-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhgt_utils.py
78 lines (63 loc) · 2.69 KB
/
hgt_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import random
import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
def edge_perms(l, window_past, window_future):
"""
Method to construct the edges considering the past and future window.
用于构造边的函数
"""
all_perms = set()
array = np.arange(l)
for j in range(l):
perms = set()
if window_past == -1 and window_future == -1:
eff_array = array
elif window_past == -1:
eff_array = array[:min(l, j + window_future + 1)]
elif window_future == -1:
eff_array = array[max(0, j - window_past):]
else:
eff_array = array[max(0, j - window_past):min(l, j + window_future + 1)]
for item in eff_array:
perms.add((j, item))
all_perms = all_perms.union(perms)
return list(all_perms)
def hgt_batch_graphify(features, qmask, lengths, window_past, window_future, no_cuda):
"""
Construct batch graphs for HGT model, mainly adding node types.
"""
edge_index, edge_type, node_type, node_features = [], [], [], []
batch_size = features.size(1)
length_sum = 0
edge_index_lengths = []
# TODO: No need to add edge weights?
# edge_ind = []
# for j in range(batch_size): # Add edges -- mainly for calculating edge weights
# edge_ind.append(edge_perms(lengths[j], window_past, window_future)
# scores are the edge weights!!!
# scores = att_model(features, lengths, edge_ind)
for j in range(batch_size):
node_features.append(features[:lengths[j], j, :]) # Add node features to graph.
node_type.extend((qmask[:lengths[j], j, :] == 1).nonzero()[:, 1].tolist())
perms1 = edge_perms(lengths[j], window_past, window_future)
perms2 = [(item[0] + length_sum, item[1] + length_sum) for item in perms1]
length_sum += lengths[j]
edge_index_lengths.append(len(perms1))
for item1, item2 in zip(perms1, perms2):
edge_index.append(torch.tensor([item2[0], item2[1]])) # Add edges to graph.
if item1[0] < item1[1]: # Add edge types to graph.
edge_type.append(0) # future
else:
edge_type.append(1) # past
node_features = torch.cat(node_features, dim=0)
edge_index = torch.stack(edge_index).transpose(0, 1)
edge_type = torch.tensor(edge_type)
node_type = torch.tensor(node_type)
if not no_cuda:
node_features = node_features.cuda()
node_type = node_type.cuda()
edge_index = edge_index.cuda()
edge_type = edge_type.cuda()
return node_features, node_type, edge_index, edge_type, edge_index_lengths