-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_iemocap_hgt.py
232 lines (193 loc) · 9.63 KB
/
train_iemocap_hgt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import time
import argparse
import ipdb
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from sklearn.metrics import f1_score, accuracy_score, confusion_matrix
from sklearn.metrics import classification_report, precision_recall_fscore_support
from logger import log
from model import DialogueHGTModel
from dataloader import IEMOCAPDataset
from loss import MaskedNLLLoss
from utils import seed_everything
def get_train_valid_sampler(trainset, valid=0.1):
size = len(trainset)
idx = list(range(size))
split = int(valid * size)
return SubsetRandomSampler(idx[split:]), SubsetRandomSampler(idx[:split]) # 随机采样
def get_IEMOCAP_loaders(batch_size=32, valid=0.1, num_workers=0, pin_memory=False):
trainset = IEMOCAPDataset(train=True)
train_sampler, valid_sampler = get_train_valid_sampler(trainset, valid)
train_loader = DataLoader(trainset,
batch_size=batch_size,
sampler=train_sampler,
collate_fn=trainset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory)
valid_loader = DataLoader(trainset,
batch_size=batch_size,
sampler=valid_sampler,
collate_fn=trainset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory)
testset = IEMOCAPDataset(train=False)
test_loader = DataLoader(testset,
batch_size=batch_size,
collate_fn=testset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory)
return train_loader, valid_loader, test_loader
def train_or_eval_graph_model(model, loss_func, dataloader, cuda, optimizer=None, train=False):
losses, preds, labels = [], [], []
scores, vids = [], []
assert not train or optimizer is not None
if train:
model.train()
else:
model.eval()
seed_everything(args.seed)
for data in dataloader:
if train:
optimizer.zero_grad()
# Text feature, Visual feature, Audio feature, Speaker mask, Utterance mask, Label
textf, visualf, audiof, qmask, umask, label = [d.cuda() for d in data[:-1]] if cuda else data[:-1]
lengths = [(umask[j] == 1).nonzero().tolist()[-1][0] + 1 for j in
range(len(umask))] # 每个 batch 中真实的 utterance 数量
# 只用到了 text feature, need to change.
# ipdb.set_trace()
log_prob = model(textf, qmask, umask, lengths)
label = torch.cat([label[j][:lengths[j]] for j in range(len(label))])
loss = loss_func(log_prob, label)
preds.append(torch.argmax(log_prob, 1).cpu().numpy())
labels.append(label.cpu().numpy())
losses.append(loss.item())
if train:
loss.backward()
optimizer.step()
else:
vids += data[-1]
if preds != []:
preds = np.concatenate(preds)
labels = np.concatenate(labels)
else:
return float('nan'), float('nan'), [], [], float('nan'), []
labels = np.array(labels)
preds = np.array(preds)
vids = np.array(vids)
avg_loss = round(np.sum(losses) / len(losses), 4)
avg_accuracy = round(accuracy_score(labels, preds) * 100, 2)
avg_fscore = round(f1_score(labels, preds, average='weighted') * 100, 2)
return avg_loss, avg_accuracy, labels, preds, avg_fscore, vids
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=100, help='random seed')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='does not use GPU')
parser.add_argument('--base-model', default='LSTM',
help='base recurrent model, must be one of DialogRNN/LSTM/GRU')
parser.add_argument('--nodal-attention', action='store_true', default=False,
help='whether to use nodal attention in graph model: Equation 4,5,6 in Paper') # Emotion classifier
parser.add_argument('--windowp', type=int, default=10,
help='context window size for constructing edges in graph model for past utterances')
# 实验点:可用于探究过去的影响大还是未来的影响大
parser.add_argument('--windowf', type=int, default=10,
help='context window size for constructing edges in graph model for future utterances')
parser.add_argument('--lr', type=float, default=0.0001,
help='learning rate')
parser.add_argument('--l2', type=float, default=0.00001,
help='L2 regularization weight')
parser.add_argument('--rec-dropout', type=float, default=0.1,
help='rec_dropout rate')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout rate')
parser.add_argument('--batch-size', type=int, default=32,
help='batch size')
parser.add_argument('--epochs', type=int, default=60,
help='number of epochs')
parser.add_argument('--class-weight', action='store_true', default=False,
help='use class weights')
parser.add_argument('--active-listener', action='store_true', default=False,
help='activate listener')
parser.add_argument('--attention', default='general',
help='Attention type in DialogueRNN model')
parser.add_argument('--num_layers', type=int, default=2, help='number of gnn layers')
parser.add_argument('--num_heads', type=int, default=4, help='number of heads in DialogueHGT')
parser.add_argument('--tensorboard', action='store_true', default=False,
help='Enables tensorboard log')
args = parser.parse_args()
log.info(args)
args.cuda = torch.cuda.is_available() and not args.no_cuda
if args.cuda:
log.info("Running on GPU")
else:
log.info("Running on CPU")
# I can use VisualDL instead.
if args.tensorboard:
from tensorboardX import SummaryWriter
writer = SummaryWriter()
# 针对 IEMOCAP 数据集特定不变的部分
n_classes = 6 # 6个情感分类,针对 IEMOCAP
cuda = args.cuda
n_epochs = args.epochs
batch_size = args.batch_size
D_m = 100 # utterance feature size
D_g = 150
D_p = 150
D_e = 100
D_h = 100
D_a = 100
graph_h = 100
seed_everything(args.seed)
model = DialogueHGTModel(args,
D_m, D_g, D_p, D_e, D_a, graph_h,
n_speakers=2,
n_classes=n_classes)
log.info("Graph NN with %s as base model" % args.base_model)
name = 'Graph'
if cuda:
model.cuda()
total_params = sum(p.numel() for p in model.parameters())
log.info('Total parameters: %d' % total_params)
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
log.info('Training parameters: %d' % total_trainable_params)
loss_weights = torch.FloatTensor(
[1 / 0.086747, 1 / 0.144406, 1 / 0.227883, 1 / 0.160585, 1 / 0.127711, 1 / 0.252668])
if args.class_weight:
loss_function = nn.NLLLoss(loss_weights.cuda() if cuda else loss_weights)
# 用于多分类的负对数似然损失函数(negative log likelihood loss)
# weight权重是一个一维张量,为每个类分配权重;当训练集不平衡时,这是特别有用的。
else:
loss_function = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2)
train_loader, valid_loader, test_loader = get_IEMOCAP_loaders(valid=0.0,
batch_size=batch_size,
num_workers=0)
best_fscore, best_loss, best_label, best_pred, best_mask = None, None, None, None, None
all_fscore, all_acc, all_loss = [], [], []
for e in range(n_epochs):
start_time = time.time()
train_loss, train_acc, _, _, train_fscore, _ = \
train_or_eval_graph_model(model, loss_function, train_loader, cuda, optimizer, True)
valid_loss, valid_acc, _, _, valid_fscore, _, = \
train_or_eval_graph_model(model, loss_function, valid_loader, cuda)
test_loss, test_acc, test_label, test_pred, test_fscore, _ = \
train_or_eval_graph_model(model, loss_function, test_loader, cuda)
all_fscore.append(test_fscore)
if args.tensorboard:
writer.add_scalar('test: accuracy/loss', test_acc / test_loss, e)
writer.add_scalar('train: accuracy/loss', train_acc / train_loss, e)
log.info(
'epoch: {}, train_loss: {}, train_acc: {}, train_fscore: {}, valid_loss: {}, valid_acc: {}, \
valid_fscore: {}, test_loss: {}, test_acc: {}, test_fscore: {}, time: {}s'. \
format(e + 1, train_loss, train_acc, train_fscore, valid_loss, valid_acc, valid_fscore, test_loss,
test_acc, test_fscore, round(time.time() - start_time, 2)))
log.info(classification_report(test_label, test_pred, digits=4)) # 用于记录分类具体结果
log.info(confusion_matrix(test_label, test_pred))
if args.tensorboard:
writer.close()
log.info('Test performance...')
log.info('F-Score: %f' % max(all_fscore))