forked from ghchen18/cdalign
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_align.py
128 lines (108 loc) · 4.5 KB
/
generate_align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate pre-processed data with a trained model.
"""
import torch,os
from fairseq import bleu, checkpoint_utils, options, progress_bar, tasks, utils
from fairseq.meters import StopwatchMeter, TimeMeter
def main(args):
assert args.path is not None, '--path required for generation!'
assert not args.sampling or args.nbest == args.beam, \
'--sampling requires --nbest to be equal to --beam'
assert args.replace_unk is None or args.raw_text, \
'--replace-unk requires a raw text dataset (--raw-text)'
utils.import_user_module(args)
if args.max_tokens is None and args.max_sentences is None:
args.max_tokens = 12000
print(args)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load dataset splits
task = tasks.setup_task(args)
task.load_dataset(args.gen_subset)
# Set dictionaries
try:
src_dict = getattr(task, 'source_dictionary', None)
except NotImplementedError:
src_dict = None
tgt_dict = task.target_dictionary
# Load ensemble
print('| loading model(s) from {}'.format(args.path))
models, _model_args = checkpoint_utils.load_model_ensemble(
args.path.split(':'),
arg_overrides=eval(args.model_overrides),
task=task,
)
# Optimize ensemble for generation
for model in models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
need_attn=args.print_alignment,
)
if args.fp16:
model.half()
if use_cuda:
model.cuda()
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(args.gen_subset),
max_tokens=args.max_tokens,
max_sentences=args.max_sentences,
max_positions=utils.resolve_max_positions(
task.max_positions(),
*[model.max_positions() for model in models]
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=args.required_batch_size_multiple,
num_shards=args.num_shards,
shard_id=args.shard_id,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
# Generate and compute BLEU score
if args.sacrebleu:
scorer = bleu.SacrebleuScorer()
else:
scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
if args.print_vanilla_alignment:
import string
punc = string.punctuation
src_punc_tokens = [w for w in range(len(src_dict)) if src_dict[w] in punc]
else:
src_punc_tokens = None
with progress_bar.build_progress_bar(args, itr) as t:
if args.decoding_path is not None:
if args.gen_subset == 'train':
align_sents = [[] for _ in range(5000000)]
else:
align_sents = [[] for _ in range(10000)]
for sample in t:
sample = utils.move_to_cuda(sample) if use_cuda else sample
if 'net_input' not in sample:
continue
sample_id = sample['id'].tolist()[0]
if args.print_vanilla_alignment:
if not args.set_shift:
alignments = utils.extract_att_output_alignment(sample, models[0], src_punc_tokens, alignment_task=args.alignment_task)
else:
alignments = utils.extract_att_input_alignment(sample, models[0], src_punc_tokens, alignment_task=args.alignment_task)
else:
alignments = None
for i, sample_id in enumerate(sample['id'].tolist()):
if args.print_vanilla_alignment and args.decoding_path is not None:
align_sents[int(sample_id)].append(alignments[int(sample_id)])
if args.decoding_path is not None and args.print_vanilla_alignment:
with open(os.path.join(args.decoding_path, f'{args.gen_subset}.{args.source_lang}2{args.target_lang}.align'), 'w') as f:
for sents in align_sents:
if len(sents)==0:
continue
for sent in sents:
f.write(str(sent)+'\n')
def cli_main():
parser = options.get_generation_parser()
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == '__main__':
cli_main()