forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrep.py
426 lines (383 loc) · 14.5 KB
/
rep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import logging
import argparse
import numpy as np
from tqdm import tqdm
import pgl
from ote_orth import OrthOTE
logging.basicConfig(format='', level=logging.INFO)
def get_neighbor_list_wikikg2():
from ogb.linkproppred import LinkPropPredDataset
dataset = LinkPropPredDataset(name="ogbl-wikikg2")
split_edge = dataset.get_edge_split()
train_edges = split_edge["train"]
head_id = train_edges["head"].reshape((-1, 1))
tail_id = train_edges["tail"].reshape((-1, 1))
relation_id = train_edges["relation"]
edges = np.concatenate([head_id, tail_id], axis=-1)
n_entities = 2500604
graph = pgl.Graph(
num_nodes=n_entities,
edges=edges,
edge_feat={"edge_feature": relation_id})
entity_neighbors = []
for nid in tqdm(range(n_entities)):
nb = [[], [], []]
# nid-head
succ, succ_eid = graph.successor([nid], return_eids=True)
nb[0].extend(list(succ[0]))
nb[1].extend(list(graph.edge_feat["edge_feature"][list(succ_eid[0])]))
nb[2].extend([-1] * len(succ[0]))
# nid-tail
pred, pred_eid = graph.predecessor([nid], return_eids=True)
nb[0].extend(list(pred[0]))
nb[1].extend(list(graph.edge_feat["edge_feature"][list(pred_eid[0])]))
nb[2].extend([1] * len(pred[0]))
entity_neighbors.append(nb)
return entity_neighbors, None
def get_neighbor_list_fb_wn(data_path):
with open(os.path.join(data_path, 'entities.dict')) as fin:
entity2id = dict()
for line in fin:
eid, entity = line.strip().split('\t')
entity2id[entity] = int(eid)
with open(os.path.join(data_path, 'relations.dict')) as fin:
relation2id = dict()
for line in fin:
rid, relation = line.strip().split('\t')
relation2id[relation] = int(rid)
with open(os.path.join(data_path, 'train.txt')) as fin:
edges = []
for line in fin:
h, r, t = line.strip().split('\t')
hid = entity2id[h]
rid = relation2id[r]
tid = entity2id[t]
edges.append([hid, rid, tid])
edges = np.array(edges, dtype=np.int32)
n_entities = len(entity2id)
entity_neighbors = []
for eid in range(n_entities):
nb = [[], [], []]
h_index = np.where(edges[:, 0] == eid)
nb[0].extend(list(edges[h_index[0]][:, 2]))
nb[1].extend(list(edges[h_index[0]][:, 1]))
nb[2].extend([-1] * len(h_index[0]))
t_index = np.where(edges[:, 2] == eid)
nb[0].extend(list(edges[t_index[0]][:, 0]))
nb[1].extend(list(edges[t_index[0]][:, 1]))
nb[2].extend([1] * len(t_index[0]))
entity_neighbors.append(nb)
return entity_neighbors, edges
def get_indegree(n_entities, edges):
indegrees = np.zeros(n_entities)
for eid in range(n_entities):
h_index = np.where(edges[:, 2] == eid)
indegrees[eid] = len(h_index[0]) + 1
indegrees = indegrees.reshape((-1, 1))
return indegrees
def rep_transe(entity_feat,
relation_feat,
entity_neighbors,
alpha,
degree_w,
indegrees=None,
neighbor_norm=False):
new_entity_feat = np.zeros(entity_feat.shape, dtype="float32")
for i, efeat in enumerate(entity_feat):
src_or_dst, r_type, direct = entity_neighbors[i]
if len(src_or_dst) > 0:
src_nfeat_value = entity_feat[src_or_dst]
neigh_nfeat = src_nfeat_value + (relation_feat[r_type].T * direct
).T
if not neighbor_norm:
aggr_nfeat = np.mean(neigh_nfeat, axis=0)
else:
src_indegrees = indegrees[src_or_dst]
src_norm = np.power(src_indegrees, degree_w)
src_norm = src_norm / np.sum(src_norm)
neigh_nfeat = neigh_nfeat * src_norm
aggr_nfeat = np.sum(neigh_nfeat, axis=0)
new_nfeat = efeat * alpha + aggr_nfeat * (1 - alpha)
else:
new_nfeat = efeat
new_entity_feat[i] = new_nfeat
return new_entity_feat
def rep_rotate(entity_feat,
relation_feat,
entity_neighbors,
alpha,
degree_w,
gamma=10,
indegrees=None,
neighbor_norm=False):
new_entity_feat = np.zeros(entity_feat.shape, dtype="float32")
hidden_dim = relation_feat.shape[1]
emb_init = gamma / hidden_dim
for i, efeat in enumerate(entity_feat):
src_or_dst, r_type, direct = entity_neighbors[i]
if len(src_or_dst) > 0:
relation = relation_feat[r_type]
phase_rel = relation / (emb_init / np.pi)
re_rel, im_rel = np.cos(phase_rel), np.sin(phase_rel)
head = entity_feat[src_or_dst]
re_head, im_head = np.split(head, 2, -1)
re_score = re_head * re_rel - ((im_head * im_rel).T * direct).T
im_score = im_head * re_rel + ((re_head * im_rel).T * direct).T
src_nfeat_value = np.concatenate([re_score, im_score], -1)
if not neighbor_norm:
aggr_nfeat = np.mean(src_nfeat_value, axis=0)
else:
src_indegrees = indegrees[src_or_dst]
src_norm = np.power(src_indegrees, degree_w)
src_norm = src_norm / np.sum(src_norm)
neigh_nfeat = neigh_nfeat * src_norm
aggr_nfeat = np.sum(neigh_nfeat, axis=0)
new_nfeat = efeat * alpha + aggr_nfeat * (1 - alpha)
else:
new_nfeat = efeat
new_entity_feat[i] = new_nfeat
return new_entity_feat
def rep_distmult(entity_feat,
relation_feat,
entity_neighbors,
alpha,
degree_w,
indegrees=None,
neighbor_norm=False):
new_entity_feat = np.zeros(entity_feat.shape, dtype="float32")
for i, efeat in enumerate(entity_feat):
src_or_dst, r_type, direct = entity_neighbors[i]
if len(src_or_dst) > 0:
src_nfeat_value = entity_feat[src_or_dst]
neigh_nfeat = relation_feat[r_type] * src_nfeat_value
if not neighbor_norm:
aggr_nfeat = np.mean(neigh_nfeat, axis=0)
else:
src_indegrees = indegrees[src_or_dst]
src_norm = np.power(src_indegrees, degree_w)
src_norm = src_norm / np.sum(src_norm)
neigh_nfeat = neigh_nfeat * src_norm
aggr_nfeat = np.sum(neigh_nfeat, axis=0)
new_nfeat = efeat * alpha + aggr_nfeat * (1 - alpha)
else:
new_nfeat = efeat
new_entity_feat[i] = new_nfeat
return new_entity_feat
def rep_ote(entity_feat,
relation_feat,
entity_neighbors,
alpha,
degree_w,
r_emb=None,
r_emb_mat=None,
ote_size=20,
indegrees=None,
neighbor_norm=False,
scale_norm=False):
"""For OTE and GC-OTE."""
new_entity_feat = np.zeros(entity_feat.shape, dtype="float32")
for i, efeat in enumerate(entity_feat):
src_or_dst, r_type, direct = entity_neighbors[i]
src_nfeat_value = entity_feat[src_or_dst]
tmp_nfeat_list = np.zeros((len(src_or_dst), entity_feat.shape[1]))
for j, nfeat in enumerate(src_nfeat_value):
if direct[j] == 1:
inputs_rel = r_emb[r_type[j]]
elif direct[j] == -1:
inputs_rel = r_emb_mat[r_type[j]]
else:
raise ValueError
inputs_size = nfeat.shape
inputs = nfeat.reshape(-1, 1, ote_size)
rel = inputs_rel.reshape(-1, ote_size, ote_size + 1)
scale = np.exp(rel[:, :, ote_size:])
if scale_norm:
scale = scale / np.linalg.norm(scale, axis=-1, keepdims=True)
rel_scale = rel[:, :, :ote_size] * scale
outputs = np.matmul(inputs, rel_scale)
outputs = outputs.reshape(inputs_size)
tmp_nfeat_list[j] = outputs
if len(tmp_nfeat_list) > 0:
neigh_nfeat = tmp_nfeat_list
if not neighbor_norm:
aggr_nfeat = np.mean(neigh_nfeat, axis=0)
else:
src_indegrees = indegrees[src_or_dst]
src_norm = np.power(src_indegrees, degree_w)
src_norm = src_norm / np.sum(src_norm)
neigh_nfeat = neigh_nfeat * src_norm
aggr_nfeat = np.sum(neigh_nfeat, axis=0)
new_nfeat = efeat * alpha + aggr_nfeat * (1 - alpha)
else:
new_nfeat = efeat
new_entity_feat[i] = new_nfeat
return new_entity_feat
def main(model_name,
dataset,
entity_feat,
relation_feat,
entity_neighbors,
alpha=0.98,
k_hop=10,
gamma=6.0,
degree_w=0.1,
r_emb=None,
r_emb_mat=None,
ote_size=20,
indegrees=None,
neighbor_norm=False,
scale_norm=False):
for i in range(k_hop):
start = time.time()
if model_name == 'TransE':
entity_feat = rep_transe(
entity_feat,
relation_feat,
entity_neighbors,
alpha=alpha,
degree_w=degree_w,
indegrees=indegrees,
neighbor_norm=neighbor_norm)
elif model_name == 'RotatE':
entity_feat = rep_rotate(
entity_feat,
relation_feat,
entity_neighbors,
alpha=alpha,
degree_w=degree_w,
gamma=gamma,
indegrees=indegrees,
neighbor_norm=neighbor_norm)
elif model_name == 'OTE':
entity_feat = rep_ote(
entity_feat,
relation_feat,
entity_neighbors,
alpha=alpha,
degree_w=degree_w,
r_emb=r_emb,
r_emb_mat=r_emb_mat,
ote_size=ote_size,
indegrees=indegrees,
neighbor_norm=neighbor_norm,
scale_norm=scale_norm)
elif model_name == 'DistMult':
entity_feat = rep_distmult(
entity_feat,
relation_feat,
entity_neighbors,
alpha=alpha,
degree_w=degree_w,
indegrees=indegrees,
neighbor_norm=neighbor_norm)
end = time.time()
print("Time elapsed for running one hop: %.4f" % (end - start))
save_path = "REP_save_feat_%s_%s" % (model_name, dataset)
if not os.path.exists(save_path):
os.mkdir(save_path)
np.save(os.path.join(save_path, "entity_embedding.npy"), entity_feat)
np.save(
os.path.join(save_path, "relation_embedding.npy"), relation_feat)
# Then you can use the saved embeddings to get new evaluation results.
if __name__ == "__main__":
parser = argparse.ArgumentParser("REP")
parser.add_argument(
"--dataset",
type=str,
default="FB15k-237",
help="Dataset (FB15k-237, wn18rr, wikikg2)")
parser.add_argument(
"--data_path",
type=str,
default="",
help="The data path for FB15k-237 and wn18rr.")
parser.add_argument(
"--model_name",
type=str,
default='TransE',
help="model (TransE, RotatE, DistMult, OTE)")
parser.add_argument(
"--model_path",
type=str,
default="",
help="The embedding path of different models.")
parser.add_argument("--khop", type=int, default=20, help="REP K hops.")
parser.add_argument(
"--alpha",
default=0.98,
type=float,
help="Hyperparameter used in REP.")
parser.add_argument(
"--gamma",
type=float,
default=10,
help="hyperparameter used in RotatE, "
"which should be same in both training phase and REP phase.")
parser.add_argument(
"--ote_size",
type=int,
default=20,
help="Hyperparameter used in OTE and GC-OTE, "
"which should be same in both training phase and REP phase.")
parser.add_argument(
"--degree_w",
type=float,
default=0.1,
help="hyperparameter for neighbor_norm")
parser.add_argument("--neighbor_norm", action="store_true")
parser.add_argument(
"--scale_norm", action="store_true", help="used in OTE")
args = parser.parse_args()
logging.info(args)
entity_feat_path = os.path.join(args.model_path, "entity_embedding.npy")
relation_feat_path = os.path.join(args.model_path,
"relation_embedding.npy")
if args.model_name in ['OTE', 'GC_OTE']:
ote = OrthOTE(relation_feat_path, args.ote_size)
r_emb = ote.orth_relation_emb.numpy()
r_emb_mat = ote.orth_relation_emb_mat.numpy()
else:
r_emb = None
r_emb_mat = None
entity_feat = np.load(entity_feat_path)
relation_feat = np.load(relation_feat_path)
if args.dataset in ['FB15k-237', 'wn18rr']:
entity_neighbors, edges = get_neighbor_list_fb_wn(args.data_path)
if args.dataset in ['wikikg2']:
entity_neighbors, edges = get_neighbor_list_wikikg2()
if args.neighbor_norm:
assert (args.dataset not in ['wikikg2'])
indegrees = get_indegree(len(entity_neighbors), edges)
else:
indegrees = None
main(
args.model_name,
args.dataset,
entity_feat,
relation_feat,
entity_neighbors,
alpha=args.alpha,
k_hop=args.khop,
gamma=args.gamma,
degree_w=args.degree_w,
r_emb=r_emb,
r_emb_mat=r_emb_mat,
ote_size=args.ote_size,
indegrees=indegrees,
neighbor_norm=args.neighbor_norm,
scale_norm=args.scale_norm)