forked from hjd1964/OnStep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
OnStep.ino
685 lines (601 loc) · 24 KB
/
OnStep.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*
* Title OnStep
* by Howard Dutton
*
* Copyright (C) 2012 to 2020 Howard Dutton
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Description:
* Full featured stepper motor telescope microcontroller for Equatorial and
* Alt-Azimuth mounts, with the LX200 derived command set.
*
* Author: Howard Dutton
* http://www.stellarjourney.com
*
* Revision history, and newer versions:
* See GitHub: https://github.com/hjd1964/OnStep
*
* Documentation:
* https://groups.io/g/onstep/wiki/home
*
* Discussion, Questions, ...etc
* https://groups.io/g/onstep
*/
// Use Config.h to configure OnStep to your requirements
// firmware info, these are returned by the ":GV?#" commands
#define FirmwareDate __DATE__
#define FirmwareVersionMajor 4
#define FirmwareVersionMinor 15 // minor version 0 to 99
#define FirmwareVersionPatch "k" // for example major.minor patch: 1.3c
#define FirmwareVersionConfig 3 // internal, for tracking configuration file changes
#define FirmwareName "On-Step"
#define FirmwareTime __TIME__
#include "Constants.h"
// On first upload OnStep automatically initializes a host of settings in nv memory (EEPROM.)
// This option forces that initialization again.
// Change to ON, upload OnStep and nv will be reset to default. Then immediately set to OFF and upload again.
// *** IMPORTANT: This option must not be left set to true or it will cause excessive wear of EEPROM or FLASH ***
#define NV_FACTORY_RESET OFF
// Enable additional debugging and/or status messages on the specified DebugSer port
// Note that the DebugSer port cannot be used for normal communication with OnStep
#define DEBUG OFF // default=OFF, use "DEBUG ON" for background errors only, use "DEBUG VERBOSE" for all errors and status messages
#define DebugSer SerialA // default=SerialA, or Serial4 for example (always 9600 baud)
#include <errno.h>
#include <math.h>
#include "src/sd_drivers/Models.h"
#include "Config.h"
#include "src/pinmaps/Models.h"
#include "src/HAL/HAL.h"
#include "Validate.h"
// Helper macros for debugging, with less typing
#if DEBUG != OFF
#define D(x) DebugSer.print(x)
#define DF(x) DebugSer.print(F(x))
#define DL(x) DebugSer.println(x)
#define DLF(x) DebugSer.println(F(x))
#else
#define D(x)
#define DF(x)
#define DL(x)
#define DLF(x)
#endif
#if DEBUG == VERBOSE
#define V(x) DebugSer.print(x)
#define VF(x) DebugSer.print(F(x))
#define VL(x) DebugSer.println(x)
#define VLF(x) DebugSer.println(F(x))
#else
#define V(x)
#define VF(x)
#define VL(x)
#define VLF(x)
#endif
// ---------------------------------------------------------------------------------------------------
#include "src/lib/St4SerialMaster.h"
#include "src/lib/FPoint.h"
#include "src/lib/Heater.h"
#include "src/lib/Intervalometer.h"
#include "Globals.h"
#include "src/lib/Julian.h"
#include "src/lib/Misc.h"
#include "src/lib/Sound.h"
#include "src/lib/Coord.h"
#include "Align.h"
#include "src/lib/Library.h"
#include "src/lib/Command.h"
#include "src/lib/TLS.h"
#include "src/lib/Weather.h"
weather ambient;
#if ROTATOR == ON
#include "src/lib/Rotator.h"
rotator rot;
#endif
#if FOCUSER1 == ON || FOCUSER2 == ON
#include "src/lib/Focuser.h"
#if FOCUSER1 == ON
#if AXIS4_DRIVER_DC_MODE != OFF
#include "src/lib/FocuserDC.h"
focuserDC foc1;
#else
#include "src/lib/FocuserStepper.h"
focuserStepper foc1;
#endif
#endif
#if FOCUSER2 == ON
#if AXIS5_DRIVER_DC_MODE != OFF
#include "src/lib/FocuserDC.h"
focuserDC foc2;
#else
#include "src/lib/FocuserStepper.h"
focuserStepper foc2;
#endif
#endif
#endif
// support for TMC2130, TMC5160, etc. stepper drivers in SPI mode
#if AXIS1_DRIVER_MODEL == TMC_SPI
#include "src/lib/SoftSPI.h"
#include "src/lib/TMC_SPI.h"
#if AXIS1_DRIVER_STATUS == TMC_SPI
// SS ,SCK ,MISO ,MOSI
tmcSpiDriver tmcAxis1(Axis1_M2,Axis1_M1,Axis1_M3,Axis1_M0,AXIS1_DRIVER_SUBMODEL,AXIS1_DRIVER_RSENSE);
#else
tmcSpiDriver tmcAxis1(Axis1_M2,Axis1_M1, -1,Axis1_M0,AXIS1_DRIVER_SUBMODEL,AXIS1_DRIVER_RSENSE);
#endif
#if AXIS2_DRIVER_STATUS == TMC_SPI
tmcSpiDriver tmcAxis2(Axis2_M2,Axis2_M1,Axis2_M3,Axis2_M0,AXIS2_DRIVER_SUBMODEL,AXIS2_DRIVER_RSENSE);
#else
tmcSpiDriver tmcAxis2(Axis2_M2,Axis2_M1, -1,Axis2_M0,AXIS2_DRIVER_SUBMODEL,AXIS2_DRIVER_RSENSE);
#endif
#if ROTATOR == ON && AXIS3_DRIVER_MODEL == TMC_SPI
tmcSpiDriver tmcAxis3(Axis3_M2,Axis3_M1, -1,Axis3_M0,AXIS3_DRIVER_SUBMODEL,AXIS3_DRIVER_RSENSE);
#endif
#if FOCUSER1 == ON && AXIS4_DRIVER_MODEL == TMC_SPI
tmcSpiDriver tmcAxis4(Axis4_M2,Axis4_M1, -1,Axis4_M0,AXIS4_DRIVER_SUBMODEL,AXIS4_DRIVER_RSENSE);
#endif
#if FOCUSER2 == ON && AXIS5_DRIVER_MODEL == TMC_SPI
tmcSpiDriver tmcAxis5(Axis5_M2,Axis5_M1, -1,Axis5_M0,AXIS5_DRIVER_SUBMODEL,AXIS5_DRIVER_RSENSE);
#endif
#endif
void setup() {
// early pin initialization
initPre();
// take a half-second to let any connected devices come up before we start setting up pins
delay(500);
#if DEBUG != OFF
// Initialize USB serial debugging early, so we can use DebugSer.print() for debugging, if needed
DebugSer.begin(9600); delay(5000); DebugSer.flush(); VLF(""); VLF("");
#endif
VF("MSG: OnStep "); V(FirmwareVersionMajor); V("."); V(FirmwareVersionMinor); VL(FirmwareVersionPatch);
// Call hardware specific initialization
VLF("MSG: Init HAL");
HAL_Initialize();
VLF("MSG: Init serial");
SerialA.begin(SERIAL_A_BAUD_DEFAULT);
#ifdef HAL_SERIAL_B_ENABLED
#ifdef SERIAL_B_RX
SerialB.begin(SERIAL_B_BAUD_DEFAULT, SERIAL_8N1, SERIAL_B_RX, SERIAL_B_TX);
#else
SerialB.begin(SERIAL_B_BAUD_DEFAULT);
#endif
#endif
#ifdef HAL_SERIAL_C_ENABLED
SerialC.begin(SERIAL_C_BAUD_DEFAULT);
#endif
#ifdef HAL_SERIAL_D_ENABLED
SerialD.begin(SERIAL_D_BAUD_DEFAULT);
#endif
#ifdef HAL_SERIAL_E_ENABLED
SerialE.begin(SERIAL_E_BAUD_DEFAULT);
#endif
#if ST4_HAND_CONTROL == ON && ST4_INTERFACE != OFF
SerialST4.begin();
#endif
// Take another two seconds to be sure Serial ports are online
delay(2000);
// set pins for input/output as specified in Config.h and PinMap.h
VLF("MSG: Init pins");
initPins();
// get the TLS ready (if present)
VLF("MSG: Init TLS");
if (!tls.init()) generalError=ERR_SITE_INIT;
// Check the Non-Volatile Memory
VF("MSG: Start NV ");
if (!nv.init()) {
VLF("");
SerialA.print("NV (EEPROM) failure!#\r\n");
while (true) {
delay(10);
#ifdef HAL_SERIAL_TRANSMIT
SerialA.transmit();
#endif
}
}
V(E2END+1); VLF(" Bytes");
// if this is the first startup set EEPROM to defaults
initWriteNvValues();
// now read any saved values from EEPROM into variables to restore our last state
VLF("MSG: Read NV settings");
initReadNvValues();
// set initial values for some variables
VLF("MSG: Init startup settings");
initStartupValues();
initStartPosition();
// initialize the Object Library
VLF("MSG: Init library/catalogs");
Lib.init();
// get guiding ready
VLF("MSG: Init guiding");
initGuide();
// get weather monitoring ready to go
#ifdef ONEWIRE_DEVICES_PRESENT
VLF("MSG: Init weather and 1-Wire");
#else
VLF("MSG: Init weather");
#endif
if (!ambient.init()) generalError=ERR_WEATHER_INIT;
// setup features
#ifdef FEATURES_PRESENT
VLF("MSG: Init auxiliary features");
featuresInit();
#endif
// this sets up the sidereal timer and tracking rates
VLF("MSG: Init sidereal timer");
siderealInterval=nv.readLong(EE_siderealInterval); // the number of 16MHz clocks in one sidereal second (this is scaled to actual processor speed)
if (siderealInterval < 14360682L || siderealInterval > 17551944L) { DF("ERR, setup(): bad NV siderealInterval ("); D(siderealInterval); DL(")"); siderealInterval=masterSiderealInterval; }
siderealRate=siderealInterval/stepsPerSecondAxis1;
timerRateAxis1=siderealRate;
timerRateAxis2=siderealRate;
// backlash takeup rates
backlashTakeupRate=siderealRate/TRACK_BACKLASH_RATE;
timerRateBacklashAxis1=siderealRate/TRACK_BACKLASH_RATE;
timerRateBacklashAxis2=(siderealRate/TRACK_BACKLASH_RATE)*timerRateRatio;
// setup the stepper driver modes
VLF("MSG: Init motor timers");
StepperModeTrackingInit();
// starts the hardware timers that keep sidereal time, move the motors, etc.
setTrackingRate(DefaultTrackingRate);
setDeltaTrackingRate();
initStartTimers();
// tracking autostart
#if TRACK_AUTOSTART == ON
#if MOUNT_TYPE != ALTAZM
VLF("MSG: Tracking autostart");
// tailor behaviour depending on TLS presence
if (!tls.active) {
setHome();
safetyLimitsOn=false;
} else {
if (parkStatus == Parked) unPark(true); else setHome();
}
// start tracking
trackingState=TrackingSidereal;
enableStepperDrivers();
#else
#warning "Tracking autostart ignored for MOUNT_TYPE ALTAZM"
#endif
#else
// unpark without tracking, if parked
if (parkStatus == Parked) unPark(false);
#endif
// start rotator if present
#if ROTATOR == ON
VLF("MSG: Init rotator");
rot.init(Axis3_STEP,Axis3_DIR,Axis3_EN,AXIS3_STEP_RATE_MAX,axis3Settings.stepsPerMeasure,axis3Settings.min,axis3Settings.max);
if (axis3Settings.reverse == ON) rot.setReverseState(HIGH);
rot.setDisableState(AXIS3_DRIVER_DISABLE);
#if AXIS3_DRIVER_MODEL == TMC_SPI
tmcAxis3.setup(AXIS3_DRIVER_INTPOL,AXIS3_DRIVER_DECAY_MODE,AXIS3_DRIVER_CODE,axis3Settings.IRUN,axis3Settings.IRUN);
delay(150);
tmcAxis3.setup(AXIS3_DRIVER_INTPOL,AXIS3_DRIVER_DECAY_MODE,AXIS3_DRIVER_CODE,axis3Settings.IRUN,axis3SettingsEx.IHOLD);
#endif
rot.powerDownActive(AXIS3_DRIVER_POWER_DOWN == ON);
#endif
// start focusers if present
#if FOCUSER1 == ON
VLF("MSG: Init focuser1");
foc1.init(Axis4_STEP,Axis4_DIR,Axis4_EN,EE_posAxis4,EE_tcfCoefAxis4,EE_tcfEnAxis4,AXIS4_STEP_RATE_MAX,axis4Settings.stepsPerMeasure,axis4Settings.min*1000.0,axis4Settings.max*1000.0,AXIS4_LIMIT_MIN_RATE);
if (AXIS4_DRIVER_DC_MODE != OFF) { foc1.initDcPower(EE_dcPwrAxis4); foc1.setPhase1(); }
if (axis4Settings.reverse == ON) foc1.setReverseState(HIGH);
foc1.setDisableState(AXIS4_DRIVER_DISABLE);
#if AXIS4_DRIVER_MODEL == TMC_SPI
tmcAxis4.setup(AXIS4_DRIVER_INTPOL,AXIS4_DRIVER_DECAY_MODE,AXIS4_DRIVER_CODE,axis4Settings.IRUN,axis4Settings.IRUN);
delay(150);
tmcAxis4.setup(AXIS4_DRIVER_INTPOL,AXIS4_DRIVER_DECAY_MODE,AXIS4_DRIVER_CODE,axis4Settings.IRUN,axis4SettingsEx.IHOLD);
#endif
foc1.powerDownActive(AXIS4_DRIVER_POWER_DOWN == ON);
#endif
#if FOCUSER2 == ON
VLF("MSG: Init focuser2");
foc2.init(Axis5_STEP,Axis5_DIR,Axis5_EN,EE_posAxis5,EE_tcfCoefAxis5,EE_tcfEnAxis5,AXIS5_STEP_RATE_MAX,axis5Settings.stepsPerMeasure,axis5Settings.min*1000.0,axis5Settings.max*1000.0,AXIS5_LIMIT_MIN_RATE);
if (AXIS5_DRIVER_DC_MODE == DRV8825) { foc2.initDcPower(EE_dcPwrAxis5); foc2.setPhase2(); }
if (axis5Settings.reverse == ON) foc2.setReverseState(HIGH);
foc2.setDisableState(AXIS5_DRIVER_DISABLE);
#if AXIS5_DRIVER_MODEL == TMC_SPI
tmcAxis5.setup(AXIS5_DRIVER_INTPOL,AXIS5_DRIVER_DECAY_MODE,AXIS5_DRIVER_CODE,axis5Settings.IRUN,axis5Settings.IRUN);
delay(150);
tmcAxis5.setup(AXIS5_DRIVER_INTPOL,AXIS5_DRIVER_DECAY_MODE,AXIS5_DRIVER_CODE,axis5Settings.IRUN,axis5SettingsEx.IHOLD);
#endif
foc2.powerDownActive(AXIS5_DRIVER_POWER_DOWN == ON);
#endif
// finally clear the comms channels
VLF("MSG: Serial buffer flush");
delay(500);
SerialA.flush();
while (SerialA.available()) SerialA.read();
#ifdef HAL_SERIAL_B_ENABLED
SerialB.flush();
while (SerialB.available()) SerialB.read();
#endif
#ifdef HAL_SERIAL_C_ENABLED
SerialC.flush();
while (SerialC.available()) SerialC.read();
#endif
#ifdef HAL_SERIAL_D_ENABLED
SerialD.flush();
while (SerialD.available()) SerialD.read();
#endif
#ifdef HAL_SERIAL_E_ENABLED
SerialE.flush();
while (SerialE.available()) SerialE.read();
#endif
delay(500);
// prep counters (for keeping time in main loop)
cli(); siderealTimer=lst; guideSiderealTimer=lst; pecSiderealTimer=lst; sei();
last_loop_micros=micros();
VLF("MSG: OnStep is ready"); VL("");
}
void loop() {
loop2();
Align.model(0); // GTA compute pointing model, this will call loop2() during extended processing
}
void loop2() {
// GUIDING -------------------------------------------------------------------------------------------
ST4();
if ((trackingState != TrackingMoveTo) && (parkStatus == NotParked)) guide();
#if HOME_SENSE != OFF
// AUTOMATIC HOMING ----------------------------------------------------------------------------------
checkHome();
#endif
// 1/100 SECOND TIMED --------------------------------------------------------------------------------
cli(); long lstNow=lst; sei();
if (lstNow != siderealTimer) {
siderealTimer=lstNow;
#ifdef ESP32
timerSupervisor(true);
#endif
#if AXIS1_PEC == ON
// PERIODIC ERROR CORRECTION
pec();
#endif
// FLASH LED DURING SIDEREAL TRACKING
#if LED_STATUS == ON
if (trackingState == TrackingSidereal) {
if (siderealTimer%20L == 0L) { if (ledOn) { digitalWrite(LEDnegPin,HIGH); ledOn=false; } else { digitalWrite(LEDnegPin,LOW); ledOn=true; } }
}
#endif
// SIDEREAL TRACKING DURING GOTOS
// keeps the target where it's supposed to be while doing gotos
if (trackingState == TrackingMoveTo) {
moveTo();
if (lastTrackingState == TrackingSidereal) {
origTargetAxis1.fixed+=fstepAxis1.fixed;
origTargetAxis2.fixed+=fstepAxis2.fixed;
// don't advance the target during meridian flips or sync
if (getInstrPierSide() == PierSideEast || getInstrPierSide() == PierSideWest) {
cli();
targetAxis1.fixed+=fstepAxis1.fixed;
targetAxis2.fixed+=fstepAxis2.fixed;
sei();
}
}
}
// ROTATOR/FOCUSERS, MOVE THE TARGET
#if ROTATOR == ON
rot.poll(trackingState == TrackingSidereal);
#endif
#if FOCUSER1 == ON
foc1.poll();
#endif
#if FOCUSER2 == ON
foc2.poll();
#endif
// CALCULATE SOME TRACKING RATES, ETC.
if (lstNow%3 == 0) doFastAltCalc(false);
#if MOUNT_TYPE == ALTAZM
// figure out the current Alt/Azm tracking rates
if (lstNow%3 != 0) doHorRateCalc();
#else
// figure out the current refraction compensated tracking rate
if (rateCompensation != RC_NONE && lstNow%3 != 0) doRefractionRateCalc();
#endif
// SAFETY CHECKS
#if LIMIT_SENSE != OFF
// support for limit switch(es)
byte limit_1st = digitalRead(LimitPin);
if (limit_1st == LIMIT_SENSE_STATE) {
// Wait for a short while, then read again
delayMicroseconds(50);
byte limit_2nd = digitalRead(LimitPin);
if (limit_2nd == LIMIT_SENSE_STATE) {
// It is still low, there must be a problem
generalError=ERR_LIMIT_SENSE;
stopSlewingAndTracking(SS_LIMIT);
}
}
#endif
// check for fault signal, stop any slew or guide and turn tracking off
#if AXIS1_DRIVER_STATUS == LOW || AXIS1_DRIVER_STATUS == HIGH
faultAxis1=(digitalRead(Axis1_FAULT) == AXIS1_DRIVER_STATUS);
#elif AXIS1_DRIVER_STATUS == TMC_SPI
if (lst%2 == 0) faultAxis1=tmcAxis1.error();
#endif
#if AXIS2_DRIVER_STATUS == LOW || AXIS2_DRIVER_STATUS == HIGH
faultAxis2=(digitalRead(Axis2_FAULT) == AXIS2_DRIVER_STATUS);
#elif AXIS2_DRIVER_STATUS == TMC_SPI
if (lst%2 == 1) faultAxis2=tmcAxis2.error();
#endif
if (faultAxis1 || faultAxis2) { generalError=ERR_MOTOR_FAULT; stopSlewingAndTracking(SS_LIMIT_HARD); }
if (safetyLimitsOn) {
// check altitude overhead limit and horizon limit
if (currentAlt < minAlt) { generalError=ERR_ALT_MIN; stopSlewingAndTracking((MOUNT_TYPE == ALTAZM)?SS_LIMIT_AXIS2_MIN:SS_LIMIT); }
if (currentAlt > maxAlt) { generalError=ERR_ALT_MAX; stopSlewingAndTracking((MOUNT_TYPE == ALTAZM)?SS_LIMIT_AXIS2_MAX:SS_LIMIT); }
}
// OPTION TO POWER DOWN AXIS2 IF NOT MOVING
#if AXIS2_DRIVER_POWER_DOWN == ON && MOUNT_TYPE != ALTAZM
autoPowerDownAxis2();
#endif
// 0.01S POLLING -------------------------------------------------------------------------------------
#if TIME_LOCATION_SOURCE == GPS
if ((PPS_SENSE == OFF || ppsSynced) && !tls.active && tls.poll()) {
SerialGPS.end();
currentSite=0; nv.update(EE_currentSite,currentSite);
tls.getSite(latitude,longitude);
tls.get(JD,LMT);
timeZone=nv.read(EE_sites+currentSite*25+8)-128;
timeZone=decodeTimeZone(timeZone);
UT1=LMT+timeZone;
nv.writeString(EE_sites+currentSite*25+9,(char*)"GPS");
setLatitude(latitude);
nv.writeFloat(EE_sites+currentSite*25+4,longitude);
updateLST(jd2last(JD,UT1,false));
if (generalError == ERR_SITE_INIT) generalError=ERR_NONE;
dateWasSet=true;
timeWasSet=true;
}
#endif
// UPDATE THE UT1 CLOCK
cli(); long cs=lst; sei();
double t2=(double)((cs-lst_start)/100.0)/1.00273790935;
// This just needs to be accurate to the nearest second, it's about 10x better
UT1=UT1_start+(t2/3600.0);
// UPDATE AUXILIARY FEATURES
#ifdef FEATURES_PRESENT
featuresPoll();
#endif
// WEATHER
if (!isSlewing()) ambient.poll();
// MONITOR NV CACHE
#if DEBUG == VERBOSE
static bool lastCommitted=true;
bool committed=nv.committed();
if (committed && !lastCommitted) { DLF("MSG: NV commit done"); lastCommitted=committed; }
if (!committed && lastCommitted) { DLF("MSG: NV data in cache"); lastCommitted=committed; }
#endif
}
// FASTEST POLLING -----------------------------------------------------------------------------------
#if ROTATOR == ON
rot.follow();
#endif
#if FOCUSER1 == ON
foc1.follow(isSlewing());
#endif
#if FOCUSER2 == ON
foc2.follow(isSlewing());
#endif
if (!isSlewing()) nv.poll();
// WORKLOAD MONITORING -------------------------------------------------------------------------------
unsigned long this_loop_micros=micros();
loop_time=(long)(this_loop_micros-last_loop_micros);
if (loop_time > worst_loop_time) worst_loop_time=loop_time;
last_loop_micros=this_loop_micros;
average_loop_time=(average_loop_time*49+loop_time)/50;
// 1 SECOND TIMED ------------------------------------------------------------------------------------
unsigned long tempMs=millis();
static unsigned long housekeepingTimer=0;
if ((long)(tempMs-housekeepingTimer) > 1000L) {
housekeepingTimer=tempMs;
#if ROTATOR == ON && MOUNT_TYPE == ALTAZM
// calculate and set the derotation rate as required
double h,d; getApproxEqu(&h,&d,true);
if (trackingState == TrackingSidereal) rot.derotate(h,d);
#endif
// adjust tracking rate for Alt/Azm mounts
// adjust tracking rate for refraction
setDeltaTrackingRate();
// basic check to see if we're not at home
if (trackingState != TrackingNone) atHome=false;
#if PPS_SENSE != OFF
// update clock via PPS
cli();
ppsRateRatio=((double)1000000.0/(double)(ppsAvgMicroS));
if ((long)(micros()-(ppsLastMicroS+2000000UL)) > 0) ppsSynced=false; // if more than two seconds has ellapsed without a pulse we've lost sync
sei();
#if LED_STATUS2 == ON
if (trackingState == TrackingSidereal) {
if (ppsSynced) { if (led2On) { digitalWrite(LEDneg2Pin,HIGH); led2On=false; } else { digitalWrite(LEDneg2Pin,LOW); led2On=true; } } else { digitalWrite(LEDneg2Pin,HIGH); led2On=false; } // indicate PPS
}
#endif
if (ppsLastRateRatio != ppsRateRatio) { SiderealClockSetInterval(siderealInterval); ppsLastRateRatio=ppsRateRatio; }
#endif
#if LED_STATUS == ON
// LED indicate PWR on
if (trackingState != TrackingSidereal) if (!ledOn) { digitalWrite(LEDnegPin,LOW); ledOn=true; }
#endif
#if LED_STATUS2 == ON
// LED indicate STOP and GOTO
if (trackingState == TrackingMoveTo) if (!led2On) { digitalWrite(LEDneg2Pin,LOW); led2On=true; }
#if PPS_SENSE != OFF
if (trackingState == TrackingNone) if (led2On) { digitalWrite(LEDneg2Pin,HIGH); led2On=false; }
#else
if (trackingState != TrackingMoveTo) if (led2On) { digitalWrite(LEDneg2Pin,HIGH); led2On=false; }
#endif
#endif
// SAFETY CHECKS -------------------------------------------------------------------------------------
// keeps mount from tracking past the meridian limit, past the AXIS1_LIMIT_MAX, or past the Dec limits
if (safetyLimitsOn) {
// check for exceeding AXIS1_LIMIT_MIN or AXIS1_LIMIT_MAX
if (getInstrAxis1() < axis1Settings.min) { generalError=(MOUNT_TYPE==ALTAZM)?ERR_AZM:ERR_UNDER_POLE; stopSlewingAndTracking(SS_LIMIT_AXIS1_MIN); } else
if (getInstrAxis1() > axis1Settings.max) { generalError=(MOUNT_TYPE==ALTAZM)?ERR_AZM:ERR_UNDER_POLE; stopSlewingAndTracking(SS_LIMIT_AXIS1_MAX); } else
// check for exceeding Meridian Limits
if (meridianFlip != MeridianFlipNever) {
if (getInstrPierSide() == PierSideWest) {
if (getInstrAxis1() > degreesPastMeridianW && (!(autoMeridianFlip && goToHere(true) == CE_NONE))) { generalError=ERR_MERIDIAN; stopSlewingAndTracking(SS_LIMIT_AXIS1_MAX); }
} else
if (getInstrAxis1() < -degreesPastMeridianE) { generalError=ERR_MERIDIAN; stopSlewingAndTracking(SS_LIMIT_AXIS1_MIN); }
}
}
double a2; if (AXIS2_TANGENT_ARM == ON) { cli(); a2=posAxis2/axis2Settings.stepsPerMeasure; sei(); } else a2=getInstrAxis2();
// check for exceeding AXIS2_LIMIT_MIN or AXIS2_LIMIT_MAX
if (a2 < axis2Settings.min) { generalError=ERR_DEC; stopSlewingAndTracking(SS_LIMIT_AXIS2_MIN); } else
if (a2 > axis2Settings.max) { generalError=ERR_DEC; stopSlewingAndTracking(SS_LIMIT_AXIS2_MAX); } else
// automatically clear error in TA mode
if (AXIS2_TANGENT_ARM == ON && (trackingState == TrackingSidereal && generalError == ERR_DEC)) generalError=ERR_NONE;
} else {
// COMMAND PROCESSING --------------------------------------------------------------------------------
processCommands();
}
}
// stops fast motion as required
// SS_ALL_FAST stops slewing but not tracking
// SS_LIMIT stops gotos + spiral guides + tracking
// SS_LIMIT_HARD stops slewing + tracking
// SS_LIMIT_AXIS1_MIN stops gotos + spiral guides + tracking, also stops/blocks RA/Az guides in the wrong direction
// SS_LIMIT_AXIS1_MAX stops gotos + spiral guides + tracking, also stops/blocks RA/Az guides in the wrong direction
// SS_LIMIT_AXIS2_MIN stops gotos + spiral guides + tracking, also stops/blocks Dec/Alt guides in the wrong direction
// SS_LIMIT_AXIS2_MAX stops gotos + spiral guides + tracking, also stops/blocks Dec/Alt guides in the wrong direction
void stopSlewingAndTracking(StopSlewActions ss) {
if (trackingState == TrackingMoveTo) {
if (!abortGoto) {
abortGoto=StartAbortGoto;
VLF("MSG: Goto aborted");
}
} else {
if (spiralGuide) stopGuideSpiral();
if (ss == SS_ALL_FAST || ss == SS_LIMIT_HARD) { stopGuideAxis1(); stopGuideAxis2(); } else
if (ss == SS_LIMIT_AXIS1_MIN) {
if (guideDirAxis1 == 'e' ) guideDirAxis1='b';
} else
if (ss == SS_LIMIT_AXIS1_MAX) {
if (guideDirAxis1 == 'w' ) guideDirAxis1='b';
} else
if (ss == SS_LIMIT_AXIS2_MIN) {
if (getInstrPierSide() == PierSideWest) { if (guideDirAxis2 == 'n' ) guideDirAxis2='b'; } else if (guideDirAxis2 == 's' ) guideDirAxis2='b';
} else
if (ss == SS_LIMIT_AXIS2_MAX) {
if (getInstrPierSide() == PierSideWest) { if (guideDirAxis2 == 's' ) guideDirAxis2='b'; } else if (guideDirAxis2 == 'n' ) guideDirAxis2='b';
}
if (trackingState != TrackingNone) {
if (ss != SS_ALL_FAST) {
if (generalError != ERR_DEC) {
stopGuideAxis1();
stopGuideAxis2();
trackingState=TrackingNone;
VLF("MSG: Limit exceeded guiding/tracking stopped");
}
}
}
}
}