forked from berfinsimsek/neural-net-regression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
executable file
·59 lines (55 loc) · 2.26 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
def optim_loss_erf(x):
return (x*np.arcsin(1/2) - x**2*np.arcsin(1/(2*x)))*2/np.pi
def res_to_param(res, num_teacher):
num_neurons = res["x"]["w1"].shape[0]
#input_dim = res["x"]["w1"].shape[1]
angles = np.zeros((num_teacher, num_neurons))
norms = np.zeros(num_neurons)
outgoing_weights = np.zeros(num_neurons)
for i in range(num_neurons):
incoming_weight = np.zeros(num_teacher)
for j in range(num_teacher):
incoming_weight[j] = res["x"]["w1"][i, j]
angles[:, i] = incoming_weight / np.linalg.norm(incoming_weight)
norms[i] = np.linalg.norm(incoming_weight)
outgoing_weights[i] = res["x"]["w2"][0, i]
return angles, norms, outgoing_weights
def permute_CA(angles, norms, outgoing_weights):
n = angles.shape[1]
d = angles.shape[0]
i = 0
while(i < n):
angles_swap = angles.copy()
norms_swap = norms.copy()
outgoing_weights_swap = outgoing_weights.copy()
if(np.abs(angles[:, i]).max() < 0.95):
angles_swap[:, i] = angles[:, n-1]
angles_swap[:, n-1] = angles[:, i]
norms_swap[i] = norms[n-1]
norms_swap[n-1] = norms[i]
outgoing_weights_swap[i] = outgoing_weights[n-1]
outgoing_weights_swap[n-1] = outgoing_weights[i]
angles = angles_swap.copy()
norms = norms_swap.copy()
outgoing_weights = outgoing_weights_swap.copy()
i+=1
for j in range(n-1):
angles_swap_swap = angles_swap.copy()
argmax_j = np.abs(angles_swap[:, j]).argmax()
#print(j, argmax_j)
angles_swap_swap[argmax_j, :] = angles_swap[j, :]
angles_swap_swap[j, :] = angles_swap[argmax_j, :]
angles_swap = angles_swap_swap.copy()
return angles_swap_swap, norms_swap, outgoing_weights_swap #angles_swap_swap
def permute_CC(angles, norms, outgoing_weights):
n = angles.shape[1]
d = angles.shape[0]
for j in range(n):
angles_swap = angles.copy()
argmax_j = np.abs(angles_swap[:, j]).argmax()
#print(j, argmax_j)
angles_swap[argmax_j, :] = angles[j, :]
angles_swap[j, :] = angles[argmax_j, :]
angles = angles_swap.copy()
return angles_swap, norms, outgoing_weights