-
Notifications
You must be signed in to change notification settings - Fork 0
/
genetic-algorithm05.py
448 lines (383 loc) · 18.1 KB
/
genetic-algorithm05.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import numpy as np, random, operator, pandas as pd, matplotlib.pyplot as plt, collections
from datetime import datetime
class Instance:
number_of_vehicles = None
number_of_services = None
vehicle_capacity = None
maximum_ride_time = None
depot = None
vertices = []
starting_time = {
'pr01': [188.54, 148.08, 83.13],
'pr02': [98.25, 85.24, 130.29, 54.96, 79.93],
'pr03': [43.59, 125.08, 99.04, 125.01, 70.93, 80.93, 137.01],
'pr05': [136.50, 90.32, 97.37, 112.42, 88.77, 69.00, 161.34, 301.39, 33.37, 143.39, 104.44]
}
name = 'pr05'
@classmethod
def read(cls, instance_path = 'instances/pr05.txt'):
cls.vertices = []
with open(instance_path, 'r') as f:
file_content = f.readlines()[:]
datas = file_content[2:]
#general information
instance_description = file_content[0]
instance_description = instance_description.split()
cls.number_of_vehicles = int(instance_description[0])
cls.number_of_services = int(instance_description[1])
cls.maximum_route_duration = float(instance_description[2])
cls.vehicle_capacity = int(instance_description[3])
cls.maximum_ride_time = float(instance_description[4])
#depot
depot = file_content[1]
depot = depot.split()
cls.depot = Vertice(number = depot[0], x_coordinate = depot[1], y_coordinate = depot[2], service_time_duration = depot[3], service_nature = depot[4], service_early_time = depot[5], service_later_time = depot[6])
for data in datas:
data = data.split()
vertice = Vertice(number = data[0], x_coordinate = data[1], y_coordinate = data[2], service_time_duration = data[3], service_nature = data[4], service_early_time = data[5], service_later_time = data[6])
cls.vertices.append(vertice)
@classmethod
def get_vertice(cls, vertice_number):
if vertice_number == 0:
return Instance.depot
for vertice in Instance.vertices:
if vertice.number == vertice_number:
return vertice
class Vertice:
def __init__(self, number, x_coordinate, y_coordinate, service_time_duration, service_nature, service_early_time, service_later_time):
self.number = int(number)
self.x_coordinate = float(x_coordinate)
self.y_coordinate = float(y_coordinate)
self.service_time_duration = float(service_time_duration)
self.service_nature = int(service_nature)
self.service_early_time = float(service_early_time)
self.service_later_time = float(service_later_time)
#to do : values set to -1 must be reset
self.vehicle_arrival_time = -1
self.departure_time = -1
self.begin_service_time = -1
self.violation_load = -1
def distance(self, vertice):
x_distance = abs(self.x_coordinate - vertice.x_coordinate)
y_distance = abs(self.y_coordinate - vertice.y_coordinate)
distance = np.sqrt((x_distance**2) + (y_distance**2))
return distance
def __repr__(self):
return "(" + str(self.x_coordinate) + ", " + str(self.y_coordinate) + ")"
#Global call
Instance.read()
class Fitness:
def __init__(self, route):
self.route = route
self.distance = 0 #self.route_distance()
self.fitness = 0 #self.route_fitness()
violation_load = 0
def route_distance(self):
path_distance = 0
for i in range(0, (len(self.route) - 1)):#complete route
from_vertice = self.route[i]
to_vertice = self.route[i+1]
path_distance += from_vertice.distance(to_vertice)
self.distance = path_distance
return self.distance
def route_cost(self): #routing cost = sum(c_i_j)
return self.route_distance()
def route_travel_time(self):
return self.route_distance()
def route_ride_time(self):
return self.route_distance()
def route_duration(self, starting_time = 0):
services_time_duration = 0
path_distance = 0
ending_time = starting_time
for i in range(len(self.route) - 1):
services_time_duration = self.route[i].service_time_duration
from_vertice = self.route[i]
to_vertice = self.route[i+1]
path_distance = from_vertice.distance(to_vertice)
waiting_time = to_vertice.service_early_time - (ending_time + services_time_duration + path_distance)
transit_time = (ending_time + services_time_duration + path_distance) - to_vertice.service_later_time
if waiting_time < 0:
waiting_time = 0
ending_time += services_time_duration + path_distance + waiting_time
route_duration = ending_time - starting_time
return route_duration
def route_fitness(self):
c_routing_cost = self.route_cost()
q_violation_load = self.violation_load
d_violation_duration = max(0, Instance.maximum_route_duration - self.route_duration())
w_violation_time_window = self.route_violation_time_window()
t_violation_ride_time = max(0, Instance.maximum_ride_time - self.route_ride_time())
fitness = self.route_distance()
return fitness
def route_violation_time_window(self): #one route
for i in range(len(self.route)):
vertice = self.route[i]
service_begin_time = max(vertice.service_early_time, vertice.vehicle_arrival_time)
x = service_begin_time - vertice.service_later_time
x = max(0, x)
route_violation_time_window += x
return route_violation_time_window
def request_violation_ride_time(self, request_origin_vertice, request_destination_vertice): #one request
request_ride_time = request_destination_vertice.begin_service_time - request_origin_vertice.departure_time
x = request_ride_time - Instance.maximum_ride_time
request_violation_ride_time = max(0, x)
return request_violation_ride_time
@classmethod
def individual_evaluation(cls, individual, instance_name = Instance.name):
starting_time = Instance.starting_time[instance_name] # [188.54, 148.08, 83.13]
total_duration = 0
total_route_cost = 0
for i in range(len(individual.sequences)):
fitness = Fitness(individual.sequences[i+1])
route_duration = fitness.route_duration(starting_time = starting_time[i])
route_cost = fitness.route_cost()
#print("route "+ str(i+1) + " duration cost = " + str(route_duration))
total_duration += route_duration
total_route_cost += route_cost
#print("total duration time = " + str(total_duration) + "total distance = " + str(total_route_cost))
return [total_duration, total_route_cost]
@classmethod
def sequence_evaluation(cls, sequence, sequence_key, instance_name = Instance.name):
starting_time = Instance.starting_time[instance_name][sequence_key]
total_duration = 0
total_route_cost = 0
fitness
class Gene:
def __init__(self, client_number, vehicle_number):
self.client_number = client_number
self.vehicle_number = vehicle_number
def __repr__(self):
return "client " + str(self.client_number) + " --> vehicle " + str(self.vehicle_number)
class Individual:
def __init__(self, number_of_clients = int(Instance.number_of_services / 2) , number_of_vehicles = Instance.number_of_vehicles):
#genes
loop = True
while loop:
genes = []
for i in range(number_of_clients):
client = i + 1
vehicle = random.randint(1, number_of_vehicles)
gene = Gene(client, vehicle)
genes.append(gene)
loop = False
for i in range(1, number_of_vehicles + 1):
if i not in Individual.vehicles_from_genes(genes):
loop = True
self.genes = genes
#sequences
vertices = Instance.vertices
sequences = Utils.format_individual(self)
for i in range(len(sequences)):
#i+1 = vehicle number = sequence key
sequence_key = i + 1
clients = sequences[sequence_key]
vertices = []
for j in clients:
origin = j
destination = int(j+Instance.number_of_services / 2)
vertices.append(Instance.get_vertice(origin))
vertices.append(Instance.get_vertice(destination))
#print("1: " + str(Fitness(vertices).route_distance()))
sequence = self.best_sequence(vertices, sequence_key)
#print(sequence)
sequences[sequence_key] = [Instance.depot] + sequence + [Instance.depot]
self.sequences = sequences
@classmethod
def vehicles_from_genes(cls, genes):
vehicles = []
for i in range(len(genes)):
gene = genes[i]
vehicles.append(gene.vehicle_number)
return vehicles
def show_sequences(self):
output = {}
for i in range(len(self.sequences)):
output[i + 1] = []
for vertice in self.sequences[i+1]:
output[i + 1].append(vertice.number)
return output
def best_sequence(self, vertices, sequence_key):
#find the best feasible sequence based on tabu search
sequence = vertices #initial solution
sequence_length = len(sequence)
tabu_time = 3
i = sequence_length**2
tabu_list = [[0]*sequence_length]*sequence_length
best_sequence = sequence
best_value = Fitness(sequence).route_distance()
#iterative algorithm
while i > 0:
#print(sequence)
#neighbouring by permutation
for j in range(1, sequence_length - 1):
for k in range(1, sequence_length - 1):
if tabu_list[j][k] <= 0:
temp = sequence[j]
sequence[j] = sequence[k]
sequence[k] = temp
if not Individual.isValid(sequence, sequence_key):
temp = sequence[j]
sequence[j] = sequence[k]
sequence[k] = temp
#check if sequence is the best, then update best and tabu_list
sequence_value = Fitness(sequence).route_distance()
if (tabu_list[j][k] <= 0) and (sequence_value < best_value):
best_sequence = sequence
best_value = sequence_value
#update tabu list
for a in range(len(tabu_list)):
for b in range(len(tabu_list[a])):
if tabu_list[a][b] -1 >=0:
tabu_list[a][b] -= 1
tabu_list[j][k] = tabu_time
#update tabu list
sequence = best_sequence
i -= 1
return best_sequence
@classmethod
def isValid(cls, sequence, sequence_key):
capacity = 0
for i in range(len(sequence)):
if sequence[i].service_nature == 1:
origin = sequence[i]
destination_number = origin.number + int(Instance.number_of_services / 2)
destination = Instance.get_vertice(destination_number)
elif sequence[i].service_nature == -1:
destination = sequence[i]
origin_number = destination.number - int(Instance.number_of_services / 2)
origin = Instance.get_vertice(origin_number)
#print("origin = {} destination = {}".format(origin.number, destination.number))
#pickup before delivery
if sequence.index(destination) < sequence.index(origin):
#print("pickup after delivery")
return False
#service 1 + trajet + service 2
if (i < len(sequence)-1):
#first_service_duration = sequence[i].sevice_time_duration
#route_distance = Fitness([sequence[i], sequence[i+1]]).route_distance()
second_service_starting_time = Fitness(sequence[:i+2]).route_duration(starting_time = Instance.starting_time[Instance.name][sequence_key - 1])
if second_service_starting_time > sequence[i+1].service_later_time:
return False
#maximum ride time
origin_key = sequence.index(origin)
destination_key = sequence.index(destination)
origin_starting_time = Fitness(sequence[:origin_key]).route_duration(starting_time = Instance.starting_time[Instance.name][sequence_key - 1])
destination_starting_time = Fitness(sequence[:destination_key]).route_duration(starting_time = Instance.starting_time[Instance.name][sequence_key - 1])
if (destination_starting_time - origin_starting_time) > Instance.maximum_ride_time:
return False
#capacity
capacity += sequence[i].service_nature
if capacity > Instance.vehicle_capacity:
return False
return True
def set_sequences(self, sequences):
for i in range(len(sequences)):
self.sequences[i+1] = sequences[i]
@classmethod
def crossover(cls, parent_1, parent_2):
#genes
individual = Individual()
genes = parent_1.genes[:int(len(parent_2.genes)/2)] + parent_2.genes[int(len(parent_1.genes)/2):]
loop = True
while loop:
loop = False
for i in range(1, Instance.number_of_vehicles + 1):
if i not in Individual.vehicles_from_genes(genes):
gene_indice = random.randint(0, len(genes) - 1)
genes[gene_indice].vehicle_number = i
loop = True
#mutation
i = random.randint(0, len(genes) - 1)
j = random.randint(0, len(genes) - 1)
temp = genes[i].vehicle_number
genes[i].vehicle_number = genes[j].vehicle_number
genes[j].vehicle_number = temp
individual.genes = genes
#sequences
vertices = Instance.vertices
sequences = Utils.format_individual(individual)
for i in range(len(sequences)):
#i+1 = vehicle number = sequence key
sequence_key = i + 1
clients = sequences[sequence_key]
vertices = []
for j in clients:
origin = j
destination = int(j+Instance.number_of_services / 2)
vertices.append(Instance.get_vertice(origin))
vertices.append(Instance.get_vertice(destination))
#print("1: " + str(Fitness(vertices).route_distance()))
sequence = individual.best_sequence(vertices, sequence_key)
#print(sequence)
sequences[sequence_key] = [Instance.depot] + sequence + [Instance.depot]
individual.sequences = sequences
return individual
def __repr__(self):
if len(self.genes) > 0:
result = ""
formatted_individual = Utils.format_individual(self)
for key in formatted_individual:
line = "Vehicle " + str(key) + " : " + str(formatted_individual[key]) + "\n"
result += line
else:
result = "Empty individual"
return result
class Utils:
@classmethod
def format_individual(cls, individual):
solution = {}
for i in range(len(individual.genes)):
client = individual.genes[i].client_number
vehicle = individual.genes[i].vehicle_number
if vehicle in solution:
solution[vehicle].append(client)
else:
solution[vehicle] = [client]
return collections.OrderedDict(sorted(solution.items()))
@classmethod
def current_time(cls):
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
print("Temps actuel = ", current_time)
main_program = 1
while(main_program <= 20):
print("<-- start execution {} -->".format(main_program))
Utils.current_time()
# step 1: initial population
population_size = 50
population = []
maximum_generation = 50
for i in range(population_size):
individual = Individual()
population.append(individual)
# step 2: loop-generations
parent_1 = population[0]
parent_2 = population[1]
print(parent_1.show_sequences(), Fitness.individual_evaluation(parent_1))
print(parent_2.show_sequences(), Fitness.individual_evaluation(parent_2))
for cpt in range(maximum_generation):
#print(cpt)
#population evaluation and parents detection
for i in range(population_size):
individual = population[i]
fitness = Fitness.individual_evaluation(individual)
if fitness[0] < Fitness.individual_evaluation(parent_1)[0]:
parent_2 = parent_1
parent_1 = individual
# step 3: new population: crossover and mutation
population = [parent_1, parent_2]
for j in range((population_size - 2)):
population.append(Individual.crossover(parent_1, parent_2))
#end loop-generations
for i in range(population_size):
individual = population[i]
fitness = Fitness.individual_evaluation(individual)
if fitness[0] < Fitness.individual_evaluation(parent_1)[0]:
parent_2 = parent_1
parent_1 = individual
print(parent_1.show_sequences(), Fitness.individual_evaluation(parent_1))
print(parent_2.show_sequences(), Fitness.individual_evaluation(parent_2))
Utils.current_time()
print("<-- end execution {} -->".format(main_program))
main_program += 1