forked from open-quantum-safe/liboqs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_kem.c
186 lines (163 loc) · 6.43 KB
/
example_kem.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
* example_kem.c
*
* Minimal example of a Diffie-Hellman-style post-quantum key encapsulation
* implemented in liboqs.
*
* SPDX-License-Identifier: MIT
*/
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oqs/oqs.h>
/* Cleaning up memory etc */
void cleanup_stack(uint8_t *secret_key, size_t secret_key_len,
uint8_t *shared_secret_e, uint8_t *shared_secret_d,
size_t shared_secret_len);
void cleanup_heap(uint8_t *secret_key, uint8_t *shared_secret_e,
uint8_t *shared_secret_d, uint8_t *public_key,
uint8_t *ciphertext, OQS_KEM *kem);
/* This function gives an example of the operations performed by both
* the decapsulator and the encapsulator in a single KEM session,
* using only compile-time macros and allocating variables
* statically on the stack, calling a specific algorithm's functions
* directly.
*
* The macros OQS_KEM_kyber_768_length_* and the functions
* OQS_KEM_kyber_768_* are only defined if the algorithm
* Kyber-768 was enabled at compile-time which must be
* checked using the OQS_ENABLE_KEM_kyber_768 macro.
*
* <oqs/oqsconfig.h>, which is included in <oqs/oqs.h>, contains macros
* indicating which algorithms were enabled when this instance of liboqs
* was compiled.
*/
static OQS_STATUS example_stack(void) {
#ifndef OQS_ENABLE_KEM_kyber_768 // if Kyber-768 was not enabled at compile-time
printf("[example_stack] OQS_KEM_kyber_768 was not enabled at "
"compile-time.\n");
return OQS_SUCCESS; // nothing done successfully ;-)
#else
uint8_t public_key[OQS_KEM_kyber_768_length_public_key];
uint8_t secret_key[OQS_KEM_kyber_768_length_secret_key];
uint8_t ciphertext[OQS_KEM_kyber_768_length_ciphertext];
uint8_t shared_secret_e[OQS_KEM_kyber_768_length_shared_secret];
uint8_t shared_secret_d[OQS_KEM_kyber_768_length_shared_secret];
OQS_STATUS rc = OQS_KEM_kyber_768_keypair(public_key, secret_key);
if (rc != OQS_SUCCESS) {
fprintf(stderr, "ERROR: OQS_KEM_kyber_768_keypair failed!\n");
cleanup_stack(secret_key, OQS_KEM_kyber_768_length_secret_key,
shared_secret_e, shared_secret_d,
OQS_KEM_kyber_768_length_shared_secret);
return OQS_ERROR;
}
rc = OQS_KEM_kyber_768_encaps(ciphertext, shared_secret_e, public_key);
if (rc != OQS_SUCCESS) {
fprintf(stderr, "ERROR: OQS_KEM_kyber_768_encaps failed!\n");
cleanup_stack(secret_key, OQS_KEM_kyber_768_length_secret_key,
shared_secret_e, shared_secret_d,
OQS_KEM_kyber_768_length_shared_secret);
return OQS_ERROR;
}
rc = OQS_KEM_kyber_768_decaps(shared_secret_d, ciphertext, secret_key);
if (rc != OQS_SUCCESS) {
fprintf(stderr, "ERROR: OQS_KEM_kyber_768_decaps failed!\n");
cleanup_stack(secret_key, OQS_KEM_kyber_768_length_secret_key,
shared_secret_e, shared_secret_d,
OQS_KEM_kyber_768_length_shared_secret);
return OQS_ERROR;
}
printf("[example_stack] OQS_KEM_kyber_768 operations completed.\n");
return OQS_SUCCESS; // success!
#endif
}
/* This function gives an example of the operations performed by both
* the decapsulator and the encapsulator in a single KEM session,
* allocating variables dynamically on the heap and calling the generic
* OQS_KEM object.
*
* This does not require the use of compile-time macros to check if the
* algorithm in question was enabled at compile-time; instead, the caller
* must check that the OQS_KEM object returned is not NULL.
*/
static OQS_STATUS example_heap(void) {
OQS_KEM *kem = NULL;
uint8_t *public_key = NULL;
uint8_t *secret_key = NULL;
uint8_t *ciphertext = NULL;
uint8_t *shared_secret_e = NULL;
uint8_t *shared_secret_d = NULL;
kem = OQS_KEM_new(OQS_KEM_alg_kyber_768);
if (kem == NULL) {
printf("[example_heap] OQS_KEM_kyber_768 was not enabled at "
"compile-time.\n");
return OQS_SUCCESS;
}
public_key = malloc(kem->length_public_key);
secret_key = malloc(kem->length_secret_key);
ciphertext = malloc(kem->length_ciphertext);
shared_secret_e = malloc(kem->length_shared_secret);
shared_secret_d = malloc(kem->length_shared_secret);
if ((public_key == NULL) || (secret_key == NULL) || (ciphertext == NULL) ||
(shared_secret_e == NULL) || (shared_secret_d == NULL)) {
fprintf(stderr, "ERROR: malloc failed!\n");
cleanup_heap(secret_key, shared_secret_e, shared_secret_d, public_key,
ciphertext, kem);
return OQS_ERROR;
}
OQS_STATUS rc = OQS_KEM_keypair(kem, public_key, secret_key);
if (rc != OQS_SUCCESS) {
fprintf(stderr, "ERROR: OQS_KEM_keypair failed!\n");
cleanup_heap(secret_key, shared_secret_e, shared_secret_d, public_key,
ciphertext, kem);
return OQS_ERROR;
}
rc = OQS_KEM_encaps(kem, ciphertext, shared_secret_e, public_key);
if (rc != OQS_SUCCESS) {
fprintf(stderr, "ERROR: OQS_KEM_encaps failed!\n");
cleanup_heap(secret_key, shared_secret_e, shared_secret_d, public_key,
ciphertext, kem);
return OQS_ERROR;
}
rc = OQS_KEM_decaps(kem, shared_secret_d, ciphertext, secret_key);
if (rc != OQS_SUCCESS) {
fprintf(stderr, "ERROR: OQS_KEM_decaps failed!\n");
cleanup_heap(secret_key, shared_secret_e, shared_secret_d, public_key,
ciphertext, kem);
return OQS_ERROR;
}
printf("[example_heap] OQS_KEM_kyber_768 operations completed.\n");
cleanup_heap(secret_key, shared_secret_e, shared_secret_d, public_key,
ciphertext, kem);
return OQS_SUCCESS; // success
}
int main(void) {
OQS_init();
if (example_stack() == OQS_SUCCESS && example_heap() == OQS_SUCCESS) {
OQS_destroy();
return EXIT_SUCCESS;
} else {
OQS_destroy();
return EXIT_FAILURE;
}
}
void cleanup_stack(uint8_t *secret_key, size_t secret_key_len,
uint8_t *shared_secret_e, uint8_t *shared_secret_d,
size_t shared_secret_len) {
OQS_MEM_cleanse(secret_key, secret_key_len);
OQS_MEM_cleanse(shared_secret_e, shared_secret_len);
OQS_MEM_cleanse(shared_secret_d, shared_secret_len);
}
void cleanup_heap(uint8_t *secret_key, uint8_t *shared_secret_e,
uint8_t *shared_secret_d, uint8_t *public_key,
uint8_t *ciphertext, OQS_KEM *kem) {
if (kem != NULL) {
OQS_MEM_secure_free(secret_key, kem->length_secret_key);
OQS_MEM_secure_free(shared_secret_e, kem->length_shared_secret);
OQS_MEM_secure_free(shared_secret_d, kem->length_shared_secret);
}
OQS_MEM_insecure_free(public_key);
OQS_MEM_insecure_free(ciphertext);
OQS_KEM_free(kem);
}