()
If collection is not provided, it defaults to [GraphKeys.GLOBAL_VARIABLES], and that in turn fails saver.restore() as this variable was not available in the trained model
"""
'''
#rv_stage1_out = resource_variable_ops.ResourceVariable(
rv_stage1_out = tf.Variable(
np.zeros([HEIGHT * WIDTH, NN_LAYOUT1[-1]]),
## collections = [],
collections = [GraphKeys.LOCAL_VARIABLES],# Works, available with tf.local_variables()
dtype=np.float32,
name = 'rv_stage1_out')
'''
rv_stage1_out = tf.get_variable("rv_stage1_out",
shape=[HEIGHT * WIDTH, NN_LAYOUT1[-1]],
dtype=tf.float32,
initializer=tf.zeros_initializer,
collections = [GraphKeys.LOCAL_VARIABLES],trainable=False)
#rv_stageX_out_init_placeholder = tf.placeholder(tf.float32, shape=[HEIGHT * WIDTH, NN_LAYOUT1[-1]])
#rv_stageX_out_init_op = rv_stageX_out.assign(rv_stageX_out_init_placeholder)
##stage1_tiled = tf.reshape(rv_stage1_out.read_value(),[HEIGHT, WIDTH, -1], name = 'stage1_tiled')
stage1_tiled = tf.reshape(rv_stage1_out, [HEIGHT, WIDTH, -1], name = 'stage1_tiled') # no need to synchronize here?
tf_stage1_exth = tf.concat([stage1_tiled[:,:1,:]]*cluster_radius +
[stage1_tiled] +
[stage1_tiled[:,-1:,:]]*cluster_radius, axis = 1,name = 'stage1_exth')
tf_stage1_ext = tf.concat([tf_stage1_exth[ :1,:,:]]*cluster_radius +
[tf_stage1_exth] +
[tf_stage1_exth[-1:,:,:]]*cluster_radius, axis = 0, name = 'stage1_exth')
tf_stage1_ext4 = tf.expand_dims(tf_stage1_ext, axis = 2, name = 'stage1_ext4')
concat_list = []
cluster_side = 2 * cluster_radius+1
for dy in range(cluster_side):
for dx in range(cluster_side):
# concat_list.append(tf_stage1_ext4[dy: cluster_side-dy, dx: cluster_side-dx,:,:])
concat_list.append(tf.slice(tf_stage1_ext4,[dy,dx,0,0],[HEIGHT, WIDTH,-1,-1]))
pass
tf_stage2_inm = tf.concat(concat_list, axis = 2, name ='stage2_inm') #242, 324, 25, 64
tf_stage2_in = tf.reshape(tf_stage2_inm,[-1,rv_stage1_out.shape[1]*cluster_side*cluster_side], name = 'stage2_in')
tf_stage2_in_sparse = tf.gather(tf_stage2_in, indices= ph_ntile_out, axis=0, name = 'stage2_in_sparse')
#aextv=np.concatenate([a[:,:1,:]]*2 + [a] + [a[:,-1:,:]]*2,axis = 1)
#ext=np.concatenate([aextv[:1,:,:]]*1 + [aextv] + [aextv[-1:,:,:]]*3,axis = 0)
with tf.name_scope("Disparity_net"): # to have the same scope for weight/biases?
ns, _ = qcstereo_network.network_sub(tf_intile325,
input_global = [None,ph_target_disparity][SPREAD_CONVERGENCE], # input_global[:,i,:],
layout= NN_LAYOUT1,
reuse= False,
sym8 = SYM8_SUB,
cluster_radius = 0)
update=tf.scatter_update(ref=rv_stage1_out,
indices = ph_ntile,
updates = ns,
use_locking = False,
name = 'update')
with tf.control_dependencies([update]):
stage1done = tf.constant(1, dtype=tf.int32, name="stage1done")
pass
stage2_out_sparse0 = qcstereo_network.network_inter (
input_tensor = tf_stage2_in_sparse,
input_global = None, # [None, ig][inter_convergence], # optionally feed all convergence values (from each tile of a cluster)
layout = NN_LAYOUT2,
reuse = False,
use_confidence = False)
stage2_out_sparse = tf.identity(stage2_out_sparse0, name = 'stage2_out_sparse')
if not USE_SPARSE_ONLY: #Does it reduce the graph size?
stage2_out_full0 = qcstereo_network.network_inter (
input_tensor = tf_stage2_in,
input_global = None, # [None, ig][inter_convergence], # optionally feed all convergence values (from each tile of a cluster)
layout = NN_LAYOUT2,
reuse = True,
use_confidence = False)
stage2_out_full = tf.identity(stage2_out_full0, name = 'stage2_out_full')
pass
ROOT_PATH = './attic/infer_qcds_graph'+SUFFIX+"/" # for tensorboard
"""
This is needed if ResourceVariable is used - then i/o tensors names somehow disappeared
and were replaced by 'Placeholder_*'
collection_io = 'collection_io'
tf.add_to_collection(collection_io, ph_corr2d)
tf.add_to_collection(collection_io, ph_target_disparity)
tf.add_to_collection(collection_io, ph_ntile)
tf.add_to_collection(collection_io, ph_ntile_out)
tf.add_to_collection(collection_io, stage1done)
tf.add_to_collection(collection_io, stage2_out_sparse)
"""
##saver=tf.train.Saver()
saver =tf.train.Saver(tf.global_variables())
#saver = tf.train.Saver(tf.global_variables()+tf.local_variables())
saver_def = saver.as_saver_def()
pass
"""
saver_def = saver.as_saver_def()
# The name of the tensor you must feed with a filename when saving/restoring.
print ('saver_def.filename_tensor_name=',saver_def.filename_tensor_name)
# The name of the target operation you must run when restoring.
print ('saver_def.restore_op_name=',saver_def.restore_op_name)
# The name of the target operation you must run when saving.
print ('saver_def.save_tensor_name=',saver_def.save_tensor_name)
saver_def.filename_tensor_name= save/Const:0
saver_def.restore_op_name= save/restore_all
saver_def.save_tensor_name= save/control_dependency:0
print(saver.save(sess, files["checkpoints"]))
"""
try:
os.makedirs(os.path.dirname(files['inference']))
print ("Created directory ",os.path.dirname(files['inference']))
except:
pass
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
saver.restore(sess, files["checkpoints"])
'''
rv_stage1_out belongs to GraphKeys.LOCAL_VARIABLES
Now when weights/biases are restored from 'checkpoints',
that do not have this variable, add it to globals.
Actually it could have been declared right here - this
needs testing.
NOTE1: The line below makes the next script's, that saves
a Saved_Model MetaGraph, size of the Saved_Model significantly
bigger.
NOTE2: The line below is commented in favor of (in the next script!):
builder.add_meta_graph_and_variables(sess,[tf.saved_model.tag_constants.SERVING],main_op=tf.local_variables_initializer())
'''
#tf.add_to_collection(GraphKeys.GLOBAL_VARIABLES, rv_stage1_out)
saver.save(sess, files["inference"])
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter(ROOT_PATH, sess.graph)
lf = None
if LOGPATH:
lf=open(LOGPATH,"w") #overwrite previous (or make it "a"?
#_ = sess.run([rv_stageX_out_init_op],feed_dict={rv_stageX_out_init_placeholder: np.zeros((HEIGHT * WIDTH, NN_LAYOUT1[-1]))})
for nimg,_ in enumerate(image_data):
dataset_img = qsf.readImageData(
image_data = image_data,
files = files,
indx = nimg,
cluster_radius = 0, # CLUSTER_RADIUS,
tile_layers = TILE_LAYERS,
tile_side = TILE_SIDE,
width = IMG_WIDTH,
replace_nans = True,
infer = True,
keep_gt = True) # to generate same output files
img_corr2d = dataset_img['corr2d'] # [?,324)
img_target = dataset_img['target_disparity'] # [?,324)
img_ntile = dataset_img['ntile'].reshape([-1])
#run first stage network
qsf.print_time("Running inferred model, stage1", end=" ")
_ = sess.run([stage1done],
feed_dict={ph_corr2d: img_corr2d,
ph_target_disparity: img_target,
ph_ntile: img_ntile })
qsf.print_time("Done.")
qsf.print_time("Running inferred model, stage2", end=" ")
disp_out, = sess.run([stage2_out_sparse],
feed_dict={ph_ntile_out: img_ntile })
qsf.print_time("Done.")
result_file = files['result'][nimg].replace('.npy','-infer.npy') #not to overwrite training result files that are more complete
try:
os.makedirs(os.path.dirname(result_file))
except:
pass
rslt = np.concatenate(
[disp_out.reshape(-1,1),
dataset_img['t_disps'], #t_disps[ntest],
dataset_img['gtruths'], # gtruths[ntest],
],1)
np.save(result_file, rslt.reshape(HEIGHT,WIDTH,-1))
rslt = qsf.eval_results(result_file, ABSOLUTE_DISPARITY, radius=CLUSTER_RADIUS, logfile=lf) # (re-loads results). Only uses first 4 layers
if SAVE_TIFFS:
qsf.result_npy_to_tiff(result_file, ABSOLUTE_DISPARITY, fix_nan = True, labels=SLICE_LABELS, logfile=lf)
"""
Remove dataset_img (if it is not [0] to reduce memory footprint
"""
image_data[nimg] = None
"""
Save MetaGraph to Saved_Model in *.pb (protocol buffer) format to
be able to use from Java
"""
# force clean
shutil.rmtree(dirs['exportdir'], ignore_errors=True)
builder = tf.saved_model.builder.SavedModelBuilder(dirs['exportdir'])
builder.add_meta_graph_and_variables(sess,[tf.saved_model.tag_constants.SERVING],main_op=tf.local_variables_initializer())
builder.save(False) # True = *.pbtxt, False = *.pb
if lf:
lf.close()
writer.close()