-
Notifications
You must be signed in to change notification settings - Fork 8
/
rbc_catastrophe.yaml
90 lines (72 loc) · 1.84 KB
/
rbc_catastrophe.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
name: Real Business Cycle
model_type: dtcc
symbols:
exogenous: [z, xi]
states: [k]
controls: [n, i]
expectations: [m]
values: [V]
parameters: [beta, sigma, eta, chi, delta, alpha, rho, zbar, sig_z]
rewards: [u]
definitions:
y: exp(z-xi)*k^alpha*n^(1-alpha)
c: y - i
rk: alpha*y/k
w: (1-alpha)*y/n
equations:
arbitrage:
- chi*n^eta*c^sigma - w | 0 <= n <= inf
- 1 - beta*(c/c(1))^(sigma)*(1-delta+rk(1)) | 0 <= i <= inf
# - V0 = c^(1-sigma)/(1-sigma) - chi*n^(1+eta)/(1+eta) + beta*V0(1) | -100000<=V0<=100000
transition:
- k = (1-delta)*k(-1) + i(-1)
value:
- V = c^(1-sigma)/(1-sigma) - chi*n^(1+eta)/(1+eta) + beta*V(1)
felicity:
- u = c^(1-sigma)/(1-sigma) - chi*n^(1+eta)/(1+eta)
expectation:
- m = beta/c(1)^sigma*(1-delta+rk(1))
direct_response:
- n = ((1-alpha)*exp(z-xi)*k^alpha*m/chi)^(1/(eta+alpha))
- i = exp(z-xi)*k^alpha*n^(1-alpha) - (m)^(-1/sigma)
calibration:
# parameters
beta: 0.99
phi: 1
delta : 0.025
alpha : 0.33
rho : 0.8
sigma: 5
eta: 1
sig_z: 0.016
zbar: 0
chi : w/c^sigma/n^eta
c_i: 1.5
c_y: 0.5
e_z: 0.0
m: 0
V0: (c^(1-sigma)/(1-sigma) - chi*n^(1+eta)/(1+eta))/(1-beta)
# endogenous variables
n: 0.33
z: zbar
rk: 1/beta-1+delta
w: (1-alpha)*exp(z)*(k/n)^(alpha)
k: n/(rk/alpha)^(1/(1-alpha))
y: exp(z)*k^alpha*n^(1-alpha)
i: delta*k
c: y - i
V: log(c)/(1-beta)
u: c^(1-sigma)/(1-sigma) - chi*n^(1+eta)/(1+eta)
xi: 0.0
domain:
k: [k*0.5, k*1.5]
exogenous: !Product
p1: !VAR1
rho: 0.8
Sigma: [[0.001]]
p2: !MarkovChain
values: [[0.0],[0.1]]
transitions: [[0.97, 0.03], [0.1, 0.9]]
options:
grid: !Cartesian
orders: [50]