-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathicoclus.py
executable file
·290 lines (220 loc) · 9.52 KB
/
icoclus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/python
####################################################################
# Purpose: Create xyz files of icosahedral cluster consisting of 1 #
# or two different atom types #
####################################################################
# Elke Fasshauer #
####################################################################
import numpy as np
import math
##################Input Variables ##################################
atcore = 'Ar' # atomtype of the core atoms
atouter = 'Ne' # atomtype of the outer shells
rcore = 1.88 # radius of core atoms
router = 1.54 # radius of outer shell atoms
n_core = 1 #number of atoms for the longest edge
#n_outer = raw_input('How many layers of atoms do you want to have? ')
#n_outer = int(n_outer)
n_outer = 2
################## Definitions #####################################
phi = (1 + math.sqrt(5))/2
scale = 2.0 / math.sqrt(1+phi**2) # passt fuer einheitliche Atome
thres = 1e-10
# Definition of the surfaces
surf1 = np.array([ 1, 2,11])
surf2 = np.array([ 1, 2, 9])
surf3 = np.array([ 1, 7,11])
surf4 = np.array([ 1, 5, 7])
surf5 = np.array([ 1, 5, 9])
surf6 = np.array([ 2, 6, 9])
surf7 = np.array([ 2, 6, 8])
surf8 = np.array([ 2, 8,11])
surf9 = np.array([ 5, 9,10])
surf10 = np.array([ 6, 9,10])
surf11 = np.array([ 3, 5,10])
surf12 = np.array([ 3, 5, 7])
surf13 = np.array([ 3, 4,10])
surf14 = np.array([ 3, 4,12])
surf15 = np.array([ 3, 7,12])
surf16 = np.array([ 4, 6,10])
surf17 = np.array([ 4, 6, 8])
surf18 = np.array([ 4, 8,12])
surf19 = np.array([ 7,11,12])
surf20 = np.array([ 8,11,12])
surfaces = np.vstack((surf1,surf2,surf3,surf4,surf5,surf6,surf7,\
surf8,surf9,surf10,surf11,surf12,surf13,\
surf14,surf15,surf16,surf17,surf18,surf19,surf20))
central = np.array([0,0,0])
coords = central
####################### Functions used #############################
def vec2str(vec):
return " ".join([str(v) for v in vec])
#def unique_rows(a):
# unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1]))
# return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1]))
def unique_rows(a):
# order = np.lexsort(a.T)
# a = a[order]
a = np.around(a,decimals=10)
a = a[np.lexsort(a.T)]
# a = a[a[:,2].argsort()]
# a = a[a[:,1].argsort()]
# a = a[a[:,0].argsort()]
# print a
diff = np.diff(a, axis=0)
ui = np.ones(len(a), 'bool')
ui[1:] = (diff > thres).any(axis=1)
return a[ui]
####################### Programme ##################################
##################################
##### Build the core icosahedra #
##################################
if (n_core > 1):
for i in range (2,n_core+1):
kante = 2* rcore * (i-1) * scale
# Die Ecken des Ikosaeders der entsprechenden Groesse
ecke1 = np.array([ 0, -kante/2, kante/2*phi])
ecke2 = np.array([ 0, kante/2, kante/2*phi])
ecke3 = np.array([ 0, -kante/2,-kante/2*phi])
ecke4 = np.array([ 0, kante/2,-kante/2*phi])
ecke5 = np.array([ kante/2,-kante/2*phi, 0])
ecke6 = np.array([ kante/2, kante/2*phi, 0])
ecke7 = np.array([ -kante/2,-kante/2*phi, 0])
ecke8 = np.array([ -kante/2, kante/2*phi, 0])
ecke9 = np.array([ kante/2*phi, 0, kante/2])
ecke10 = np.array([ kante/2*phi, 0, -kante/2])
ecke11 = np.array([-kante/2*phi, 0, kante/2])
ecke12 = np.array([-kante/2*phi, 0, -kante/2])
ecken = np.vstack((ecke1,ecke2,ecke3,ecke4,ecke5,ecke6,ecke7,\
ecke8,ecke9,ecke10,ecke11,ecke12))
latest = ecken
# print latest
for j in range (0,20):
vec1 = ecken[surfaces[j,0] -1]
vec2 = ecken[surfaces[j,1] -1]
vec3 = ecken[surfaces[j,2] -1]
#print j+1
#print surfaces[j,0], surfaces[j,1], surfaces[j,2]
# print ' '.join(map(str, vec1))
# print ' '.join(map(str, vec2))
# print ' '.join(map(str, vec3))
normkante = (vec2-vec1) / np.linalg.norm(vec2-vec1)
normlauf = (vec3-vec2) / np.linalg.norm(vec3-vec2)
if (i > 2):
for k in range (1,i):
kantatom = vec1 + (k * normkante * 2 * rcore * scale)
latest = np.vstack((latest,kantatom))
# print vec1
# print kantatom
for l in range (1,k+1):
flatom = kantatom + l * normlauf * 2 * rcore * scale
latest = np.vstack((latest,flatom))
#print kantatom
# Entferne Duplikate innerhalb der Liste
unique = unique_rows(latest)
# vereine die Koordianten der letzten Schicht mit allen anderen
coords = np.vstack((coords,unique))
##############################################
##### Outer Atom Layers ######################
##############################################
for i in range (1,n_outer+1):
kante = (rcore * (2*n_core-1) + (2*i-1) *router) * scale
# Die Ecken des Ikosaeders der entsprechenden Groesse
ecke1 = np.array([ 0, -kante/2, kante/2*phi])
ecke2 = np.array([ 0, kante/2, kante/2*phi])
ecke3 = np.array([ 0, -kante/2,-kante/2*phi])
ecke4 = np.array([ 0, kante/2,-kante/2*phi])
ecke5 = np.array([ kante/2,-kante/2*phi, 0])
ecke6 = np.array([ kante/2, kante/2*phi, 0])
ecke7 = np.array([ -kante/2,-kante/2*phi, 0])
ecke8 = np.array([ -kante/2, kante/2*phi, 0])
ecke9 = np.array([ kante/2*phi, 0, kante/2])
ecke10 = np.array([ kante/2*phi, 0, -kante/2])
ecke11 = np.array([-kante/2*phi, 0, kante/2])
ecke12 = np.array([-kante/2*phi, 0, -kante/2])
ecken = np.vstack((ecke1,ecke2,ecke3,ecke4,ecke5,ecke6,ecke7,\
ecke8,ecke9,ecke10,ecke11,ecke12))
latest = ecken
# print latest
for j in range (0,20):
vec1 = ecken[surfaces[j,0] -1]
vec2 = ecken[surfaces[j,1] -1]
vec3 = ecken[surfaces[j,2] -1]
#print j+1
#print surfaces[j,0], surfaces[j,1], surfaces[j,2]
# print ' '.join(map(str, vec1))
# print ' '.join(map(str, vec2))
# print ' '.join(map(str, vec3))
normkante = (vec2-vec1) / np.linalg.norm(vec2-vec1)
normlauf = (vec3-vec2) / np.linalg.norm(vec3-vec2)
atdist = kante / (n_core+i-1)
for k in range (1,n_core + i):
kantatom = vec1 + (k * normkante * atdist)
latest = np.vstack((latest,kantatom))
# print vec1
# print kantatom
for l in range (1,k+1):
flatom = kantatom + l * normlauf * atdist
latest = np.vstack((latest,flatom))
#print kantatom
# Entferne Duplikate innerhalb der Liste
unique = unique_rows(latest)
if i == 1:
coords2nd = unique
else:
# vereine die Koordianten der letzten Schicht mit allen anderen
coords2nd = np.vstack((coords2nd,unique))
#########################################
# Write Output
#########################################
if (n_core == 1):
xyz_1st = []
xyz_1st.append(vec2str(coords))
else:
xyz_1st = [vec2str(coord) for coord in coords]
xyz_2nd = [vec2str(coord) for coord in coords2nd]
lines_1st = []
for coord in xyz_1st:
line = '%s %s' %(atcore,coord)
lines_1st.append(line)
print_1st = '\n'.join(lines_1st)
lines_2nd = []
for coord in xyz_2nd:
line = '%s %s' %(atouter,coord)
lines_2nd.append(line)
print_2nd = '\n'.join(lines_2nd)
no_core_atoms = len(lines_1st)
no_outer_atoms = len(lines_2nd)
no_atoms = no_core_atoms + no_outer_atoms
outlist = [print_1st,print_2nd]
#print outlist
outlines = '\n'.join(outlist)
#print outlines
outfile = open("%s%s_ico_c%dl%d.xyz" %(atouter,atcore,n_core,n_outer), mode="w")
outfile.writelines(outlines)
# Sperical coordinates for Lenz
spherfile = open("%s%s_ico_c%dl%d.spherical" %(atouter,atcore,n_core,n_outer), mode="w")
#coords_spherical = []
for i in range(0,len(coords2nd)):
x = coords2nd[i][0]
y = coords2nd[i][1]
z = coords2nd[i][2]
r = np.sqrt(x**2 + y**2 + z**2)
phi = math.degrees(math.atan2(y,x))
theta = math.degrees(np.arccos(z/r))
if (phi < 0):
phi = phi + 360
tmp_vec = np.array([r, theta, phi])
if i == 0:
vec1 = tmp_vec
elif i == 1:
coords_spherical = np.vstack((vec1,tmp_vec))
else:
coords_spherical = np.vstack((coords_spherical,tmp_vec))
xyz_2nd = [vec2str(coord) for coord in coords_spherical]
lines_2nd = []
for coord in xyz_2nd:
line = '%s %s' %(atouter,coord)
lines_2nd.append(line)
outlines = '\n'.join(lines_2nd)
spherfile.writelines(outlines)