-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscatterplot_pvacc_pinf.R
83 lines (77 loc) · 3.43 KB
/
scatterplot_pvacc_pinf.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
library(rstan)
library(dplyr)
library(ggplot2)
library(bayesplot)
library(simstudy)
library(readr)
library(lubridate)
library(tidyverse)
library(patchwork)
#############################
## Figure: p_vacc vs p_inf ##
#############################
load("~/../Box/PHI_scaleit/SCALEIT_2.0/pathway_to_immunity_v2.RData")
load("~/../Box/PHI_scaleit/SCALEIT_2.0/labels.RData")
## Look at 2D
summary(fit_stan)$summary %>%
as.data.frame() %>%
rownames_to_column(var="parameter") %>%
filter(str_starts(parameter, "p_inf") | str_starts(parameter, "p_vacc\\[")) %>%
separate(col=parameter, into=c("tmp","parameter","demog_group")) %>%
select(-tmp) %>%
mutate(parameter=paste0("p_", parameter)) %>%
mutate(demog_group = as.numeric(demog_group)) %>%
left_join(dat_label_age_race %>% separate(col=age_race, into=c("age","race"), sep="&") %>% mutate(demog_group=1:8), by="demog_group") %>%
## Update labels
ungroup() %>%
mutate(race = ifelse(race==" Asian", "Asian", race)) %>%
mutate(race = ifelse(race==" White", "White", race)) %>%
mutate(race = ifelse(race==" Black or African American", "Black", race)) %>%
mutate(race = ifelse(race==" Hispanic or Latino", "Latinx", race)) %>%
as.data.frame() %>%
## Rename
rename(Age = age) %>%
rename(`Race/Ethnicity` = race) %>%
pivot_wider(names_from=parameter, values_from=mean:Rhat) %>%
ggplot() +
geom_abline(linetype="dotted") +
geom_point(aes(x=mean_p_inf, y=mean_p_vacc, colour=Age, shape=`Race/Ethnicity`), size=4) +
geom_linerange(aes(x=mean_p_inf, y=mean_p_vacc, xmin=`2.5%_p_inf`, xmax=`97.5%_p_inf`, colour=Age), size=1) +
geom_linerange(aes(x=mean_p_inf, y=mean_p_vacc, ymin=`2.5%_p_vacc`, ymax=`97.5%_p_vacc`, colour=Age), size=1) +
theme_bw(base_size=14) +
scale_shape_manual(values=c(15, 16, 17, 21)) +
xlab("Probability of infection") + ylab("Probability of vaccination") +
xlim(0,0.45) + ylim(0,0.45)
#################
## Figure: RRR ##
#################
load("~/../Box/PHI_scaleit/SCALEIT_2.0/pathway_to_immunity_with_RRR_vs_white_v2.RData")
load("~/../Box/PHI_scaleit/SCALEIT_2.0/labels.RData")
## Pull out values to tabulate
summary(fit_stan)$summary %>%
as.data.frame() %>%
rownames_to_column(var="parameter") %>%
filter(str_starts(parameter, "RRR_vs_white")) %>%
separate(col=parameter, into=c("tmp1","tmp2","tmp3","demog_group")) %>%
select(-tmp1, -tmp2, -tmp3) %>%
mutate(parameter="RRR_vs_white_of_that_age") %>%
mutate(demog_group = as.numeric(demog_group)) %>%
left_join(dat_label_age_race %>% separate(col=age_race, into=c("age","race"), sep="&") %>% mutate(demog_group=1:8), by="demog_group") %>%
as.data.frame() %>%
mutate(race = ifelse(race==" Asian", "Asian", race)) %>%
mutate(race = ifelse(race==" White", "White", race)) %>%
mutate(race = ifelse(race==" Black or African American", "Black", race)) %>%
mutate(race = ifelse(race==" Hispanic or Latino", "Latinx", race)) %>%
mutate(age = ifelse(age=="18-64 ", "18-64", "65+")) %>%
mutate(label_for_plot2 = paste0(age, " & ", race, " (n=", n, ")")) %>%
ggplot() +
geom_vline(xintercept=1, colour=2) +
facet_wrap(.~age, ncol=1, scales="free_y") +
geom_pointrange(aes(y=label_for_plot2, x=`50%`, xmin=`2.5%`, xmax=`97.5%`)) +
theme_bw() +
xlab("Relative risk ratio") +
ylab("") +
scale_x_log10(breaks=scales::breaks_log(6)) +
theme(
strip.background = element_blank(),
strip.text.x = element_blank())