forked from adityagilra/FOLLOW
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_rec_transform_nengo_plot.py
854 lines (774 loc) · 43.2 KB
/
input_rec_transform_nengo_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
import matplotlib as mpl
# must be called before any pylab import, matplotlib calls
mpl.use('QT4Agg')
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from nengo.utils.matplotlib import rasterplot
#import pickle
import shelve, contextlib
from os.path import isfile
import sys
# presentation defaults for screenshot
label_fontsize = 20 # pt
plot_linewidth = 0.5 # pt
linewidth = 1.0#0.5
axes_linewidth = 0.5
marker_size = 3.0 # markersize=<...>
cap_size = 2.0 # for errorbar caps, capsize=<...>
columnwidth = 85/25.4 # inches
twocolumnwidth = 174/25.4 # inches
linfig_height = columnwidth*2.0/3.0
fig_dpi = 300
def set_tick_widths(ax,tick_width):
for tick in ax.xaxis.get_major_ticks():
tick.tick1line.set_markeredgewidth(tick_width)
tick.tick2line.set_markeredgewidth(tick_width)
for tick in ax.xaxis.get_minor_ticks():
tick.tick1line.set_markeredgewidth(tick_width)
tick.tick2line.set_markeredgewidth(tick_width)
for tick in ax.yaxis.get_major_ticks():
tick.tick1line.set_markeredgewidth(tick_width)
tick.tick2line.set_markeredgewidth(tick_width)
for tick in ax.yaxis.get_minor_ticks():
tick.tick1line.set_markeredgewidth(tick_width)
tick.tick2line.set_markeredgewidth(tick_width)
def axes_labels(ax,xtext,ytext,adjustpos=False,\
fontsize=label_fontsize,xpad=None,ypad=None):
ax.set_xlabel(xtext,fontsize=fontsize,labelpad=xpad)
# increase xticks text sizes
for label in ax.get_xticklabels():
label.set_fontsize(fontsize)
ax.set_ylabel(ytext,fontsize=fontsize,labelpad=ypad)
# increase yticks text sizes
for label in ax.get_yticklabels():
label.set_fontsize(fontsize)
if adjustpos:
## [left,bottom,width,height]
ax.set_position([0.135,0.125,0.84,0.75])
set_tick_widths(ax,axes_linewidth)
def rates_CVs(spikesOut,trange,tCutoff,tMax,dt):
'''takes nengo style spikesOut
and returns rates and CVs of each neurons
for spiketimes>tCutoff
'''
n_times, n_neurons = spikesOut.shape
CV = 100.*np.ones(n_neurons)
rate = np.zeros(n_neurons)
for i in range(n_neurons):
spikesti = trange[spikesOut[:, i] > 0].ravel()
spikesti = spikesti[np.where(spikesti>tCutoff)]
#spikesti = spikest[where((spikest>(Tinit+300*ms)/second) & (spikesi==i))]
# Brian style
ISI = np.diff(spikesti)*dt
if(len(spikesti)>5):
CV[i] = np.std(ISI)/np.mean(ISI)
rate[i]=len(spikesti)/(tMax-tCutoff)
CV = CV[CV!=100.]
return rate,CV
def plot_data(dataFileName,endTag):
print('reading data from',dataFileName+endTag+'.shelve')
#data_dict = pickle.load( open( "/lcncluster/gilra/tmp/rec_learn_data.pickle", "rb" ) )
# with ensures that the file is closed at the end / if error
with contextlib.closing(
shelve.open(dataFileName+endTag+'.shelve', 'r')
) as data_dict:
trange = data_dict['trange']
Tmax = data_dict['Tmax']
rampT = data_dict['rampT']
Tperiod = data_dict['Tperiod']
dt = data_dict['dt']
tau = data_dict['tau']
errorLearning = data_dict['errorLearning']
spikingNeurons = data_dict['spikingNeurons']
#EIfy = data_dict['EIfy']
#VSGInh2 = data_dict['VSGInh2']
Tnolearning = 4*Tperiod
if 'Lorenz' in dataFileName: N = 3
elif 'learnu' in dataFileName: N = 4
elif 'robot2_' in dataFileName: N = 4 # end _ is important to disambiguate the next one, or interchange order
elif 'robot2XY_' in dataFileName: N = 6
elif 'robot1XY_' in dataFileName: N = 3
elif 'mnist' in dataFileName:
N = 10
Tnolearning = data_dict['Tnolearning']
else: N = 2
print('plotting data')
plt.figure(facecolor='w',figsize=(8, 6*2)) # default figsize=(8,6)
### Plot Nengo network
#EtoIdecvec = sim.data[EtoIdec]
#print 'number of negative E to I decoders (should be 0) = ',\
# len(EtoIdecvec[where(EtoIdecvec<0)])
trange = data_dict['trange']
if errorLearning: # only start and end data is saved
if 'start' in endTag: tidx = int(Tnolearning/dt) # Tnolearning
else: tidx = int((Tnolearning+Tperiod)/dt) # (Tnolearning + Tperiod) if Tmax allows at least one noFlush Tperiod
# (2*Tnolearning) if Tmax doesn't allow at least one noFlush Tperiod
trange = trange[-tidx:] # data only for saved period
y2 = data_dict['ratorOut2']
#yinh = data_dict['inhibrator']
#yinh2 = data_dict['inhibrator2']
rateEvolve = data_dict['rateEvolve']
ax = plt.subplot(2,1,1)
ax2 = plt.subplot(2,1,2)
#ax = plt.subplot(2,2,1)
#ax2 = plt.subplot(2,2,3)
#ax3 = plt.subplot(2,2,2)
#ax4 = plt.subplot(2,2,4)
#cnames = mpl.colors.cnames.values() # very similar colors grouped together
cnames = ['r','g','b','c','m','y','k','olive','chocolate','lawngreen']
if errorLearning:
recurrentLearning = data_dict['recurrentLearning']
if 'copycatLayer' in data_dict: copycatLayer = data_dict['copycatLayer']
else: copycatLayer = False
err = data_dict['error_p']
#inpfn = lambda t: 0.02*np.array([0.23161279,-0.78227585])/0.1\
# if (t%1.0) < 0.1 else np.zeros(2)
#plt.plot(trange, [inpfn(t) for t in trange], color='m', linewidth=1, label='u')
if 'ratorOut' in data_dict:
y = data_dict['ratorOut']
ax.plot(trange, y, color='b', linewidth=1, label='input $u$')
if 'torqueOut' in data_dict:
ax.plot(trange, data_dict['torqueOut'], color='r', linewidth=1, label='T1')
if 'inverse' in dataFileName:
ax.plot(trange, y2, color='r', linewidth=1, label='T1')
if N>4: [ax2.plot(trange, y2[:,i], color=cnames[i], linewidth=1, label='L2') for i in range(N)]
else: ax2.plot(trange, y2[:,:N], color='b', linewidth=1, label='pred $\hat{x}$')
if 'robot' in dataFileName:
pass
#ax.plot(trange, y2[:,N:], color='b', linewidth=1, label='L2')
if errorLearning:
if recurrentLearning and copycatLayer:
yExpect = data_dict['yExpectRatorOut']
ax2.plot(trange, yExpect[-tidx:], color='c', linewidth = 1, label='ref $x$')
#elif '_func' in dataFileName:
# yref = lambda x: (2*x[0]**2.,-10*x[0]**3+2*x[1])
# plt.plot(trange, np.array([yref(yval) for yval in y]), color='c', linewidth = 1, label='ref')
else:
if N>4: [ax2.plot(trange, rateEvolve[-tidx:,i], color=cnames[i], linewidth = 1, label='ref') for i in range(N)]
else: ax2.plot(trange, rateEvolve[-tidx:], color='c', linewidth = 1, label='ref $x$')
# all of the error is saved in _end.shelve, but we take only the end part here.
if 'US2014' in dataFileName:
ax.plot(trange, y2[:,:N]-rateEvolve[-tidx:], color='g', linewidth=1, label='err')
ax3.plot(trange, err[-len(trange):,:3], linewidth=1, label='err')
ax4.plot(trange, err[-len(trange):,3:6], linewidth=1, label='err')
#ax3.plot(trange, err[-len(trange):], color='g', linewidth=1, label='err')
else:
ax.plot(trange, err[-len(trange):], color='g', linewidth=1, label='err $\epsilon$')
#errMean = sim.data[errorMean_p]
#plt.plot(trange, errMean, color='y', linewidth=1, label='errorM')
else:
ax2.plot(trange, rateEvolve, color='c', linewidth = 1, label='ref')
#ax2.plot(trange, yinh2, color='k', linewidth=1, label='inh')
axes_labels(ax,'time (s)','arb')
axes_labels(ax2,'time (s)','arb')
# each plot() above is 2-dimensional, but have only one label per plot
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles[::2],labels[::2],loc="lower left")
handles, labels = ax2.get_legend_handles_labels()
ax2.legend(handles[::2],labels[::2],loc="lower left")
#plt.xlim((trange[-1]-3.0,trange[-1]))
formatter = mpl.ticker.ScalarFormatter(useOffset=False) # remove the offset on axes ticks
ax.xaxis.set_major_formatter(formatter)
## inhibitory population
if 'inhibrator' in data_dict.keys():
yinh = data_dict['inhibrator']
plt.subplot(2,2,2)
plt.plot(trange, yinh)
plt.xlabel('time (s)')
## plot distribution of CVs of spike trains
## Should take only the time range when the firing is stationary!
## but actually not stationary due to dynamics/stimulus, still taking.
## exc rates and CVs
#if 'EspikesOut2' in data_dict.keys():
# if 'ExpectSpikesOut' in data_dict.keys():
# ExpectSpikesOut = data_dict['ExpectSpikesOut']
# ax=rasterplot(trange, ExpectSpikesOut[:,:100])
# axes_labels(ax,'time (s)','neuron #')
# EspikesOut = data_dict['EspikesOut2']
# rateE,CVE = rates_CVs(EspikesOut,trange,\
# trange[0],trange[-1],dt)
# ax = plt.subplot(2, 2, 3)
# plt.hist(CVE,bins=100)
# axes_labels(ax,'CV','count')
# plt.title('CVs ('+str(trange[-1]-trange[0])+'s) histogram',fontsize=label_fontsize)
# ax = plt.subplot(2, 2, 4)
# plt.hist(rateE,bins=100,color='b',label='exc')
# #if EIfy or VSGInh2:
# # # inh rates and CVs
# # IspikesOut = data_dict['IspikesOut2']
# # rateI,CVI = rates_CVs(IspikesOut,trange,\
# # trange[0],trange[-1],dt)
# # plt.hist(rateI,bins=100,color='r',label='inh')
# # plt.legend()
# axes_labels(ax,'rate (Hz)','count')
# plt.title('rates ('+str(trange[-1]-trange[0])+'s) histogram',fontsize=label_fontsize)
# plt.subplot(2, 2, 2)
# ax=rasterplot(trange, EspikesOut[:,0:100])
# axes_labels(ax,'time (s)','neuron #')
# ax.xaxis.set_major_formatter(formatter)
plt.tight_layout()
# Vm analysis
if spikingNeurons:
plt.figure(facecolor='w',figsize=(8*2, 6)) # default figsize=(8,6)
EVmOut = data_dict['EVmOut']
plt.subplot(1, 2, 1)
plt.plot(trange,EVmOut[:,0],'b')
plt.plot(trange,EVmOut[:,1],'r')
plt.plot(trange,EVmOut[:,2],'g')
plt.plot(trange,EVmOut[:,3],'y')
plt.xlabel('time (s)')
plt.ylabel('Vm')
plt.title('Vm-s of a few neurons')
plt.subplot(1, 2, 2)
Vmlist = EVmOut.flatten()
Vmrising = Vmlist[np.where(Vmlist>0.05)]
plt.hist(Vmrising,normed=True,bins=100)
plt.xlabel('Vm (0.05 to 1)')
plt.ylabel('density (1/arb)')
plt.title('(Vm>0.05) distribution')
#plt.subplot(1, 3, 3)
#EIn = data_dict['EIn']
#EOut = data_dict['EOut']
#plt.plot(trange,EIn[:,0],color='r',label='in')
#plt.plot(trange,EIn[:,1],color='g',label='in')
#plt.plot(trange,EIn[:,2],color='b',label='in')
#plt.legend('lower left')
#plt.xlabel('time (s)')
#plt.ylabel('input')
#plt.twinx()
#plt.plot(trange,EOut[:,0],color='m',label='out')
#plt.plot(trange,EOut[:,1],color='c',label='out')
#plt.plot(trange,EOut[:,2],color='y',label='out')
#plt.ylabel('output')
#plt.legend()
plt.tight_layout()
## Only for Lorenz attractor (func)
#if 'func' in dataFileName and 'rec' in dataFileName:
# fig = plt.figure(facecolor='w',figsize=(8*2, 6)) # default figsize=(8,6)
# #ax = fig.add_subplot(121)
# #ax.plot(trange,rateEvolve)
# if 'start' in endTag: tstartidx = 0
# elif 'end' in endTag: tstartidx = int(Tperiod/dt) # 3*Tperiod saved, skip first driven one
# ax = fig.add_subplot(121, projection='3d')
# if errorLearning and copycatLayer:
# ax.plot(yExpect[tstartidx:,0],yExpect[tstartidx:,1],yExpect[tstartidx:,2])
# else:
# tstartidx1 = int((Tmax-2*Tperiod)/dt)
# ax.plot(rateEvolve[tstartidx1:,0],rateEvolve[tstartidx1:,1],rateEvolve[tstartidx1:,2])
# ax = fig.add_subplot(122, projection='3d')
# if errorLearning:
# ax.plot(y2[tstartidx:,0],y2[tstartidx:,1],y2[tstartidx:,2])
# # second layer output
# else:
# ax.plot(y[tstartidx:,0],y[tstartidx:,1],y[tstartidx:,2])
# first layer output
def plot_weights(dataFileName):
print('reading weights from',dataFileName)
#data_dict = pickle.load( open( "/lcncluster/gilra/tmp/rec_learn_data.pickle", "rb" ) )
# with ensures that the file is closed at the end / if error
with contextlib.closing(
shelve.open(dataFileName, 'r')
) as data_dict:
Tmax = data_dict['Tmax']
errorLearning = data_dict['errorLearning']
recurrentLearning = data_dict['recurrentLearning']
copycatLayer = data_dict['copycatLayer']
#EIfy = data_dict['EIfy']
#VSGInh2 = data_dict['VSGInh2']
# Weights analysis
if errorLearning:
plt.figure(facecolor='w',figsize=(8*2, 6*2)) # default figsize=(8,6)
ax = plt.subplot(2,2,1)
learnedWeights = data_dict['learnedWeights']
twtrange = np.linspace(0.0,Tmax,len(learnedWeights))
learnedWeightsFinal = learnedWeights[-1]
print("plastic (FF/rec) Exc final weights")
print(learnedWeightsFinal,learnedWeightsFinal.shape)
mean_exc_wts = np.mean(learnedWeightsFinal[np.where(learnedWeightsFinal>=0)])
print("mean of exc positive weights = ",mean_exc_wts)
plt.plot(twtrange,np.mean(np.mean(learnedWeights,axis=1),axis=1)*1e3,\
color='r',label='exc')
learnedInhWeights = data_dict['learnedInhWeights']
learnedInhWeightsFinal = learnedInhWeights[-1]
print("L2 Inh--|Exc weights")
print(learnedInhWeightsFinal,learnedInhWeightsFinal.shape)
mean_inh_wts = np.mean(learnedInhWeightsFinal)
print("mean of L2 inh weights = ",mean_inh_wts)
plt.plot(twtrange,np.mean(np.mean(learnedInhWeights,axis=1),axis=1)*1e3,\
color='b',label='inh')
axes_labels(ax,'time (s)','mean weight (*1e-3 arb)')
plt.legend()
ax = plt.subplot(2, 2, 3)
exc_wts_nonzero = learnedWeightsFinal[np.where(learnedWeightsFinal!=0)]
plt.hist(exc_wts_nonzero.flatten()*1e3,bins=100,\
range=(-3*mean_exc_wts*1e3,3*mean_exc_wts*1e3))
axes_labels(ax,'exc weights (*1e-3 arb)','counts')
plt.title('Histogram of EE weights != 0',fontsize=label_fontsize)
ax = plt.subplot(2, 2, 4)
inh_wts_nonzero = learnedInhWeightsFinal[np.where(learnedInhWeightsFinal!=0)]
if len(inh_wts_nonzero)>0:
plt.hist(inh_wts_nonzero.flatten()*1e3,bins=100,\
range=(8*mean_inh_wts*1e3,0))
axes_labels(ax,'inh weights (*1e-3 arb)','counts')
plt.title('Histogram of inh weights',fontsize=label_fontsize)
## mean exc vs inh input (weights*firing_rates*tau)
## currently tau_EinE and tau_EI are both tau
#plt.subplot(1, 4, 3)
#plt.scatter(np.dot(learnedWeightsFinal,rateE)*tau,\
# np.dot(learnedInhWeightsFinal,rateI)*tau)
#plt.xlabel('incoming exc input to a neuron (wt*rate*tau)')
#plt.ylabel('incoming inh input to a neuron (wt*rate*tau)')
#plt.title('Balance of EI inputs to L2 neuron')
# exc and inh conns' output-s are same as the postsyn neurons' input-s
# not separable into exc and inh contributions
#plt.subplot(1, 4, 4)
#learnedExcOut = data_dict['learnedExcOut']
#learnedInhOut = data_dict['learnedInhOut']
#plt.scatter(learnedExcOut[0][-1,:],learnedInhOut[0][-1,:])
#plt.xlabel('incoming exc input to a neuron (probed)')
#plt.ylabel('incoming inh input to a neuron (probed)')
ax = plt.subplot(2, 2, 2)
print(learnedWeights.shape)
for i in range(10):
for j in range(10):
plt.plot(twtrange,learnedWeights[:,i,j])
axes_labels(ax,'time (s)','weight (arb)')
plt.title('evolution of a 100 exc->exc weights',fontsize=label_fontsize)
plt.tight_layout()
#if recurrentLearning and copycatLayer:
# copycatWeights = data_dict['copycatWeights']
# copycatWeightsPert = data_dict['copycatWeightsPert']
# # I can only compare these weights if the seed (i.e. params) of the copycat ensemble
# # are the same as the params of the learning ensemble
# plt.figure(facecolor='w',figsize=(8*3, 6)) # default figsize=(8,6)
# plt.subplot(1, 3, 1)
# print learnedWeights.shape,copycatWeights.shape
# #plt.scatter(learnedWeights[0].flatten(),copycatWeights[0].flatten())
# #plt.scatter(learnedWeights[0].flatten(),copycatWeights.flatten())
# #plt.xlabel('learned weights')
# #plt.ylabel('ideal weights')
# ccwt_fixed = copycatWeights.flatten() # ideal weights
# ccwtPert_fixed = copycatWeightsPert.flatten() # perturbed initial weights
# ccwtdiff = (ccwtPert_fixed-ccwt_fixed)
# zero_wt_pert = 1e-6
# zero_idxs = np.where(abs(ccwtdiff)<zero_wt_pert)[0] # very small perturbations are taken as ~zero
# # as noise will drive these weights beyond perturbed value
# # this should equal the noise in the weights due to spiking noise
# if len(zero_idxs)>0:
# if len(zero_idxs)<len(ccwtdiff): # set all 'zero's to min non-'zero' val
# ccwtdiff[zero_idxs] = np.nan
# ccwtdiff[np.where(np.isnan(ccwtdiff))] = np.min(np.abs(ccwtdiff))
# else: # full ccwtdiff is zero.
# ccwtdiff = zero_wt_pert
# print 'All perturbations are smaller than',zero_wt_pert
# wts_varratio = (learnedWeights[0].flatten()-ccwt_fixed) / ccwtdiff
# if len(np.where(abs(wts_varratio)>1.)[0])>0:
# wts_notred = wts_varratio[np.where(abs(wts_varratio)>1.)]
# print 'Weights which are not reducing',len(wts_notred),wts_notred
# plt.hist( wts_notred, bins = 100 )
# else:
# print 'All weights are reducing',wts_varratio
# plt.xlabel('learned/ideal weights ratio')
# plt.ylabel('count')
# plt.title('learned moves towards ideal? start')
# plt.subplot(1, 3, 2)
# pert_idxs = np.where(abs(ccwtdiff/ccwt_fixed)>0.249)
# plt.plot(twtrange,[ (learnedWeights[i].flatten()[pert_idxs] - ccwt_fixed[pert_idxs]) for i in range(len(twtrange))])
# axes_labels(ax,'time (s)','weight (arb)')
# plt.title('diff of exc->exc weights from ideal goes to zero',fontsize=label_fontsize)
# # data not available
# #plt.subplot(1, 3, 2)
# #wttmid = len(twtrange)/2
# #plt.scatter(learnedWeights[wttmid].flatten(),copycatWeights[wttmid].flatten())
# #plt.xlabel('learned weights')
# #plt.ylabel('ideal weights')
# #plt.title('learned moves towards ideal? mid')
# plt.subplot(1, 3, 3)
# #plt.scatter(learnedWeights[-1].flatten(),copycatWeights[-1].flatten())
# #plt.scatter(learnedWeights[-1].flatten(),copycatWeights.flatten())
# #plt.xlabel('learned weights')
# #plt.ylabel('ideal weights')
# wts_varratio = (learnedWeights[-1].flatten()-ccwt_fixed) / ccwtdiff
# if len(np.where(abs(wts_varratio)>1.)[0])>0:
# wts_notred = wts_varratio[np.where(abs(wts_varratio)>1.)]
# print 'Weights which are not reducing',len(wts_notred),wts_notred
# plt.hist( wts_notred, bins = 100 )
# else:
# print 'all weights reducing',wts_varratio
# plt.xlabel('learned/ideal weights ratio')
# plt.ylabel('count')
# plt.title('learned moves towards ideal? end')
# plt.tight_layout()
def plot_currentvsexpected_weights(dataFileNameCurrent,dataFileNameExpected,weightStrs):
for weightStr in weightStrs:
if 'plastDecoders' in dataFileNameCurrent: plastDecoders = True
else: plastDecoders = False
print('reading weights from',dataFileNameCurrent)
# with ensures that the file is closed at the end / if error
with contextlib.closing(
shelve.open(dataFileNameCurrent, 'r')
) as data_dict_current:
if 'currentweights' in dataFileNameCurrent:
current_decoders0 = data_dict_current['weights'+weightStr][0]
current_decoders1 = data_dict_current['weights'+weightStr][-1]
else:
current_decoders1 = data_dict_current['learnedWeights'+weightStr]
if 'initLearned' in dataFileNameCurrent and 'currentweights' in dataFileNameCurrent:
expected_weights = current_decoders0
print(expected_weights)
else:
print('reading weights from',dataFileNameExpected)
with contextlib.closing(
shelve.open(dataFileNameExpected, 'r')
) as data_dict_expected:
if '_precopy' in dataFileNameExpected:
expected_weights = data_dict_expected['weights'+weightStr]
else:
expected_weights = data_dict_expected['weights'+weightStr][-1]
# can also use another _currentWeights file to compare insted of _expectWeights
if not plastDecoders and '_expect' in dataFileNameExpected:
encoders = data_dict_expected['encoders']
reprRadius = data_dict_expected['reprRadius']
expected_weights = np.dot(encoders,expected_weights)/reprRadius
gain = data_dict_expected['gain']
# use below weights to compare against probed weights of EtoE = connection(neurons,neurons)
expected_weights = gain.reshape(-1,1) * expected_weights
print('plotting weights comparison ',weightStr)
fig = plt.figure(facecolor='w',figsize=(8*2, 6*2)) # default figsize=(8,6)
ax = plt.subplot(1,1,1)
# since the data is large, and .flatten() gives memory error, I plot each row one by one
for i in range(len(current_decoders1)):
ax.scatter(current_decoders1[i,:],expected_weights[i,:],color='b',alpha=0.3)
axes_labels(ax,'learned'+weightStr,'reference'+weightStr)
print("done plotting weights comparison ",weightStr)
def plot_current_weights(dataFileName):
print('reading weights from',dataFileName)
# with ensures that the file is closed at the end / if error
if 'shelve' not in dataFileName:
import pandas as pd
with contextlib.closing(
( shelve.open(dataFileName, 'r') \
if 'shelve' in dataFileName \
else pd.HDFStore(dataFileName) )
) as data_dict:
weights = np.array(data_dict['weights'])
if 'weightsIn' in data_dict.keys():
ff = True
weightsIn = np.array(data_dict['weightsIn'])
print(weightsIn.shape)
print("Mean and SD of all InEtoE weights = ",np.mean(weightsIn[-1]),np.std(weightsIn[-1]))
else: ff = False
if 'encoders' in data_dict.keys():
encoders = data_dict['encoders']
reprRadius = data_dict['reprRadius']
weights = np.dot(encoders,weights)/reprRadius
weights = np.swapaxes(weights,0,1)
if 'inhWeights' in data_dict.keys():
inh = True
inhWeights = data_dict['inhWeights']
print(inhWeights.shape)
else: inh = False
weightdt = data_dict['weightdt']
Tmax = data_dict['Tmax']
weighttimes = np.arange(0.0,Tmax+weightdt,weightdt)[:len(weights)]
print(weights.shape)
# Weights analysis
plt.figure(facecolor='w',figsize=(8*2, 6*2)) # default figsize=(8,6)
ax = plt.subplot(2,2,1)
endweights = np.array(weights[-1])
print ("Mean and SD of all ratorOut2 weights = ",np.mean(endweights),np.std(endweights))
exc_wts_nonzero = endweights[np.where(endweights!=0)]
mean_exc_wts = np.abs(np.mean(exc_wts_nonzero)) # abs() needed since if negative,
# histogram range param below gives error xmin>xmax
sd_exc_wts = np.std(exc_wts_nonzero)
print ("Mean and SD of non-zero ratorOut2 weights = ",mean_exc_wts,sd_exc_wts)
if inh: wide = mean_exc_wts
else: wide = sd_exc_wts
plt.hist(exc_wts_nonzero.flatten()*1e3,bins=500,\
range=(-2*wide*1e3,2*wide*1e3))
axes_labels(ax,'exc weights (*1e-3 arb)','counts')
plt.title('Histogram of learnt weights != 0',fontsize=label_fontsize)
ax = plt.subplot(2,2,2)
absendweights = np.abs(endweights.flatten()) # absolute values of final learnt weights
cutendweights = 0.60*np.max(absendweights)
largewt_idxs = np.where(absendweights>cutendweights)[0]
# Take only |weights| > 60% of the maximum
if len(largewt_idxs)>0:
# reshape weights to flatten axes 1,2, not the time axis 0
# -1 below in reshape will mean total size / weights.shape[0]
weightsflat = weights.reshape(weights.shape[0],-1)
plt.plot( weighttimes, weightsflat[:,largewt_idxs] )
plt.xlabel('time (s)')
plt.ylabel('weight (arb)')
plt.title('Evolution of wts above 0.6*maxwt abs')
if inh:
weight_idxs = np.random.permutation(np.arange(inhWeights[-1].size))[:50]
plt.plot( weighttimes, inhWeights.reshape(inhWeights.shape[0],-1)[:,weight_idxs] )
ax = plt.subplot(2,2,3)
plt.hist(inhWeights.flatten(),bins=100)
axes_labels(ax,'inh weights','counts')
plt.title('Histogram of learnt inh weights',fontsize=label_fontsize)
if ff:
ax = plt.subplot(2,2,3)
endweightsIn = np.array(weightsIn[-1])
absendweightsIn = np.abs(endweightsIn.flatten()) # absolute values of final learned weights
cutendweightsIn = 0.60*np.max(absendweightsIn)
largewt_idxs = np.where(absendweightsIn>cutendweightsIn)[0]
# Take only |weights| > 60% of the maximum
if len(largewt_idxs)>0:
# reshape weights to flatten axes 1,2, not the time axis 0
# -1 below in reshape will mean total size / weights.shape[0]
weightsflat = weightsIn.reshape(weightsIn.shape[0],-1)
plt.plot( weighttimes, weightsflat[:,largewt_idxs] )
plt.xlabel('time (s)')
plt.ylabel('In weight (arb)')
plt.title('Evolution of i/p wts above 0.6*maxwt abs')
#ax = plt.subplot(2,2,3)
startweights = np.array(weights[0])
## since the data is large, and .flatten() gives memory error, I plot each row one by one
#for i in range(len(endweights)):
# ax.scatter(endweights[i,:],startweights[i,:],color='b',alpha=0.3)
#axes_labels(ax,'learned','initial')
if 'randomInitWeights' in dataFileName or 'initLearned' in dataFileName:
# how many moved by more than x%?
moved_fraction = (endweights-startweights)/startweights # element-by-element division
moved_idxs = np.where(abs(moved_fraction)>10.) # ((row#s),(col#s))
print("Number of weights that moved by more than 1000% are",\
len(moved_idxs[0]),"out of",moved_fraction.size,\
"i.e.",len(moved_idxs[0])/float(moved_fraction.size)*100,"% of the weights.")
else:
# how many moved by more than x from zero?
movement = endweights-startweights
moved_idxs = np.where(abs(movement)>0.1) # ((row #s),(col #s))
print("Number of weights that moved by more than 0.1 are",\
len(moved_idxs[0]),"out of",movement.size,\
"i.e.",len(moved_idxs[0])/float(movement.size)*100,"% of the weights.")
print("Neurons with 'strong' incoming weights",np.unique(moved_idxs[0])) # row #s are the post neurons
print("Neurons with 'strong' outgoing weights",np.unique(moved_idxs[1])) # col #s are the pre neurons
ax = plt.subplot(2,2,4)
learnedWeightsFinal = endweights
#print "plastic (FF/rec) Exc final weights"
#print learnedWeightsFinal,learnedWeightsFinal.shape
mean_exc_wts = np.mean(learnedWeightsFinal[np.where(learnedWeightsFinal>=0)])
print("mean of exc positive weights = ",mean_exc_wts)
plt.plot(weighttimes,np.mean(np.mean(weights,axis=1),axis=1)*1e3,\
color='r',label='exc')
if inh:
inhWeightsFinal = inhWeights[-1]
print("L2 Inh--|Exc weights")
print(inhWeightsFinal,inhWeightsFinal.shape)
mean_inh_wts = np.mean(inhWeightsFinal)
print("mean of L2 inh weights = ",mean_inh_wts)
plt.plot(weighttimes,np.mean(np.mean(inhWeights,axis=1),axis=1)*1e3,\
color='b',label='inh')
axes_labels(ax,'time (s)','mean weight (*1e-3 arb)')
plt.legend()
plt.tight_layout()
def plot_error_fulltime(dataFileName):
# with ensures that the file is closed at the end / if error
with contextlib.closing(
shelve.open(dataFileName, 'r')
) as data_dict:
trange = data_dict['trange']
Tmax = data_dict['Tmax']
Tperiod = data_dict['Tperiod']
dt = data_dict['dt']
err = data_dict['error_p']
# remove the Tnolearning period where error is forced to zero
Tnolearning = 4*Tperiod
Tmax = Tmax - Tnolearning
# in the _end.shelve, error is available for the full time (not flushed)
# remove the end part of Tnolearning or 100*Tperiod
if trange[-1] > 1000:
NperiodsAverage = 50
trange = trange[:-int(NperiodsAverage*Tperiod/dt)]
err = err[:-int(NperiodsAverage*Tperiod/dt)]
else:
NperiodsAverage = 1
trange = trange[:-int(Tnolearning/dt)]
err = err[:-int(Tnolearning/dt)]
# bin squared error into every Tperiod
numbins = int(Tmax/Tperiod)
fig = plt.figure(facecolor='w')
ax = plt.subplot(111)
ax.plot(trange, np.linalg.norm(err,axis=1), linewidth=plot_linewidth)
axes_labels(ax,'time (s)','error$^2$',xpad=-6,ypad=-7)
#fig = plt.figure(facecolor='w')
#ax = plt.subplot(111)
## mean error (not mean squared error as below)
#points_per_bin = int(NperiodsAverage*Tperiod/dt)
#if 'Lorenz' in dataFileName: N = 3
#elif 'learnu' in dataFileName: N = 2
#elif 'inverse' in dataFileName: N = 2
#elif 'robot2' in dataFileName: N = 4
#elif 'robot2XY' in dataFileName: N = 6
#elif 'robot1XY' in dataFileName: N = 3
#else: N = 2
#for i in range(N):
# err_mean = err[:,i].reshape((-1,points_per_bin)).mean(axis=1)
# ax.plot(trange[::points_per_bin], err_mean,\
# color=['r','g','b','k','c','m','y'][i],linewidth=plot_linewidth)
# ax.set_ylim(2*min(err_mean[-10:]),2*max(err_mean[-10:]))
## mean squared error
#ax2 = plt.twinx()
#points_per_bin = int(Tperiod/dt)
#ax2.plot(trange[::points_per_bin], np.sum(err**2,axis=1).reshape((-1,points_per_bin)).mean(axis=1),\
# color='k', linewidth=plot_linewidth)
#ax2.set_yscale('log')
#
#axes_labels(ax,'time (s)','error mean ('+str(NperiodsAverage)+'*Tperiod)',xpad=-6,ypad=-7)
#axes_labels(ax2,'time (s)','error$^2$',xpad=-6,ypad=3)
#fig = plt.figure(facecolor='w')
#ax = plt.subplot(111)
#for i in range(N):
# miderr = len(err)//2 # python3 doesn't do integer division by default, use //
# erri = err[miderr:,i]
# err_reshape = erri.reshape((-1,points_per_bin))
# err_mean = err_reshape.mean(axis=0)
# err_std = err_reshape.std(axis=0)
# ax.plot(trange[:points_per_bin], err_mean,\
# color=['r','g','b','k','c','m','y'][i],linewidth=plot_linewidth)
# ax.plot(trange[:points_per_bin], err_mean+err_std,\
# color=['r','g','b','k','c','m','y'][i],alpha=0.5,linewidth=plot_linewidth)
# ax.plot(trange[:points_per_bin], err_mean-err_std,\
# color=['r','g','b','k','c','m','y'][i],alpha=0.5,linewidth=plot_linewidth)
# print("Mean noise in dimension",i,"per time point in 2nd half of the sim is",erri.mean())
#axes_labels(ax,'time (s)','error',xpad=-6,ypad=-7)
#ax.set_title('error Tperiod histogram (end half sim)')
def plot_biases4nonfiringneurons(testFileName):
# with ensures that the file is closed at the end / if error
with contextlib.closing(
shelve.open(testFileName+'_start.shelve', 'r')
) as data_dict:
trange = data_dict['trange']
Tmax = data_dict['Tmax']
rampT = data_dict['rampT']
Tperiod = data_dict['Tperiod']
dt = data_dict['dt']
tau = data_dict['tau']
errorLearning = data_dict['errorLearning']
spikingNeurons = data_dict['spikingNeurons']
y2 = data_dict['ratorOut2']
if 'EspikesOut2' in data_dict.keys():
EspikesOut = data_dict['EspikesOut2']
tstart, tend = 0., 16.
rate,CV = rates_CVs(EspikesOut,trange,tstart,tend,dt)
zeroidxs = np.where(rate==0)[0] # indices of neurons that don't fire at all
## build an ensemble exactly as in the test file simulation
## and find the bises of those neurons
## NOTE: Set the seeds and other params manually below,
## as they could be ambiguous from name of the file
import nengo
Nexc, N, reprRadius, nrngain = 3000, 2, 5, 2
seedR0, seedR2 = 2, 4
gain_bias_set = True
#biaslow, biashigh = 1 - nrngain, 1 + nrngain
biaslow, biashigh = -nrngain, nrngain
print('building model')
mainModel = nengo.Network(label="Single layer network", seed=seedR0)
with mainModel:
ratorOut = nengo.Ensemble( Nexc, dimensions=N, radius=reprRadius,
neuron_type=nengo.neurons.LIF(),
bias=nengo.dists.Uniform(biaslow,biashigh), gain=np.ones(Nexc)*nrngain,
#max_rates=nengo.dists.Uniform(200, 400),
noise=None, seed=seedR2, label='ratorOut' )
sim = nengo.Simulator(mainModel,dt)
biases = sim.data[ratorOut].bias
zerofiringbiases = biases[zeroidxs]
gains = sim.data[ratorOut].gain
zerofiringgains = gains[zeroidxs]
if gain_bias_set: histrange, biasrange = 5, 5
else: histrange, biasrange = 500, 100
fig = plt.figure(facecolor='w')
ax1 = plt.subplot(231)
vals,_,_ = ax1.hist(gains,bins=50,range=(0,histrange),color='k',histtype='step')
ax1.set_xlabel('all gains')
ax2 = plt.subplot(232)
vals,_,_ = ax2.hist(biases,bins=50,range=(-histrange,biasrange),color='k',histtype='step')
ax2.set_xlabel('all biases')
ax3 = plt.subplot(234)
vals,_,_ = ax3.hist(zerofiringgains,bins=50,range=(0,histrange),color='k',histtype='step')
ax3.set_xlabel('zero-firing gains')
ax4 = plt.subplot(235)
vals,_,_ = ax4.hist(zerofiringbiases,bins=50,range=(-histrange,biasrange),color='k',histtype='step')
ax4.set_xlabel('zero-firing biases')
if not gain_bias_set:
intercepts = sim.data[ratorOut].intercepts
zerofiringintercepts = intercepts[zeroidxs]
ax5 = plt.subplot(233)
vals,_,_ = ax5.hist(intercepts,bins=50,color='k',histtype='step')
ax5.set_xlabel('all intercepts')
ax6 = plt.subplot(236)
vals,_,_ = ax6.hist(zerofiringintercepts,bins=50,color='k',histtype='step')
ax6.set_xlabel('zero-firing intercepts')
plt.show()
def plot_rec_nengo_all(dataFileName):
if 'algo' not in dataFileName:
plot_data(dataFileName,'_start')
plot_data(dataFileName,'_end')
plot_error_fulltime(dataFileName+'_end.shelve')
## .h5 is only for general system - robot arm, others use .shelve
#if 'general' in dataFileName and 'robot' in dataFileName:
# plot_current_weights(dataFileName+'_currentweights.h5')
#else:
# plot_current_weights(dataFileName+'_currentweights.shelve')
## only if copycatLayer
#if 'ff_rec' in dataFileName: weightStrs = ['','In']
#else: weightStrs = ['']
#if '_nocopycat' not in dataFileName:
# if isfile(dataFileName+'_currentweights.shelve'):
# plot_currentvsexpected_weights(
# dataFileName+'_currentweights.shelve',
# dataFileName+'_expectweights.shelve',weightStrs)
# else:
# plot_currentvsexpected_weights(
# dataFileName+'_endweights.shelve',
# dataFileName+'_expectweights.shelve',weightStrs)
### obsolete
##plot_weights(dataFileName+'_weights.shelve')
else:
plot_data(dataFileName,'')
#plot_weights(dataFileName+'_weights.shelve')
plt.show()
if __name__ == "__main__":
#plot_currentvsexpected_weights('../data/rec_learn_data_directfb_Nexc2000_seeds2345expconnseed0_nodeerr_plastDecoders_learn_rec_func_vanderPol_500.0s_expectweights.shelve',
# '../data/rec_learn_data_directfb_Nexc2000_seeds2345expconnseed1_nodeerr_plastDecoders_learn_rec_func_vanderPol_500.0s_expectweights.shelve')
#plt.show()
plot_rec_nengo_all(sys.argv[1])
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_algo_30.0s")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_algo_func_30.0s.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_EIfy_algo_2inhpops_3.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_EIfy_algo_2inhpops_func_3.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_None_noinh_3000.0s")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_clip<0_3000.0s")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_clip<0_400.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_clip<0_func_400.0s.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_clip<0_func_400.0s.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_clip<0_noErrFB_func_400.0s.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_rec_None_noinh_1000.0s.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_rec_clip<0_noinh_400.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_inhdecaytau10_onetau2tau_data_learn_rec_clip<0_400.0s")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_rec_clip<0_func_1200.0s")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_bothTau2_PES2e-3_learn_rec_clip<0_1200.0s")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_bothTau2_PES2e-3_learn_rec_None_noinh_initLearned_func_100.0s_nostim")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_inhdecay100_excdecay100_bothTau2_PES2e-3_learn_rec_clip<0_initLearned_func_400.0s_nostim")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_gain10_inhdecay40_bothTau2_PES1e-3_learn_rec_clip<0_func_6000.0s_kickStart")
#plot_rec_nengo_all("../data/rec_learn_data_wtf_Nexc2000_seeds0333_nodeerr_learn_rec_func_LinOsc_3000.0s")
#plot_rec_nengo_all("../data/ff_ocl_g2oR4.5_wt80ms_Nexc3000_seeds2344_weightErrorCutoff0.0_nodeerr_learn_rec_nocopycat_func_vanderPol_trials_seed2by50.0amplVaryHeightsScaled_continueFrom4000.0_trials_seed9by50.0amplVaryHeightsScaled_1000.0s")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_None_noinh_noErrFB_1200.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_None_noinh_noErrFB_func_1200.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_clip<0_noinh_noErrFB_400.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_clip<0_noinh_noErrFB_func_400.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_clip<0_noinh_noErrFB_func_1200.0s_final.shelve") # worse with time! too high firing?
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_clip<0_noErrFB_400.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_ff_clip<0_noErrFB_func_1200.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_rec_None_noinh_noErrFB_400.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_rec_clip<0_noinh_noErrFB_400.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_rec_clip<0_noErrFB_400.0s_final.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_rec_None_noinh_func_400.0s.shelve")
#plot_rec_nengo_all("/lcncluster/gilra/tmp/rec_learn_data_learn_rec_clip<0_400.0s_error2000_final.shelve")
# NOTE: you need to set the gain / bias / max_rates params in the function, these are not obtained from the filename
#plot_biases4nonfiringneurons("../data_draft4/ff_ocl_g2oR4.5_wt80ms_Nexc3000_seeds2344_weightErrorCutoff0.0_nodeerr_learn_rec_nocopycat_func_vanderPol_trials_seed2by50.0amplVaryHeightsScaled_testFrom5000.0_seed3by50.0rampLeaveRampHeights_40.0s")
## no EspikeOut saved for linear case!
##plot_biases4nonfiringneurons("../data_draft4/ff_ocl_Nexc2000_noinptau_seeds2344_weightErrorCutoff0.0_nodeerr_learn_rec_nocopycat_func_LinOsc_seed2by8.0amplVaryHeights_testFrom10000.0_seed2by8.0rampStep_20.0s")