forked from armankhondker/leetcode-solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
continugousSubarraySum.java
105 lines (80 loc) · 3.83 KB
/
continugousSubarraySum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
// Given a list of non-negative numbers and a target integer k, write a function to check if the array
// has a continuous subarray of size at least 2 that sums up to a multiple of k, that is, sums up to
// n*k where n is also an integer.
// Example 1:
// Input: [23, 2, 4, 6, 7], k=6
// Output: True
// Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.
BRUTE FORCE, go through every possible subarray and check if sum mod k is 0.
TC: O(n^3) to go through every possible subarray, and then go through all elements and get sum
sc: O(1)
public class Solution {
public boolean checkSubarraySum(int[] nums, int k) {
for (int start = 0; start < nums.length - 1; start++) {
for (int end = start + 1; end < nums.length; end++) {
int sum = 0;
for (int i = start; i <= end; i++)
sum += nums[i];
if (sum == k || (k != 0 && sum % k == 0))
return true;
}
}
return false;
}
}
BRUTE FORCE OPTIMIZED, same logic, but store the prefix sums into an array, so dont have to recompute repeatedly
TC: O(n^2) to go through every possible subarray
SC: O(n) to store the prefix sums of array
public class Solution {
public boolean checkSubarraySum(int[] nums, int k) {
if (nums == null || nums.length == 0) return false;
int[] preSum = new int[nums.length+1];
for (int i = 1; i <= nums.length; i++) {
preSum[i] = preSum[i-1] + nums[i-1];
}
for (int i = 0; i < nums.length; i++) {
for (int j = i+2; j <= nums.length; j++) {
if (k == 0) {//special logic for this case
if (preSum[j] - preSum[i] == 0) {
return true;
}
} else if ((preSum[j] - preSum[i]) % k == 0) {
return true;
}
}
}
return false;
}
}
BEST SOLUTION!! HARD TO FOLLOW LOGIC, implement first solution!!
INTUTION, need to keep track of prefix sum and mod value!!!
/** Key point: if we can find any two subarray of prefix sum have same mod value, then their difference MUST be
* divisible by k. So we can use a map to store mod value of each prefix sum in map, with its index. Then check
* if map contains the same mod value with size > 2 when we have new mod value in every iteration */
EXPLAINATION OF WHY
// this is one of those magics of remainder theorem :)
// (a+(n*x))%x is same as (a%x)
// For e.g. in case of the array [23,2,6,4,7] the running sum is [23,25,31,35,42] and the remainders are [5,1,1,5,0].
// We got remainder 5 at index 0 and at index 3. That means, in between these two indexes we must have added a number
// which is multiple of the k. H
EXPLAINATION FOR (0, -1)
// <0,-1> can allow it to return true when the runningSum%k=0,
// In addition, it also avoids the first element of the array is the multiple of k, since 0-(-1)=1
//is not greater than 1.
// I think it's really beautiful and elegant here!
//TC: O(N) where n is length, to go through the entire input array
//SC: O(N) to keep a map of the
public boolean checkSubarraySum(int[] nums, int k) {
Map<Integer, Integer> map = new HashMap<Integer, Integer>(){{put(0,-1);}};; //running sum, index of that sum
int runningSum = 0;
for (int i=0;i<nums.length;i++) {
runningSum += nums[i]; //keep iterating running run
if (k != 0) runningSum %= k; //so we can store the REMAINDER in the map
Integer prev = map.get(runningSum); //previous occurence of this sum
if (prev != null) {
if (i - prev > 1) return true; //NEED WINDOW OF LENGTH 2!!! THATS WHY THIS LINE
}
else map.put(runningSum, i); //store running sum, to its index found
}
return false;
}