forked from BoltenWang-Meta/Stacked-Hourglass-on-Pytorch-1.6
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
161 lines (139 loc) · 4.78 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import time
from torch import nn
class ResBlk(nn.Module):
def __init__(self, ch_in, ch_out):
super(ResBlk, self).__init__()
self.ch_in = ch_in
ch_mid = int(ch_out / 2)
self.conv1 = nn.Sequential(
nn.BatchNorm2d(ch_in),
nn.ReLU(),
nn.Conv2d(ch_in, ch_mid, kernel_size=1),
nn.BatchNorm2d(ch_mid),
nn.ReLU(),
nn.Conv2d(ch_mid, ch_mid, kernel_size=3, padding=1),
nn.BatchNorm2d(ch_mid),
nn.ReLU(),
nn.Conv2d(ch_mid, ch_out, kernel_size=1)
)
self.conv2 = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=3, padding=1)
)
def forward(self, x):
assert x.shape[1] == self.ch_in
out1 = self.conv1(x)
out2 = self.conv2(x)
out = out1 + out2
return out
class HourGlassBlk(nn.Module):
def __init__(self):
super(HourGlassBlk, self).__init__()
self.stage_1 = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True),
ResBlk(256, 256)
)
self.stage_1_b = ResBlk(256, 256)
self.stage_2 = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True),
ResBlk(256, 256)
)
self.stage_2_b = ResBlk(256, 256)
self.stage_3 = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True),
ResBlk(256, 256)
)
self.stage_3_b = ResBlk(256, 256)
self.stage_4 = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True),
ResBlk(256, 256),
ResBlk(256, 256),
ResBlk(256, 256),
nn.ConvTranspose2d(256, 256, kernel_size=4, stride=2, padding=1)
)
self.stage_4_b = ResBlk(256, 256)
self.state_3_u = nn.Sequential(
ResBlk(256, 256),
nn.ConvTranspose2d(256, 256, kernel_size=4, stride=2, padding=1)
)
self.state_2_u = nn.Sequential(
ResBlk(256, 256),
nn.ConvTranspose2d(256, 256, kernel_size=4, stride=2, padding=1)
)
self.state_1_u = nn.Sequential(
ResBlk(256, 256),
nn.ConvTranspose2d(256, 256, kernel_size=4, stride=2, padding=1)
)
def forward(self, x):
out1 = self.stage_1(x)
out1_b = self.stage_1_b(x)
out2 = self.stage_2(out1)
out2_b = self.stage_2_b(out1)
out3 = self.stage_3(out2)
out3_b = self.stage_3_b(out2)
out4 = self.stage_4(out3)
out4_b = self.stage_4_b(out3)
out4 = out4 + out4_b
out3 = self.state_3_u(out4)
out3 = out3 + out3_b
out2 = self.state_2_u(out3)
out2 = out2 + out2_b
out1 = self.state_1_u(out2)
out1 = out1 + out1_b
return out1
class HGPoseNet(nn.Module):
def __init__(self, landmark):
super(HGPoseNet, self).__init__()
self.conv_pre = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, padding=3, stride=2),
nn.BatchNorm2d(64),
nn.ReLU(),
ResBlk(64, 128),
nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True),
ResBlk(128, 128),
ResBlk(128, 256)
)
HG1 = HourGlassBlk()
conv_1 = nn.Sequential(
ResBlk(256, 256),
nn.Conv2d(256, 256, kernel_size=1),
nn.BatchNorm2d(256),
nn.ReLU()
)
conv_1_bottle = nn.Sequential(
nn.Conv2d(256, landmark, kernel_size=1),
nn.Conv2d(landmark, 256, kernel_size=1)
)
conv_1_add = nn.Conv2d(256, 256, kernel_size=1)
HG_layer = [HG1, conv_1, conv_1_bottle, conv_1_add]
self.HG_layers = []
for i in range(7):
self.HG_layers.append(HG_layer)
self.end_stage = nn.Sequential(
HourGlassBlk(),
ResBlk(256, 256),
nn.Conv2d(256, 256, kernel_size=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, landmark, kernel_size=1)
)
def forward(self, img):
map_1 = self.conv_pre(img)
for stage in self.HG_layers:
map_1 = stage[0](map_1)
map_1 = stage[1](map_1)
map_1_1 = stage[2](map_1)
map_1_2 = stage[3](map_1)
map_1 = map_1_1 + map_1_2
out = self.end_stage(map_1)
return out
def test():
model = HGPoseNet(16)
x = torch.rand((1, 3, 256, 256))
st = time.time()
out1 = model(x)
end = time.time()
print(end-st)
print(out1.shape)
if __name__ == '__main__':
test()