-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
335 lines (232 loc) · 18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from collections import Counter
import plotly.express as px
from streamlit_option_menu import option_menu
import data_analysis_functions as function
import data_preprocessing_function as preprocessing_function
import home_page
import base64
# # page config sets the text and icon that we see on the tab
st.set_page_config(page_icon="✨", page_title="AutoEDA")
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
#uncomment the above lines of code when we want to remove made with streamlit logo and also the top right three-dots icon
# Create a Streamlit sidebar
st.sidebar.title("AutoEDA: Automated Exploratory Data Analysis and Processing")
# Set custom CSS
custom_css = home_page.custom_css
# Create the introduction section
st.title("Welcome to AutoEDA")
# st.write('<div class="tagline">Unleash the Power of Data with AutoEDA!</div>', unsafe_allow_html=True)
selected = option_menu(
menu_title=None,
options=['Home', 'Data Exploration', 'Data Preprocessing'],
icons=['house-heart', 'bar-chart-fill', 'hammer'],
orientation='horizontal'
)
if selected == 'Home':
home_page.show_home_page()
# Create a button in the sidebar to upload CSV
uploaded_file = st.sidebar.file_uploader("Upload Your CSV File Here", type=["csv","xls"])
use_example_data = st.sidebar.checkbox("Use Example Titanic Dataset", value=False)
# ADDING LINKS TO MY PROFILES
st.sidebar.write("#")
st.sidebar.write("#")
st.sidebar.write("#")
st.sidebar.write("#")
st.sidebar.write("#")
st.sidebar.write("#")
st.sidebar.write("#")
st.sidebar.write("#")
st.sidebar.write("#")
st.sidebar.write("#")
st.sidebar.write("#")
st.sidebar.markdown("### **Connect with Me**")
# Create columns in the sidebar for LinkedIn and GitHub icons
col1, col2 = st.sidebar.columns(2)
# Define the width and height for the icons (adjust as needed)
icon_width = 80
icon_height = 80
# Add the LinkedIn icon and link
col1.markdown(f'<a href="https://www.linkedin.com/in/devang-chavan/"><img src="https://content.linkedin.com/content/dam/me/business/en-us/amp/brand-site/v2/bg/LI-Bug.svg.original.svg" width={icon_width} height={icon_height}></a>', unsafe_allow_html=True)
# Add the GitHub icon and link
col2.markdown(f'<a href="https://github.com/Devang-C"><img src="" width={icon_width} height={icon_height}></a>', unsafe_allow_html=True)
if uploaded_file:
df = function.load_data(uploaded_file)
# get a copy of original df from the session state or create a new one. this is for preprocessing purposes
if 'new_df' not in st.session_state:
st.session_state.new_df = df.copy()
# Create a checkbox in the sidebar to choose between the example dataset and uploaded dataset
elif use_example_data:
# Load the example dataset
df = function.load_data(file="example_dataset/titanic.csv")
# Set st.session_state.new_df to the example dataset for data preprocessing
if 'new_df' not in st.session_state:
st.session_state.new_df = df
# TODO: Some issue related to session_state. When we upload a new dataset, it does not reflect changes in the data preprocessing tab as we are using session state.
# and the data is defined only once. need to solve this issue.
# Temporary solution is to reload the page and upload a new dataset
# Display the dataset preview or any other content here
if uploaded_file is None and selected!='Home' and not use_example_data:
# st.subheader("Welcome to DataExplora!")
st.markdown("#### Use the sidebar to upload a CSV file or use the provided example dataset and explore your data.")
else:
if selected=='Data Exploration':
tab1, tab2 = st.tabs(['📊 Dataset Overview :clipboard', "🔎 Data Exploration and Visualization"])
num_columns, cat_columns = function.categorical_numerical(df)
with tab1: # DATASET OVERVIEW TAB
st.subheader("1. Dataset Preview")
st.markdown("This section provides an overview of your dataset. You can select the number of rows to display and view the dataset's structure.")
function.display_dataset_overview(df,cat_columns,num_columns)
st.subheader("3. Missing Values")
function.display_missing_values(df)
st.subheader("4. Data Statistics and Visualization")
function.display_statistics_visualization(df,cat_columns,num_columns)
st.subheader("5. Data Types")
function.display_data_types(df)
st.subheader("Search for a specific column or datatype")
function.search_column(df)
with tab2:
function.display_individual_feature_distribution(df,num_columns)
st.subheader("Scatter Plot")
function.display_scatter_plot_of_two_numeric_features(df,num_columns)
if len(cat_columns)!=0:
st.subheader("Categorical Variable Analysis")
function.categorical_variable_analysis(df,cat_columns)
else:
st.info("The dataset does not have any categorical columns")
st.subheader("Feature Exploration of Numerical Variables")
if len(num_columns)!=0:
function.feature_exploration_numerical_variables(df,num_columns)
else:
st.warning("The dataset does not contain any numerical variables")
# Create a bar graph to get relationship between categorical variable and numerical variable
st.subheader("Categorical and Numerical Variable Analysis")
if len(num_columns)!=0 and len(cat_columns)!=0:
function.categorical_numerical_variable_analysis(df,cat_columns,num_columns)
else:
st.warning("The dataset does not have any numerical variables. Hence Cannot Perform Categorical and Numerical Variable Analysis")
# DATA PREPROCESSING
if selected=='Data Preprocessing':
# st.header("🛠️ Data Preprocessing")
revert = st.button("Revert to Original Dataset",key="revert_button")
if revert:
st.session_state.new_df = df.copy()
# REMOVING UNWANTED COLUMNS
st.subheader("Remove Unwanted Columns")
columns_to_remove = st.multiselect(label='Select Columns to Remove',options=st.session_state.new_df.columns)
if st.button("Remove Selected Columns"):
if columns_to_remove:
st.session_state.new_df = preprocessing_function.remove_selected_columns(st.session_state.new_df,columns_to_remove)
st.success("Selected Columns Removed Sucessfully")
st.dataframe(st.session_state.new_df)
# Handle missing values in the dataset
st.subheader("Handle Missing Data")
missing_count = st.session_state.new_df.isnull().sum()
if missing_count.any():
selected_missing_option = st.selectbox(
"Select how to handle missing data:",
["Remove Rows in Selected Columns", "Fill Missing Data in Selected Columns (Numerical Only)"]
)
if selected_missing_option == "Remove Rows in Selected Columns":
columns_to_remove_missing = st.multiselect("Select columns to remove rows with missing data", options=st.session_state.new_df.columns)
if st.button("Remove Rows with Missing Data"):
st.session_state.new_df = preprocessing_function.remove_rows_with_missing_data(st.session_state.new_df, columns_to_remove_missing)
st.success("Rows with missing data removed successfully.")
elif selected_missing_option == "Fill Missing Data in Selected Columns (Numerical Only)":
numerical_columns_to_fill = st.multiselect("Select numerical columns to fill missing data", options=st.session_state.new_df.select_dtypes(include=['number']).columns)
fill_method = st.selectbox("Select fill method:", ["mean", "median", "mode"])
if st.button("Fill Missing Data"):
if numerical_columns_to_fill:
st.session_state.new_df = preprocessing_function.fill_missing_data(st.session_state.new_df, numerical_columns_to_fill, fill_method)
st.success(f"Missing data in numerical columns filled with {fill_method} successfully.")
else:
st.warning("Please select a column to fill in the missing data")
function.display_missing_values(st.session_state.new_df)
else:
st.info("The dataset does not contain any missing values")
encoding_tooltip = '''**One-Hot encoding** converts categories into binary values (0 or 1). It's like creating checkboxes for each category. This makes it possible for computers to work with categorical data.
**Label encoding** assigns unique numbers to categories. It's like giving each category a name (e.g., Red, Green, Blue becomes 1, 2, 3). This helps computers understand and work with categories.
'''
st.subheader("Encode Categorical Data")
new_df_categorical_columns = st.session_state.new_df.select_dtypes(include=['object']).columns
if not new_df_categorical_columns.empty:
select_categorical_columns = st.multiselect("Select Columns to perform encoding",new_df_categorical_columns)
#choose the encoding method
encoding_method = st.selectbox("Select Encoding Method:",['One Hot Encoding','Label Encoding'],help=encoding_tooltip)
if st.button("Apply Encoding"):
if encoding_method=="One Hot Encoding":
st.session_state.new_df = preprocessing_function.one_hot_encode(st.session_state.new_df,select_categorical_columns)
st.success("One-Hot Encoding Applied Sucessfully")
if encoding_method=="Label Encoding":
st.session_state.new_df = preprocessing_function.label_encode(st.session_state.new_df,select_categorical_columns)
st.success("Label Encoding Applied Sucessfully")
st.dataframe(st.session_state.new_df)
else:
st.info("The dataset does not contain any categorical columns")
feature_scaling_tooltip='''**Standardization** scales your data to have a mean of 0 and a standard deviation of 1. It helps in comparing variables with different units. Think of it like making all values fit on the same measurement scale.
**Min-Max scaling** transforms your data to fall between 0 and 1. It's like squeezing data into a specific range. This makes it easier to compare data points that vary widely.'''
st.subheader("Feature Scaling")
new_df_numerical_columns = st.session_state.new_df.select_dtypes(include=['number']).columns
selected_columns = st.multiselect("Select Numerical Columns to Scale", new_df_numerical_columns)
scaling_method = st.selectbox("Select Scaling Method:", ['Standardization', 'Min-Max Scaling'],help=feature_scaling_tooltip)
if st.button("Apply Scaling"):
if selected_columns:
if scaling_method == "Standardization":
st.session_state.new_df = preprocessing_function.standard_scale(st.session_state.new_df, selected_columns)
st.success("Standardization Applied Successfully.")
elif scaling_method == "Min-Max Scaling":
st.session_state.new_df = preprocessing_function.min_max_scale(st.session_state.new_df, selected_columns)
st.success("Min-Max Scaling Applied Successfully.")
else:
st.warning("Please select numerical columns to scale.")
st.dataframe(st.session_state.new_df)
st.subheader("Identify and Handle Outliers")
# Select numeric column for handling outliers
selected_numeric_column = st.selectbox("Select Numeric Column for Outlier Handling:", new_df_numerical_columns)
st.write(selected_numeric_column)
# Display outliers in a box plot
fig, ax = plt.subplots()
ax = sns.boxplot(data=st.session_state.new_df, x=selected_numeric_column)
st.pyplot(fig)
outliers = preprocessing_function.detect_outliers_zscore(st.session_state.new_df, selected_numeric_column)
if outliers:
st.warning("Detected Outliers:")
st.write(outliers)
else:
st.info("No outliers detected using IQR.")
# Choose handling method
outlier_handling_method = st.selectbox("Select Outlier Handling Method:", ["Remove Outliers", "Transform Outliers"])
# Perform outlier handling based on the method chosen
if st.button("Apply Outlier Handling"):
if outlier_handling_method == "Remove Outliers":
st.session_state.new_df = preprocessing_function.remove_outliers(st.session_state.new_df, selected_numeric_column,outliers)
st.success("Outliers removed successfully.")
elif outlier_handling_method == "Transform Outliers":
# Provide options for transforming outliers (e.g., capping, log transformation)
# Update st.session_state.new_df after transforming outliers
st.session_state.new_df = preprocessing_function.transform_outliers(st.session_state.new_df, selected_numeric_column,outliers)
st.success("Outliers transformed successfully.")
# Show the updated dataset
st.dataframe(st.session_state.new_df)
if st.session_state.new_df is not None:
# Convert the DataFrame to CSV
csv = st.session_state.new_df.to_csv(index=False)
# Encode as base64
b64 = base64.b64encode(csv.encode()).decode()
# Create a download link
href = f'data:file/csv;base64,{b64}'
# Display a download button
st.markdown(f'<a href="{href}" download="preprocessed_data.csv"><button>Download Preprocessed Data</button></a>', unsafe_allow_html=True)
else:
st.warning("No preprocessed data available to download.")