forked from yangzhaonan18/yolov3_trafficSign_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetection_and_classification.py
422 lines (307 loc) · 16.9 KB
/
detection_and_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
from __future__ import division
from models import *
from utils.utils import *
from utils.datasets import *
import os
import sys
import time
import datetime
import argparse
from PIL import Image
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torchvision
from torchvision import datasets
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.ticker import NullLocator
from utils.utils import rescale_boxes
from utils.datasets import pad_to_square, resize
from tqdm import tqdm
from ALL_sign_data.model import Lenet5, my_resnt18, FashionCNN
from ALL_sign_data.resnet import ResNet18
import json
os.environ['CUDA_VISIBLE_DEVICES']='3'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sign_classes = 115
# classes_weights_path = "ALL_sign_data/model_acc_90__epoch_4.pt"
classes_weights_path = "ALL_sign_data/checkpoints/model_acc_97__class_115_epoch_10.pt"
# os.makedirs("output", exist_ok=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image_folder", type=str, default="data/changshu_18_during", help="path to dataset")
parser.add_argument("--model_def", type=str, default="config/ALL_DATA.cfg", help="path to model definition file")
# parser.add_argument("--weights_path", type=str, default="checkpoints/yolov3_ckpt_13.pth", help="path to weights file")
parser.add_argument("--weights_path", type=str, default="checkpoints/yolov3_ckpt_33.pth", help="path to weights file")
# parser.add_argument("--class_path", type=str, default="data/ALL_DATA.names", help="path to class label file")
parser.add_argument("--class_path", type=str, default="ALL_sign_data/ALL_data_in_2_train/names.txt", help="path to class label file")
parser.add_argument("--conf_thres", type=float, default=0.8, help="object confidence threshold")
parser.add_argument("--nms_thres", type=float, default=0.4, help="iou thresshold for non-maximum suppression")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--n_cpu", type=int, default=1, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_size", type=int, default=1216, help="size of each image dimension")
parser.add_argument("--checkpoint_model", type=str, help="path to checkpoint model")
opt = parser.parse_args()
print(opt)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs("output", exist_ok=True)
# Set up model
model = Darknet(opt.model_def, img_size=opt.img_size).to(device)
if opt.weights_path.endswith(".weights"):
# Load darknet weights
model.load_darknet_weights(opt.weights_path)
else:
# Load checkpoint weights
model.load_state_dict(torch.load(opt.weights_path))
model.eval() # Set in evaluation mode
# dataloader = DataLoader(
# ImageFolder(opt.image_folder, img_size=opt.img_size),
# batch_size=opt.batch_size,
# shuffle=False,
# num_workers=opt.n_cpu,
# )
classes = load_classes(opt.class_path) # Extracts class labels from file
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
# imgs = [] # Stores image paths
# img_detections = [] # Stores detections for each image index
print("\nPerforming object detection:")
# prev_time = time.time()
# to class
# model_class = FashionCNN(sign_classes)
model_class = ResNet18(sign_classes)
model_class.load_state_dict(torch.load(classes_weights_path))
model_class.to(device)
model_class.eval()
# to class
crop_dirs = [
# "/headless/Desktop/yzn_file/DataSetsH/CCTSDB/CCTSDB/test_data/img/", # 400
# "/headless/Desktop/yzn_file/DataSetsH/WIDER_FACE/WIDER_test/images/0--Parade/", # 575
# "/headless/Desktop/yzn_file/DataSetsH/baiduApollo/demo_data/trainsets/images/", # 100
# "/headless/Desktop/yzn_file/DataSetsH/baiduApollo/demo_data/testsets/images/", # 100
# "/headless/Desktop/yzn_file/DataSetsH/CCTSDB/CCTSDB/images/", # 15724
# "/headless/Desktop/yzn_file/DataSetsH/CCTSDB/CCTSDB/test_data/img/", # 400
# "/headless/Desktop/yzn_file/DataSetsH/COCO/test2014/", # 40775
# "/headless/Desktop/yzn_file/DataSetsH/CTSD_zidonghua/TrafficPanelDatabase/data_A_TraffficPanelDatabaseA/", # 1524
# "/headless/Desktop/yzn_file/DataSetsH/CTSD_zidonghua/TrafficPanelDatabase/data_B_TrafficPanelDatabaseB/", # 976
# "/headless/Desktop/yzn_file/DataSetsH/CTSD_zidonghua/TrafficSignDetectionDatabase/test_data_TsignDetTestDatabase/",
# "/headless/Desktop/yzn_file/DataSetsH/CTSD_zidonghua/TrafficSignDetectionDatabase/train_data_TsignDetTrainDatabase/",
# "/headless/Desktop/yzn_file/DataSetsH/CTSD_zidonghua/TrafficSignRecogntionDatabase/test_data_TSRD-Test/",
# "/headless/Desktop/yzn_file/DataSetsH/CTSD_zidonghua/TrafficSignRecogntionDatabase/train-data_tsrd-train/",
# "/headless/Desktop/yzn_file/DataSetsH/DFGTSD/JPEGImages/JPEGImages/",
# "/headless/Desktop/yzn_file/DataSetsH/gangjinDataSet/train_dataset/",
# "/headless/Desktop/yzn_file/DataSetsH/gangjinDataSet/test_dataset/",
# "/headless/Desktop/yzn_file/DataSetsH/GTSDB/FullIJCNN2013",
# "/headless/Desktop/yzn_file/DataSetsH/httpcvrr.ucsd.eduLISAlisa-traffic-sign-dataset.html/signDatabasePublicFramesOnly/aiua120306-1/frameAnnotations-DataLog02142012_003_external_camera.avi_annotations/",
"/headless/Desktop/yzn_file/DataSetsH/Tinghua100K/data_all/train/",
# "/headless/Desktop/yzn_file/DataSetsH/Tinghua100K/data_all/test/",
# "/headless/Desktop/yzn_file/DataSetsH/Tinghua100K/data_all/other/",
# "/headless/Desktop/yzn_file/DataSetsH/VOC/VOCdevkit/VOC2012/JPEGImages/",
# "/headless/Desktop/yzn_file/DataSetsH/VOC/VOCdevkit/VOC2007/JPEGImages/",
# "data/changshu_17_before",
# "data/changshu_18_before",
# "data/changshu_18_during",
# "data/samples",
# "data/samples_2",
# "data/samples_changsha"
# "/headless/Desktop/yzn_file/DataSetsH/DFGTSD/JPEGImages/JPEGImages/",
# "/headless/Desktop/yzn_file/DataSetsH/Tinghua100K/data_all/train_just/",
# "image_for_detect/Tinghua100K"
]
for dir_ in crop_dirs:
train_results = {"imgs" : {}}
opt.image_folder = dir_
# for batch_i, (img_paths, input_imgs) in enumerate(dataloader):
names = os.listdir(opt.image_folder)
nums = 0
for name in tqdm(names[:]):
img_id = name.split(".")[0]
print("data is: ", dir_)
print("name is: ", name)
img_path = os.path.join(opt.image_folder, name)
print("img_path:", img_path)
if not os.path.isfile(img_path):
continue
if not (img_path.endswith(".jpg") or img_path.endswith(".png") or img_path.endswith(".ppm") ): #
continue
# if
# Extract image as PyTorch tensor
img = torchvision.transforms.ToTensor()(Image.open(img_path).convert(mode="RGB"))
input_imgs, _ = pad_to_square(img, 0)
# Resize
input_imgs = resize(input_imgs, opt.img_size).unsqueeze(0)
# Configure input
input_imgs = Variable(input_imgs.type(Tensor))
# Get detections
with torch.no_grad():
detections = model(input_imgs.to(device))
detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres)[0]
# Log progress
# current_time = time.time()
# inference_time = datetime.timedelta(seconds=current_time - prev_time)
# prev_time = current_time
# print("\t+ Batch %d, Inference Time: %s" % (batch_i, inference_time))
# Save image and detections
# print("detections = ", detections)
# imgs.extend(img_paths)
# img_detections.extend(detections)
if detections is not None: # one image
objects = [] # save the results of a image detection
detections = rescale_boxes(detections, opt.img_size, img.shape[1:])
unique_labels = detections[:, -1].cpu().unique()
# n_cls_preds = len(unique_labels)
# bbox_colors = random.sample(colors, n_cls_preds)
# plt.figure()
fig, ax = plt.subplots()
img_copy =Image.open(img_path)
# ax.imshow(img_copy)
j = 0
for i, (x1, y1, x2, y2, conf, cls_conf, cls_pred) in enumerate(detections): # one object in a image
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
box_w = x2 - x1
box_h = y2 - y1
min_sign_size = 10
if box_w >= min_sign_size and box_h >= min_sign_size:
crop_sign_org = img_copy.crop((x1, y1, x2, y2)).convert(mode="RGB")
# #### to class ###############
test_transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((28, 28), interpolation=2),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.5], std=[0.5])
])
crop_sign_input = test_transform(crop_sign_org).unsqueeze(0)
# input_img = torch.autograd.Variable(input_img)
# print("input_img = ", input_img.size())
with torch.no_grad():
pred_class = model_class(crop_sign_input.to(device))
sign_type = torch.max(pred_class, 1)[1].to("cpu").numpy()[0]
# #### to class ###############
cls_pred = sign_type
print("cls_pred_type = ", classes[int(cls_pred)])
# #############
# save crop image
# #############
if classes[int(cls_pred)] != "zo":
# save crop image #############
save_dir = "img_crop_2_classification_Tinghua_weights_11/" + classes[int(cls_pred)]
if not os.path.exists(save_dir):
os.makedirs(save_dir)
name = dir_.split("/")[-2] + "_" + dir_.split("/")[-1] + str(int(random.random() * 100000000))
print("save path:", save_dir, str(name) + ".jpg")
# save crop sign
crop_sign_org.save(os.path.join(save_dir, str(name) + ".jpg"))
# #####
#
# draw image
#
# #####
if True and classes[int(cls_pred)] != "zo":
# color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
color = "r"
# Create a Rectangle patch
# plt.imshow()
bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=1, edgecolor=color, facecolor="none")
# Add the bbox to the plot
ax.add_patch(bbox)
# Add label
plt.text(
x1,
y2 + 50,
s=classes[int(cls_pred)],
color="white",
verticalalignment="top",
bbox={"color": color, "pad": 0},
)
pad_sign_path_png = "ALL_sign_data/pad-all/" + classes[int(cls_pred)] + ".png"
pad_sign_path_jpg = "ALL_sign_data/pad-all/" + classes[int(cls_pred)] + ".jpg"
if os.path.isfile(pad_sign_path_png):
pad_sign = Image.open(pad_sign_path_png)
elif os.path.isfile(pad_sign_path_jpg):
pad_sign = Image.open(pad_sign_path_jpg)
else:
pad_sign = Image.new("RGB", (100, 100), (255, 255, 255))
img_copy.paste(crop_sign_org.resize((100, 100)), (0, j * 100) )
img_copy.paste(pad_sign.resize((100, 100)), (100, j * 100) )
j += 1
# save predict results to a json file: my_train_results.json
objects.append({'category': classes[int(cls_pred)], 'score': 848.0, 'bbox': {'xmin': x1, 'ymin': y1, 'ymax': y2, 'xmax': x2}})
# Save generated image with detections
nums += 1
plt.axis("off")
plt.gca().xaxis.set_major_locator(NullLocator())
plt.gca().yaxis.set_major_locator(NullLocator())
# # Save generated image with detections
# plt.axis("off")
# plt.gca().xaxis.set_major_locator(NullLocator())
# plt.gca().yaxis.set_major_locator(NullLocator())
# filename = path.split("/")[-1].split(".")[0]
# plt.savefig(f"output/{nums}.png", bbox_inches="tight", pad_inches=0.0,)
# plt.close()
ax.imshow(img_copy)
# plt.ion()
# plt.pause(0.5)
# plt.close()
try:
dir__ = dir_.split("/")[-1]
plt.savefig(f"output/{dir__ + str(nums).zfill(5)}.png", bbox_inches="tight", pad_inches=0.0,)
except:
continue
# plt.show()
train_results["imgs"][img_id] = {"objects": objects}
# print("train_results = ", train_results)
file_name = "results/Tinghua100K_result_for_test.json"
with open(file_name, "w") as file_object:
json.dump(train_results, file_object)
# filename = path.split("/")[-1].split(".")[0]
# plt.savefig(f"output/{filename}.png", bbox_inches="tight", pad_inches=0.0, dpi=400)
# plt.close()
# # Bounding-box colors
# cmap = plt.get_cmap("tab20b")
# colors = [cmap(i) for i in np.linspace(0, 1, 20)]
# print("\nSaving images:")
# # Iterate through images and save plot of detections
# for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
# # print("(%d) Image: '%s'" % (img_i, path))
# # Create plot
# img = np.array(Image.open(path))
# print("img.shape = ", img.shape) # ( 2048 2048 3 )
# plt.figure()
# fig, ax = plt.subplots(1)
# ax.imshow(img)
# # Draw bounding boxes and labels of detections
# if detections is not None:
# # Rescale boxes to original image
# detections = rescale_boxes(detections, opt.img_size, img.shape[:2])
# unique_labels = detections[:, -1].cpu().unique()
# n_cls_preds = len(unique_labels)
# bbox_colors = random.sample(colors, n_cls_preds)
# for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
# print("\t+ Label: %s, Conf: %.5f" % (classes[int(cls_pred)], cls_conf.item()))
# box_w = x2 - x1
# box_h = y2 - y1
# color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
# color = "r"
# # Create a Rectangle patch
# bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=1, edgecolor=color, facecolor="none")
# # Add the bbox to the plot
# ax.add_patch(bbox)
# # Add label
# plt.text(
# x1,
# y2 + 50,
# s=classes[int(cls_pred)],
# color="white",
# verticalalignment="top",
# bbox={"color": color, "pad": 0},
# )
# # Save generated image with detections
# plt.axis("off")
# plt.gca().xaxis.set_major_locator(NullLocator())
# plt.gca().yaxis.set_major_locator(NullLocator())
# filename = path.split("/")[-1].split(".")[0]
# plt.savefig(f"output/{filename}.png", bbox_inches="tight", pad_inches=0.0, dpi=400)
# plt.close()