forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathote_orth.py
88 lines (80 loc) · 3.54 KB
/
ote_orth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
class OrthOTE():
def __init__(self, relation_feat, ote_size):
self.use_scale = True
self.num_elem = ote_size
self.scale_type = 2
if isinstance(relation_feat, str):
relation_emb = np.load(relation_feat)
else:
relation_emb = relation_feat
relation_emb = paddle.to_tensor(relation_emb)
self.orth_relation_emb = self.orth_rel_embedding(relation_emb)
self.orth_relation_emb_mat = self.orth_reverse_mat(
self.orth_relation_emb)
def orth_reverse_mat(self, rel_embeddings):
rel_shape = rel_embeddings.shape
if self.use_scale:
rel_emb = rel_embeddings.reshape(
[-1, self.num_elem, self.num_elem + 1])
rel_mat = rel_emb[:, :, :self.num_elem].transpose([0, 2, 1])
rel_scale = self.reverse_scale(rel_emb[:, :, self.num_elem:])
rel_embeddings = paddle.concat(
[rel_mat, rel_scale], axis=-1).reshape(rel_shape)
else:
rel_embeddings = rel_embeddings.reshape(
[-1, self.num_elem, self.num_elem])
rel_embeddings = rel_embeddings.transpose(
[0, 2, 1]).reshape(rel_shape)
return rel_embeddings
def reverse_scale(self, scale, eps=1e-9):
if self.scale_type == 1:
return 1 / (scale.abs() + eps)
if self.scale_type == 2:
return -scale
raise ValueError("Scale Type %d is not supported!" % self.scale_type)
def orth_embedding(self, embeddings, eps=1e-18):
assert embeddings.shape[1] == self.num_elem
assert embeddings.shape[2] == (self.num_elem + int(self.use_scale))
if self.use_scale:
emb_scale = embeddings[:, :, -1]
embeddings = embeddings[:, :, :self.num_elem]
u = [embeddings[:, 0]]
uu = [0] * self.num_elem
uu[0] = (u[0] * u[0]).sum(axis=-1)
u_d = embeddings[:, 1:]
for i in range(1, self.num_elem):
tmp = (embeddings[:, i:] * u[i - 1].unsqueeze(axis=1)).sum(axis=-1)
tmp = (tmp / uu[i - 1].unsqueeze(axis=1)).unsqueeze(axis=-1)
u_d = u_d - u[-1].unsqueeze(axis=1) * tmp
u_i = u_d[:, 0]
if u_d.shape[1] > 1:
u_d = u_d[:, 1:]
uu[i] = (u_i * u_i).sum(axis=-1)
u.append(u_i)
u = paddle.stack(u, axis=1)
u = u / u.norm(axis=-1, keepdim=True, p=2)
if self.use_scale:
u = paddle.concat([u, emb_scale.unsqueeze(-1)], axis=-1)
return u
def orth_rel_embedding(self, relation_embedding):
rel_emb_shape = relation_embedding.shape
relation_embedding = relation_embedding.reshape(
[-1, self.num_elem, self.num_elem + int(self.use_scale)])
relation_embedding = self.orth_embedding(relation_embedding)
relation_embedding = relation_embedding.reshape(rel_emb_shape)
return relation_embedding