-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.c
418 lines (394 loc) · 9.79 KB
/
common.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <math.h>
#include "sequence.h"
#include "common.h"
void
print_small_kmer_int(uint32_t val, int kmer_k)
{
int i;
int mask = 3;
//printf("Why is this: %d\n", (int)pow((double)4,(double)7)*3);
if ( kmer_k > 1 )
mask = mask * (int)(pow((double)4,(double)(kmer_k-1)));
for (i = kmer_k-1; i >= 0; i-- )
{
//printf("%c %d mask = %d", num_to_char((char)((val & mask)>>(i*2))), val, mask);
printf("%c", num_to_char((char)((val & mask)>>(i*2))));
mask = mask >> 2;
}
}
// TODO: move this to hash_functions.c
// small_kmer_to_int
//
// Convert a kmer for k's between 1 and 15 into
// a 32bit integer. Bases are packed as 2 bits
// with the first base in the MSB using the
// function ['A'=0,'C'=1,'G'=2','T'=3] to map
// bases to bits.
// If the user specifies a k > 15 or there are
// N's in the sequence this function returns
// the maximum 32bit integer (0xFFFFFFFF) as
// an error code. If rc is set reverse complement
// the sequence.
//
uint32_t
small_kmer_to_int (char *kmer, int kmer_k, int rc)
{
int i;
uint32_t kmer_int = 0;
if ( kmer_k < 16 )
{
if ( rc )
{
for (i = kmer_k-1; i >= 0; i-- )
{
kmer_int = kmer_int << 2;
// A=00 C=01,G=10,T=11
// a=0100 c=0101, g=0110, t=0111
// xor with 0b11
// T=11 G=10,C=01,A=00
if ( kmer[i] <= 7 )
kmer_int += (kmer[i]&3)^3; // xor 0b11
else
return((uint32_t)0xFFFFFFFF);
}
}else{
for (i = 0; i < kmer_k; i++ )
{
kmer_int = kmer_int << 2;
if ( kmer[i] <= 7 )
kmer_int += (kmer[i]&3);
else
return((uint32_t)0xFFFFFFFF);
}
}
return(kmer_int);
}else {
return((uint32_t)0xFFFFFFFF);
}
}
// small_kmer_seq_to_int
//
// Convert a kmer for k's between 1 and 15 into
// a 32bit integer. Bases are packed as 2 bits
// with the first base in the MSB using the
// function ['A'=0,'C'=1,'G'=2','T'=3] to map
// bases to bits.
// If the user specifies a k > 15 or there are
// N's in the sequence this function returns
// the maximum 32bit integer (0xFFFFFFFF) as
// an error code. If rc is set reverse complement
// the sequence.
//
uint32_t
small_kmer_seq_to_int (char *kmer, int kmer_k, int rc)
{
int i;
uint32_t kmer_int = 0;
char ch;
if ( kmer_k < 16 )
{
if ( rc )
{
for (i = kmer_k-1; i >= 0; i-- )
{
kmer_int = kmer_int << 2;
// A=00 C=01,G=10,T=11
// a=0100 c=0101, g=0110, t=0111
// xor with 0b11
// T=11 G=10,C=01,A=00
ch = char_to_num(kmer[i]);
if ( ch < 8 )
kmer_int += (ch&3)^3; // xor 0b11
else
return((uint32_t)0xFFFFFFFF);
}
}else{
for (i = 0; i < kmer_k; i++ )
{
kmer_int = kmer_int << 2;
ch = char_to_num(kmer[i]);
if ( ch < 8 )
kmer_int += (ch&3);
else
return((uint32_t)0xFFFFFFFF);
}
}
return(kmer_int);
}else {
return((uint32_t)0xFFFFFFFF);
}
}
// large_kmer_to_int
//
// Convert a kmer for k's between 1 and 31 into
// a 64bit integer. Bases are packed as 2 bits
// with the first base in the MSB using the
// function ['A'=0,'C'=1,'G'=2','T'=3] to map
// bases to bits.
// If the user specifies a k > 31 or there are
// N's in the sequence this function returns
// the maximum 64bit integer (0xFFFFFFFFFFFFFFFF) as
// an error code. If rc is set, reverse complement
// the sequence.
//
uint64_t
large_kmer_to_int (char *kmer, int kmer_k, int rc)
{
int i;
uint32_t kmer_int = 0;
if ( kmer_k < 32 )
{
if ( rc )
{
for (i = kmer_k-1; i >= 0; i-- )
{
kmer_int = kmer_int << 2;
// A=00 C=01,G=10,T=11
// a=0100 c=0101, g=0110, t=0111
// xor with 0b11
// T=11 G=10,C=01,A=00
if ( kmer[i] <= 7 )
kmer_int += (kmer[i]&3)^3; // xor 0b11
else
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
}else{
for (i = 0; i < kmer_k; i++ )
{
kmer_int = kmer_int << 2;
if ( kmer[i] <= 7 )
kmer_int += (kmer[i]&3);
else
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
}
return(kmer_int);
}else {
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
}
//
// large_kmer_pair_to_int
//
// Convert a kmer for k's between 1 and 31 into
// a 64bit integer. Bases are packed as 2 bits
// with the first base in the MSB using the
// function ['A'=0,'C'=1,'G'=2','T'=3] to map
// bases to bits.
// If the user specifies a k > 31 or there are
// N's in the sequence this function returns
// the maximum 64bit integer (0xFFFFFFFFFFFFFFFF) as
// an error code. If rc is set, reverse complement
// the sequence.
//
uint64_t
large_kmer_pair_to_int (char *leftKmer, char *rightKmer, int kmerSize, int rc)
{
int i;
uint32_t kmer_int = 0;
if ( kmerSize < 32 )
{
if ( rc )
{
for (i = kmerSize-1; i >= 0; i-- )
{
kmer_int = kmer_int << 2;
// A=00 C=01,G=10,T=11
// a=0100 c=0101, g=0110, t=0111
// xor with 0b11
// T=11 G=10,C=01,A=00
if ( rightKmer[i] <= 7 )
kmer_int += (rightKmer[i]&3)^3; // xor 0b11
else
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
for (i = kmerSize-1; i >= 0; i-- )
{
kmer_int = kmer_int << 2;
// A=00 C=01,G=10,T=11
// a=0100 c=0101, g=0110, t=0111
// xor with 0b11
// T=11 G=10,C=01,A=00
if ( leftKmer[i] <= 7 )
kmer_int += (leftKmer[i]&3)^3; // xor 0b11
else
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
}else{
for (i = 0; i < kmerSize; i++ )
{
kmer_int = kmer_int << 2;
if ( leftKmer[i] <= 7 )
kmer_int += (leftKmer[i]&3);
else
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
for (i = 0; i < kmerSize; i++ )
{
kmer_int = kmer_int << 2;
if ( rightKmer[i] <= 7 )
kmer_int += (rightKmer[i]&3);
else
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
}
return(kmer_int);
}else {
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
}
// large_kmer_seq_to_int
//
// Convert a kmer for k's between 1 and 31 into
// a 64bit integer. Bases are packed as 2 bits
// with the first base in the MSB using the
// function ['A'=0,'C'=1,'G'=2','T'=3] to map
// bases to bits.
// If the user specifies a k > 31 or there are
// N's in the sequence this function returns
// the maximum 64bit integer (0xFFFFFFFFFFFFFFFF) as
// an error code. If rc is set, reverse complement
// the sequence.
//
uint64_t
large_kmer_seq_to_int (char *kmer, int kmer_k, int rc)
{
int i;
uint32_t kmer_int = 0;
char ch;
if ( kmer_k < 32 )
{
if ( rc )
{
for (i = kmer_k-1; i >= 0; i-- )
{
kmer_int = kmer_int << 2;
// A=00 C=01,G=10,T=11
// a=0100 c=0101, g=0110, t=0111
// xor with 0b11
// T=11 G=10,C=01,A=00
ch = char_to_num(kmer[i]);
if ( ch < 8 )
kmer_int += (ch&3)^3; // xor 0b11
else
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
}else{
for (i = 0; i < kmer_k; i++ )
{
kmer_int = kmer_int << 2;
ch = char_to_num(kmer[i]);
if ( ch < 8 )
kmer_int += (ch&3);
else
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
}
return(kmer_int);
}else {
return((uint64_t)0xFFFFFFFFFFFFFFFF);
}
}
// Compute Shannon entropy of kmer
// The natural log is used so the units of entropy are
// known as "hartley".
//
// H(X) = -SUM[i-n]( P(x[i])*Logb( P(x[i]) ) )
//
// The higher the entropy the more disordered the kmer. I.e
// ACGTACGTACGT is the most disordered 12mer with an
// entropy of 1.386 hartley
// AAAAAAAAAGGC is right on the cusp of our cutoff with
// an entropy of 0.721 hartley
// AAAAAAAAAAAA and the other monomer 12mer equivs is the most ordered
// with an entropy of 0 hartley
//
// NOTE: returns -1.0 if there is an error with conversion
//
double
compute_entropy(char *kmer, int kmer_k)
{
int x;
int count[4];
double answer, y;
for (x = 0; x < 4; x++)
count[x] = 0;
// ACGT=0-3, acgt=4-7
// and 3 = a->A, c->C, g->G, t->T
// N's cause an error
for (x = 0; x < kmer_k; x++)
if ( kmer[x] < 8 )
count[kmer[x]&3] += 1;
else
return( -1.0 );
answer = 0.0;
for (x = 0; x < 4; x++)
{
if (count[x] == 0)
continue;
y = ((double) count[x]) / ((double) kmer_k);
answer += y * log(y);
}
return -answer;
}
// Variant which uses char bases "A","C","G","T" instead of 0-3
// Compute Shannon entropy of seq
// The natural log is used so the units of entropy are
// known as "hartley".
//
// H(X) = -SUM[i-n]( P(x[i])*Logb( P(x[i]) ) )
//
// The higher the entropy the more disordered the seq. I.e
// ACGTACGTACGT is the most disordered 12mer with an
// entropy of 1.386 hartley
// AAAAAAAAAGGC is right on the cusp of our cutoff with
// an entropy of 0.721 hartley
// AAAAAAAAAAAA and the other monomer 12mer equivs is the most ordered
// with an entropy of 0 hartley
//
// NOTE: returns -1.0 if there is an error with conversion
double
compute_seq_entropy(char *seq)
{
int x;
int count[4];
double answer, y;
int wordLen = strlen(seq);
char ch;
for (x = 0; x < 4; x++)
count[x] = 0;
for (x = 0; x < wordLen; x++) {
ch = char_to_num(seq[x]);
if ( ch < 8 )
count[ch&3] += 1;
else
return(-1.0);
}
answer = 0.0;
for (x = 0; x < 4; x++)
{
if (count[x] == 0)
continue;
y = ((double) count[x]) / ((double) wordLen);
answer += y * log(y);
}
// printf("Entropy = %f\n", -answer);
return -answer;
}
int
rand_int(int n)
{
int limit = RAND_MAX - RAND_MAX % n;
int rnd;
do
{
rnd = rand();
}
while (rnd >= limit);
return rnd % n;
}